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1 | BACKGROUND

Autophagy serves as an evolutionarily conserved physiological
phenomenon to maintain cellular homeostasis and survival during
nutrient deprivation. The initiation of autophagic response is
briefly presented as the encapsulation of excessive or damaged
cellular components and organelles into autophagosome leading
to enzymatic degradation.>? According to the various delivering
routes and contents to lysosomes, autophagy is generally catego-
rized into macroautophagy (predominant form generally termed as
autophagy), microautophagy and chaperon-mediated autophagy.®
Autophagy is also frequently altered under pathological circum-
stances, namely hypoxia, endoplasmic reticulum (ER) stress, nu-
trient deficiency, radiation and chemotherapy.*® Aside from its
direct effect on cancer cell response to environmental challenges,
recent studies show that autophagy in cancer cells regulates
tumour-immune interactions, depending upon the context of can-
cer types, metabolic alterations in the tumour microenvironment
(TME) and the stage of cancers.” Genetic evidence showed that
autophagy is a critical mechanism suppressing tumour initiation,®
however, in established tumours autophagy contributes to adap-
tive resistance.” Of note, mitophagy, another form of autophagy,
plays a similar role in regulating tumour development by adjust-
ing tumour immune response.’® In this review, we seek to sum-
marize recent evidence characterizing the functions of autophagy,
including mitophagy, in regulating tumour-immune interactions
(Figures 1-3; Table 1).

2 | AUTOPHAGY IN ESTABLISHED
TUMOURS PROMOTES EVASION FROM
INNATE AND ADAPTIVE IMMUNE
SURVEILLANCE

Autophagy could directly or indirectly exert its effect on the in-
nate immunity mediated by natural killer (NK) cells, dendritic cells
(DCs) and macrophage population. First, autophagy of tumour cells
promotes adaptive resistance to NK-induced tumour lysis. NK cells,
which are considered as the first-line defence against tumours, re-
leasing perforin, and granzyme B for the lysis of tumour cells.*%*?
Its anti-cancer role has been validated in malignancies, such as gas-
tric cancer®® and lung cancer.}* By exploiting the in vivo and in vitro
breast cancer models, Baginska et al observed that the autophagy
provoked by the hypoxic TME is involved in the degradation of
granzyme B originated from NK into cancer cells, thus counteract-
ing the apoptotic cell death effect induced by NK cells.}? Besides,
several studies also suggest additional mechanisms that contribute
to the low tumour immunosurveillance and cytotoxicity of NK cells
for cancers. Gap junctions (GJs) are interacting channels that medi-
ate the exchange of the small molecules between cells composed
by connexin subunits, among which Connexin 43 (Cx43) is uncov-
ered as the major GJ protein located at the immunological synapse

and bridging the interplay between immune cells and cancer cells.'®

Hypoxia-induced autophagic flux results in the degradation of Cx43
in melanoma cells and impairs the cytotoxic effects of NK cells upon
cancer cells. In agreement, elevated Cx43 expression levels in tu-
mour cells are beneficial to enhance the efficacy of NK-based immu-
notherapy.’® Inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1),
as one ligand-gated channel of ion for managing calcium release
from the endoplasmic reticulum, is reported to be able to induce au-
tophagy.16 Messai's study regarding clear cell renal cell carcinomas
(CCRCCQ) indicated that the elevated expression of ITPR1 evoked
by HIF-2« initiated the autophagic degradation of granzyme B and
abolished the NK-induced killing effect on tumour cells. In agree-
ment with that, they implanted the tumours in mice and observed
reduced tumour growth by inhibiting ITPR, while the depletion
of NK cells reverted the tumour suppression.” As another line of
evidence of autophagy-mediated immune resistance, depletion of
autophagy-promoting Beclin 1 (BECN1) leads to increased intensity
of chemokine (C-C motif) ligand 5 (CCL5) expression within mela-
noma cells and redirects massive NK cells into the tumour microen-
vironment, thus leading to tumour suppression.®

