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TMEM16A/ANO1 is differentially 
expressed in HPV-negative versus 
HPV-positive head and neck 
squamous cell carcinoma through 
promoter methylation
Ronak Dixit1, Carolyn Kemp1, Scott Kulich2, Raja Seethala3, Simion Chiosea3, 
Shizhang Ling4, Patrick K. Ha4 & Umamaheswar Duvvuri1,2

Head and neck squamous cell carcinoma (HNSCC) has a variety of causes. Recently, the human 
papilloma virus (HPV) has been implicated in the rising incidence of oropharyngeal cancer and has 
led to variety of studies exploring the differences between HPV-positive and HPV-negative HNSCC. 
The calcium-activated chloride channel TMEM16A is overexpressed in a variety of cancers, including 
HNSCC, but whether or not it plays different roles in HPV-positive and HPV-negative HNSCC is 
unknown. Here, we demonstrate that TMEM16A is preferentially overexpressed in HPV-negative 
HNSCC and that this overexpression of TMEM16A is associated with decreased patient survival. 
We also show that TMEM16A expression is decreased in HPV-positive HNSCC at the DNA, RNA, 
and protein levels in patient samples as well as cell lines. We demonstrate that the lower levels 
of TMEM16A expression in HPV-positive tumors can be attributed to both a combination of copy 
number alteration and promoter methylation at the DNA level. Additionally, our cellular data show 
that HPV-negative cell lines are more dependent on TMEM16A for survival than HPV-positive cell 
lines. Therefore, we suspect that the down-regulation of TMEM16A in HPV-positive HNSCC makes 
TMEM16A a poor therapeutic target in HPV-positive HNSCC, but a potentially useful target in HPV-
negative HNSCC.

Head and neck squamous cell carcinoma (HNSCC) represents the sixth most common cancer in the 
world and has an overall five-year survival of approximately 50%1. Historically, risk factors for this dis-
ease include alcohol and tobacco use2. More recently, however, HNSCC is occurring in patients without 
these traditional risk factors. The human papillomavirus (HPV) has been implicated as the causal agent 
in the rising incidence of HNSCC of the oropharynx3.

While HPV-positive and HPV-negative HNSCC are indistinguishable upon initial presentation, 
there are important distinctions to be made between these two classifications of tumors. For example, 
HPV-negative HNSCC occurs at various sites in the head and neck, but HPV-positive HNSCC gener-
ally arises in the oropharynx4. In the United States, the incidence of HPV-negative HNSCC has been 
decreasing due to decreasing rates of tobacco use, while the incidence of HPV-positive HNSCC has 
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risen dramatically4. Importantly, when compared to patients with HPV-negative tumors, patients with 
HPV-positive HNSCC enjoy improved overall survival and oncologic control5.

TMEM16A (also called TAOS2, ANO1, and DOG1), a calcium-activated chloride channel6, has been 
shown to be overexpressed in numerous cancers, including esophageal7, gastrointestinal stromal tum-
ors8, and HNSCC9. The TMEM16A gene is located in the chromosomal band 11q13, which is frequently 
amplified in breast, bladder, esophageal, and head and neck cancers10. In HNSCC, TMEM16A has been 
shown to enhance tumor proliferation via the RAS-RAF-ERK-CCND1 pathway9, and a decrease in 
TMEM16A expression via promoter methylation has been implicated in a shift of HNSCC activity from 
tumor growth toward metastatic spread11. Additionally, overexpression of TMEM16A correlates with 
decreased patient survival in HNSCC9.

While TMEM16A has been found to be a poor prognostic indicator and a possible therapeutic target 
in HNSCC, no study has compared the role of TMEM16A in HPV-positive and HPV-negative HNSCC. 
Here, we show that TMEM16A is overexpressed in HPV-negative HNSCC, but not HPV-positive 
HNSCC. We demonstrate that overexpression of TMEM16A is associated with poor outcome in patients 
with HPV-negative tumors, but not necessarily in those with HPV-positive cancer. Additionally, we show 
that TMEM16A expression is in part governed by methylation in both HPV-negative and HPV-positive 
tumors, although HPV-positive tumors demonstrate higher levels of promoter methylation. Lastly, we 
demonstrate that cancer cell lines derived from HPV-negative tumors are more reliant on TMEM16A 
for survival than HPV-positive cell lines. Taken together, these results demonstrate that TMEM16A may 
prove to be a novel therapeutic target for HPV-negative, but not HPV-positive, HNSCC.