Macrophages may also exert innate immune surveillance in the
TME through their phagocytic functions.}”?! A glioblastoma study
employing a combinatorial treatment to target both VEGF and CD47,
the latter of which inhibited the phagocytic effect of macrophages,
revealed that it could trigger autophagy of cancer cells which at-
tenuated the phagocytosis and cytotoxicity of macrophage popula-
tion. Inhibition of various signalling pathways, including Akt/mTOR
and Erk, was responsible for the enhanced autophagy.?! The same
group also demonstrated that the combination of anti-CD47 ther-
apy with autophagy inhibitor would robustly improve the therapeu-
tic efficacy against non-small cell lung cancer (NSCLC).These results
suggest that autophagy originated from tumour cells could impede
the phagocytic function of macrophages.22 Zhang et al found that
autophagy occurring in glioblastoma cells could mitigate the immu-
notherapeutic efficacy of anti-CD47-SIRPa treatment, displaying as
the reduced macrophage-derived phagocytosis and subsequent at-
tenuation of CD8" T-cell cytotoxicity.23 Notably, macrophages may
be regulated by tumour cell-released autophagosomes (TRAPs) and
affect the cytotoxic T lymphocytes (CTLs).2* TRAPs are a type of
double-membrane vesicles released into the TME by tumour cells,
which escape from the lysosome fusion stage of classical autoph-
agy.?’> Wen and colleagues uncovered that within several tumour
models, the TRAPs could skew macrophages into M2-phenotype
with higher levels of PD-L1 and IL-10 via Toll-like receptor 4 (TLR4)-
MyD88-p38-STAT3 pathway, therefore resulting in suppression of
CTL function and reduced IFN-y secretion.?*

Moreover, tumour-associated autophagy also contributes to
evasion from adaptive immunity. For example, the response rate of
head and neck squamous cell carcinoma (HNSCC) to immunotherapy
remains less than 15%, for which low immunogenicity and a poor in-
filtration of CTLs were indicated as the possible reason.?®?” Type | in-
terferon (IFN-I) signalling promotes anti-tumour effects by mediating
the recruitment and maturation of antigen-presenting cells (APCs).
Stimulator of IFN genes (STING) is a pivotal adaptor protein that could
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FIGURE 1 Schematic presentation
regarding the potential mechanisms

of tumour cell or immune cell

instrinsic autophagy in modulating
tumour-immune interplay and the
development of tumour. ATP, adenosine
triphosphate; CCL5, chemokine (C-

C motif) ligand 5; CTL, cytotoxic T
lymphocytes; Cx43, Connexin 43; DC,
dendritic cell; ICD, immunogenic cell
death; IFN-I, type | interferon; ITPR1,
inositol 1,4,5-trisphosphate receptor,
type 1; MHC, major histocompatibility
class; NK, natural killer cells; PD-L1,
programmed death-ligand 1; STAT3, signal
transducer and activator of transcription
3; Treg, regulatory T cells

FIGURE 2 Schematic diagram
indicating the possible mechanisms

of immune cell instrinsic autophagy in
regulating tumour-immune interplay and
the tumour outcome. CTL, cytotoxic

T lymphocytes; MDSC, myeloid-
derived suppressor cells; MHC, major
histocompatibility class; Treg, regulatory
T cells

activate the IFN-I pathway.?®?? Nonetheless, STING is frequently in-
hibited in TME, contributing to tumour escape from innate immune