Results
TMEM16A is overexpressed in HPV-negative HNSCC.  We analyzed tissue samples of patients at 
our institution using both immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) 
analysis (Fig.  1a). In our institution’s tissue microarray (TMA), 52 samples stained positively for p1612 
and were regarded as HPV-positive. 20 tumors were HPV-negative. A semi-quantitative method was 
used to score TMEM16A protein expression on immunohistochemistry for 44 of the HPV-positive 

Figure 1.  HPV-negative HNSCC expresses more TMEM16A than HPV-positive TMEM16A in primary 
tumor samples. (a) Example IHC (200× , left) and FISH (right) analyses of TMEM16A in head and neck 
squamous cell carcinoma. The top half of the image represents HPV-positive tumors, with a low degree of 
IHC and FISH staining. The bottom half, which represents HPV-negative tumors, shows much more staining 
for TMEM16A in both IHC and FISH. (b) TMEM16A protein expression is significantly higher in HPV-
negative tumors than HPV-positive patients on IHC (arbitrary units). (c) On FISH, TMEM16A/CEP11 ratio 
is significantly higher in HPV-negative tumors than HPV-positive ones. (d) Percent of tumor samples with 
amplified TMEM16A (defined as TMEM16A/CEP11 ratio >  2.5) and wild type, stratified by HPV-status. 
HPV-negative tumors were much more likely to have amplification of TMEM16A than HPV-positive ones.
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tumors and 20 HPV-negative ones. HPV-negative tumors scored significantly higher on TMEM16A 
protein expression than HPV-positive tumors (70.46 vs 1.509, p <  0.0001; Fig. 1b).

We then wanted to analyze TMEM16A gene amplification by FISH. This was done by taking the ratio 
of TMEM16A signal intensity (signal-to-nucleus ratio) to CEP11 intensity (centromere-to-nucleus ratio). 
A total of 44 HPV-positive and 20 HPV-negative tumors had this data available. HPV-negative tumors 
had a significantly higher TMEM16A/CEP11 ratio than HPV-positive tumors (5.465 vs 1.795, p <  0.001; 
Fig. 1c). When quantifying the degree to which HPV-negative and HPV-positive tumors had TMEM16A 
gene amplification (defined as TMEM16A/CEP11 ratio >  2.5), chi-squared analysis showed that 55% of 
HPV-negative tumors showed TMEM16A amplification, while only 7% of HPV-positive tumors showed 
it (p <  0.0001; Fig. 1d).

TMEM16A overexpression correlates with decreased survival in HPV-negative tumors.  In 
order to determine if the results at our institution are generalizable, we carried out similar analysis using 
data from The Cancer Genome Atlas (TCGA). Stratification of TCGA data revealed 36 HPV-positive 
tumors and 243 HPV-negative tumors. The mRNA Z-Score is defined as the relative mRNA expression of 
an individual gene to the gene’s expression distribution in a reference population. In this case, the refer-
ence population consists of tumors of the same type (i.e. HNSCC) in TCGA that are known to be diploid 
for TMEM16A. When comparing mRNA Z-Scores by t-test, HPV-negative tumors were found to express 
significantly more TMEM16A mRNA than HPV+  tumors (2.588 vs − 0.05782, p =  0.003; Fig. 2a).

We next wanted to test for differences in the level of TMEM16A amplification. DNA copy number 
alterations (CNA) in TCGA are calculated using log2 ratios of a tumor’s DNA to a reference normal 
DNA. A log2 ratio of 0 indicates no up-regulation (i.e. diploid), and a positive log2 ratio is consid-
ered gain, with a value of 1 representing a full doubling of copy number. When comparing log2 ratios, 
HPV-negative tumors showed significantly more CNA for TMEM16A than HPV-positive tumors (log2 
ratio =  1.400 vs 0.2434, p =  0.0016; Fig.  2b). When we quantified the degree to which HPV-negative 
and HPV-positive tumors showed TMEM16A gene amplification (defined as log2 ratio >  2), we found 
that 28.3% of HPV-negative tumors showed TMEM16A amplification, while only 5.5% of HPV-positive 
tumors showed it (p =  0.0019; Fig. 2c).

Figure 2.  Higher expression of TMEM16A in HPV-negative patients correlates with decreased survival 
in TCGA. (a) Using data from TCGA, mRNA Z-scores for TMEM16A were found to be significantly 
higher in HPV-negative tumors than HPV-positive ones. (b) Similarly, DNA log2 ratios for TMEM16A gene 
are significantly higher in HPV-negative tumors than HPV-positive ones. (c) The TMEM16A gene is much 
more likely to be amplified (defined as log2 ratio >  2) HPV-negative tumors than HPV-positive ones. (d) In 
patients with HPV-negative HNSCC, overexpression of TMEM16A (defined as mRNA Z-score > 2) was 
associated with significantly decreased survival, a pattern that was not seen with HPV-positive HNSCC (see 
Supplementary Fig. S1).
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TCGA also carries survival data for 16 HPV-positive and 143 HPV-negative HNSCC patients. Using 
a TMEM16A mRNA Z-Score of 2 as the threshold for high TMEM16A expression, survival was signif-
icantly decreased in the HPV-negative cohort in those with high TMEM16A expression (median sur-
vival =  13.24 months vs 42.32 months, p =  0.0052; Fig. 2d). This survival difference was not significant in 
the HPV-positive cohort (p =  0.5598, Supplementary Fig. S1); though, it should be noted that only one 
patient in the HPV-positive cohort had a TMEM16A mRNA Z-Score greater than 2.