sensing. Recent studies identified previously unknown functions of
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pathway.%3! Specifically, SOX2, previously known as a cancer stem-
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amplification in tumour cells leads to an increased autophagic influx,
which promoted the turnover of STING in HNSCC cells. Inhibition
of autophagy could rescue SOX2-potentiated suppression of STING.
In addition, the results of in vivo experiment suggested that SOX2-
expressing tumours contained lower numbers of CD8* CTLs and that
those infiltrating T cells expressed higher levels of PD-1 than SOX2-
negative tumours.>® HPV* HNSCC is driven by a distinct aetiology,
with different immune infiltration patterns from HPV" tumours.
Interestingly, HPV* HNSCCs contain less T-cell receptor richness, in
contrast to its usually heavy immune infiltration.* IFN-I is essen-
tial for tumour-specific CTL expansion. A recent study showed that
HPV16 E7 could contribute to the autophagic degradation of STING
by binding to NLRX1, which was shown to promote autophagosome
formation.>313%3¢ NLRX1 deficiency in the tumour cells promoted
CD8" CTL expansion located in the tumour-draining lymph nodes
and reduces CTL exhaustion in the TME.3! In agreement, additional
studies also found that high-risk HPV subtypes utilize a number of
strategies to antagonize IFN-I induction®”*?; Gariglio and colleagues
observed that HPV E7 could attenuate the IFN-I activation in HPV-
transformed cells via epigenetic silencing of sensor genes includ-
ing RIG-I, cGAS and STING in an SUV39H1-dependent manner.>’
NLRX1 has an LC3-interacting region and can directly interact with
LC3. Such interaction underpins an NLRX1-mediated mitophagy
process. Depletion of NLRX1 promotes mitochondria-derived reac-
tive oxygen species, which arguably amplifies the production of Thl
cytokines.*® The role of autophagy in inhibiting IFN-I was also cor-

roborated using a transgenic FIP200 (FAK family-interacting protein

inhibiting

of 200 kD)-deficient mouse model. FIP200 is an essential autoph-
agy gene, in the absence of which mammary tumorigenesis is sup-
pressed. The study found that inhibition of autophagy promoted the
activation of IFN-I signalling as well as its downstream chemokines
such as CXCL10, subsequently inducing CD8* CTL expansion in the
TME.** Of interest, Yamamoto and colleagues recently reported that
autophagy is responsible for the degradation of MHC-1 in pancreatic
ductal adenocarcinoma by employing the autophagy cargo receptor
NBR1, resulting in the tumour immune evasion.*? Thus, modulating
selective autophagy represents a non-tapped approach to fine-tune
host immune responses.

Additional evidence implies that autophagy is also responsible
for tumour immune escape by stimulating signal transducer and ac-
tivator of transcription 3 (STAT3) signalling, an oncogenic pathway.
The STAT3 pathway has been an important link between tumour and
immune cells.”*® Wang et al reported that STAT3 activation occur-
ring in tumour cells could significantly reduce the production of pro-
inflammatory cytokines and chemokines critical for APC maturation
and its recruitment to the tumour bed.** Autophagy has been shown
to increase STAT3 phosphorylation in multiple tumour models.*>*#
Autophagy may also inhibit adaptive immunity by dampening the
immunogenic cell death (ICD)-induced immune killing. ICD can be
triggered by several anti-cancer treatments such as chemotherapy,

4849 and hypericin-based photodynamic therapy (Hyp-

radiotherapy
PDT).*° This phenomenon is predominantly represented as the cal-
reticulin (CRT) exposure on the cellular surface, the secretion of high

mobility group box 1 (HMGB1) along with adenosine triphosphate
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(ATP). 153 These are pivotal to the proper processing of antigen by
APCs, and these molecules, including CRT, HMGB1 and ATP were

defined as damage-associated molecular patterns (DAMPs).>*

Garg
et al reported that by genetically blocking autophagy in the tumour
model under Hyp-PDT, an increase in CRT and ICD-caused immune
reaction was detected. This was elucidated as the up-regulation of
IL6-producing mature DCs and CTLs along with IFN-y.SO

In addition to tumour-intrinsic autophagy, immune cell-inherent
autophagy may also deliver resistance to immune killing. Myeloid-
derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are
the dominant subsets in the TME to promote tumour immune es-
cape.55’56 HMGB1-induced autophagy was found essential for main-
taining the survival of MDSCs in the TME.*” Autophagy could also
induce the lysosomal breakdown of MHC-Il and repress the anti-
tumour effect of CD4" T cells.>® As a critical adaptive mechanism
in a nutrient-poor environment, autophagy in the MDSCs and Tregs
is essential to maintain their survival and sustained production of
transforming growth factor-p (TGF-), which dampens the activation
of CTLs.%¢:5%¢0

3 | THE PROTECTIVE ROLE OF
AUTOPHAGY IN PROMOTING NEOANTIGEN
PRESENTATION

Compelling evidence demonstrates that the functions of autophagy
in tumour initiation and established tumour response to therapy
are different. One of the examples is that the genetic deletion of
BECN1 enhances spontaneous tumour formation.®! A recent study
suggests that such autophagy-mediated protection depends on im-
mune surveillance. Autophagy promotes the processing and pres-
entation of neoantigens from transforming cells to CTLs, leading to
the elimination of target cells.? Under the circumstances of compro-
mised proteasomal function, autophagy is central for the assembly
of neoantigens with MHC-1 complex in APCs to facilitate its cross-
presentation to CD8" T cells. #6344 |n addition, autophagy in trans-
forming cells facilitates antigen presentation to CD8* T cells.5%%¢
Here, we summarize some evidence for the above notion and other
potential mechanisms of autophagy that contribute to anti-tumour
immunity.

The efficient uptake and presentation of tumour antigen is es-
sential to subvert the immunosuppressant TME. Li and colleagues
showed that tumour cell autophagy triggered by the synthetic
Nano-DOX contributed to the increased immunogenicity of glio-
blastoma. These are presented as the elevated expression of MHC-|
complex and antigen presentation on tumour cells, the activation
of DCs, and the transmission of DAMPs into extracellular TME.¢’
Michaud et al observed that autophagy of colon cancer cells could
promote ICD, including the ATP release followed by IL1-p released
from activated DCs, and the latter cytokine might enhance DC
functions.’® Additionally, the autophagosome extruded by tumour
cells, called TRAPs could also implicate in this process. One study

indicated that TRAPs produced by alpha-tocopheryloxyacetic acid

(a-TEA) treatment in breast and lung cancer models might boost the
potential of DCs to intake and present antigens, then inducing the
activation of CD8" T cells.®® Autophagy-mediated reduction of lyso-
somal integrity could potentiate MHC-| presentation and augment
the cross-dressing of MHC-antigen complexes to DCs, contributing
to significant CD8"* T-cell activation.®® To address the tumour stage-
dependent dichotomous roles of autophagy, genetically engineered
mouse models offer a robust tool. For example, in the early stage of

carcinogenesis of KRas®?P

murine lung cancer, autophagy inhibited
Treg infiltration through suppressing adenosinergic signalling and
repressed tumour growth.®® However, the autophagy at later stage
potentiated tumour progression via dampening oxidative stress as
well as inhibiting the DNA damage response.%?

Similar to the observation in tumour cells, autophagy in macro-
phages was shown to promote the surface expression of MHC-1.
In a diethylnitrosamine-induced hepatocellular carcinoma model,
autophagy in macrophages was essential for their intratumoral infil-
tration.”® Another study reported that autophagy of T cells induced
by metformin in a breast cancer model of mice could substantially
enhance the functional CD8" T-cell response by maintaining T-cell
function; meanwhile, the autophagy of CD8" memory T cells is con-
sidered indispensable to maintain their survival and sustain tumour

immunosurveillance after tumour resection.”*

4 | THE CRUCIAL ROLE OF MITOPHAGY IN
REGULATING TUMOUR IMMUNE RESPONSE

Autophagy-mediated turnover of aged and/or damaged mitochon-
dria is known as mitophagy.”>”® The role of mitophagy in modu-
lating the tumour immunity is emerging. On one side, Ziegler and
colleagues show that mitophagy promotes anti-tumour immunity.
Increased mitophagy in intestinal epithelial cells triggers iron
accumulation-induced lysosomal membrane permeabilization,
which promotes the release of proteases into the cytosol and aug-
ments of MHC class | presentation.®® Besides, in the hepatocellu-
lar carcinoma (HCC) model, mitophagy could be induced upon the
icaritin treatment, which subsequently triggers ICD and augments
anti-tumour immunity.”* On the other hand, mitophagy can also
suppress inflammation. FUN14 domain-containing 1 (FUNDC1), one
mitophagy receptor that initiates the mitophagy, suppresses inflam-
masome activation and related immune responses.”® In addition, Xia
and colleagues uncovered that in mice ovarian cancer models with
peritoneal metastasis, the infiltrating Tim4+ tumour-associated
macrophages (TAMs) exhibited higher mitophagy activity, thereby
inhibiting the T cell-mediated anti-tumour immunity and facilitat-
ing tumour progression.'® Thus, mitophagy may regulate different
inflammatory pathways where mitochondria maintains their home-
ostasis.”” Its role in tumour cells and immune cells likely impose dif-
ferent impacts on anti-tumour immunity (Figure 3). Future different
studies using genetically engineered models, syngeneic models and
human material are needed to better refine the role of mitophagy of

different cell types in regulating tumour immunogenecity.
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5 | UPSTREAM REGULATORS OF
AUTOPHAGY INVOLVED IN THE TUMOUR
IMMUNE RESPONSE

In TME, autophagy can be induced by several stress factors, includ-
ing hypoxia, endoplasmic reticulum (ER) stress, nutrient deprivation,
extracellular matrix (ECM) disassociation and DAMPs.>””7? Hypoxia
is revealed in approximately 50%-60% tumours, and several hypoxia-
mediated pathways are reported to induce autophagy.t%8! HIF1la
translocates into nucleus under hypoxic conditions, resulting in in-
creased adenovirus E1B 19 kD-interacting protein 3 (BNIP3) and its
interacting partner BNIP3L. The BNIP3-BNIP3L complex promotes
autophagy in a BECN1-dependent fashion.®? In relation to that, an-
other study found that NANOG could transcriptionally improve the
level of BNIP3L, thereby inducing autophagy and abolishing the CTL-
mediated tumour lysis.®% With the increased ratio of ADP:ATP within
the hypoxic TME, adenosine monophosphate-activated protein ki-
nase (AMPK) could be activated to stimulate autophagy via attenua-
tion of the mammalian target of rapamycin (nTOR) pathway.8384

Another process closely associated with hypoxia, epithelial to
mesenchymal transition (EMT) is another inducer of autophagy in
TME, which confers tumour resistance to CTL killing. EMT of cancer
cells accompanied with Snail homolog 1 (SNAI1) overexpression up-
regulates BECN1, leading to increased autophagy.gs*86 EMT could
activate autophagy through regulating genes of DAPK1, PTEN and
CDKNZ2A, enabling the cancer evasion from CTL cytotoxicity.*’

HMGB1, as an inducer of ICD, can trigger autophagy in TME. A
co-culture study revealed that HMGB1 could induce autophagy in
colon cancer cells in an ER stress-JNK phosphorylation-dependent
manner.”® Another study implied that HMGB1, similar to BNIP3, dis-
sociated Bcl2 from BECN1, which in turn triggered autophagy.79

Mitophagy in tumours may be modulated by other upstream
modulators. For instance, the STAT3 status, the FUNDC1 expres-
sion and the icaritin treatment implicate in regulating mitophagy
and tumour immunity.?®7374 In addition, high expression levels of
arginase-1 suppress mTORC1 activation, which then contributes to
enhanced mitophagy level in TAMs.1°

6 | CONCLUSIONS

In summary, despite the dichotomous functions of autophagy in
regulating anti-tumour immune responses, its predominant function
is likely dependent on cancer stages, cancer types, immune infiltra-
tion profiles and modelling methods. Autophagy in immune cells is
an essential protective mechanism by facilitating tumour neoanti-
gen presentation. However, autophagy in cancer cells may promote
adaptive resistance to immune killing by dampening IFN-I-mediated
immune sensing and rapid turnover of cytotoxic effector molecules.
Global inhibition of autophagy may not yield the maximal benefits
due to its interference with the antigen presentation machinery in
the APCs; even such inhibition may sensitize tumours to immune kill-

ing. Thus, the characterization of specific genes regulating tumour
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immunogenicity and innovation in targeted delivery of autophagy
inhibitors into tumour cells are among the most urgent tasks to sen-

sitize cold cancers to immunotherapy.
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