TMEM16A is regulated by promoter methylation.  Since we found that HPV-negative tumors 
express more TMEM16A than HPV-positive ones, we next aimed to determine if promoter methylation 
might explain this difference. In TCGA, methylation data was available for all 36 HPV-positive tumors 
and 242 of the 243 HPV-negative tumors. Methylation level (beta value) of a single CPG island within the 
promoter region of the TMEM16A gene was determined by the Infinium HM450 BeadChip Kit. When 
analyzing all samples together, methylation negatively correlates with mRNA expression (r2 =  0.2709, 
p <  0.0001; Fig.  3a). Next, we found that the average beta value for HPV-negative tumors was signif-
icantly lower than that of HPV-positive tumors (0.3794 vs 0.4399, p =  0.0269; Fig.  3b) indicating less 
overall methylation in HPV-negative tumors.

We found similar results in our own institution’s tumor samples, in which 18 of the HPV-positive and 
seven of the HPV-negative tumors could be analyzed by qMSP as described below. These samples were 
also compared to 12 normal pharynx specimens. Pairwise comparison revealed that the level of meth-
ylation in HPV-negative tumors (mean =  0.2243 a.u.) was significantly less than that of HPV-positive 
tumors (mean =  1.977 a.u., p =  0.0049; Fig. 3c) or normal tissue (mean =  4.260 a.u., p =  0.0008; Fig. 3c).

HPV-negative tumors are dependent on TMEM16A for survival.  To determine the role of 
TMEM16A in tumor survival, we measured cell viability in response to increasing concentrations 
of a small molecule inhibitor of TMEM16A, here called CaCCinh13, in two HPV-positive and two 
HPV-negative cell lines. The response to CaCCinh concentrations ranging from 0 uM to 128 uM in 

Figure 3.  HPV-negative HNSCC shows significantly decreased methylation of TMEM16A than HPV-
positive HNSCC. (a) Using data from TCGA, correlating mRNA expression with methylation shows that 
degree of methylation correlates with TMEM16A expression with in all data tumors combined. (b) In 
TCGA, level of methylation as measured by HM450 array is significantly lower in HPV-negative tumors. 
(c) qMSP data from our institution’s tissue samples shows that the promoter region of TMEM16A is 
significantly less methylated in HPV-negative tumors (N =  7) than both HPV-positive tumors (N =  18) and 
normal pharynx tissues (N =  12).
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HPV-positive SCC-90 and 93-VU-147T cells was compared to that of HPV-negative FaDu and PE/
CE-PJ34 cells using a short-term survival assay. The respective half maximal inhibitory concentrations 
(IC50) for 93-VU-147T (Fig.  4a) and SCC90 (Fig.  4b) cells were 89.04 uM and 72.16 uM, while those 
of FaDu (Fig.  4c) and PE/CA-PJ34 (Fig.  4d) cells were 37.9 uM and 49.31 uM, respectively. Using the 
Extra sum-of-squares F test, there was a significant difference between the IC50s of the different cell 
lines (p <  0.0001; Fig.  4e). Comparing the IC50s of the two HPV-negative cell lines to that of the two 
HPV-positive cell lines reveals that HPV-negative cells are much more sensitive to CaCCinh (Fig. 4e), 
and therefore rely on TMEM16A for survival more than HPV-positive cells.

Since we found that HPV-positive HNSCC cell lines are more resistant to small molecule inhibition 
of TMEM16A by CaCCinh, we opted to test this resistance further by knocking down TMEM16A. Using 
doxycycline-induced non-targeting shRNA (“ctrl”; Fig.  5a) and doxycycline-induced shRNA against 
TMEM16A (“shTMEM16A”; Fig.  5a), we performed a colony formation assay using the HPV-positive 
93-VU-147T cell line to test if knockdown of TMEM16A would result in decreased colony growth. Two 
weeks after plating colonies on agar, proliferation was assessed by staining with crystal violet (Fig. 5b) 
and by measuring total area of colonization using ImageJ software. ANOVA found no significant effect in 
colony growth by group (p >  0.05), and post hoc analysis failed to show any specific difference between 
groups (p >  0.05; Fig.  5c). Furthermore, we found that knocking down TMEM16A did not result in 
decreased survival in 93-VU-147T cells in short-term survival assays (Fig. 5d). We used similar methods 
to knock down TMEM16A in HPV-negative FaDu cells (“TMEM16A KD”; Fig. S2a). The resulting col-
ony formation assay (Fig. S2b) demonstrated significantly less growth in the FaDu cells with TMEM16A 

Figure 4.  TMEM16A is important for cellular survival in HPV-negative, but not HPV-positive cell 
lines. (a–d) Cell survival study with varying concentrations of the small molecule inhibitor of TMEM16A, 
CaCCinh: The two HPV-positive cell lines, (a) 93-VU-147T and (b) SCC90, had much higher IC50s for 
CaCCInh than the HPV-negative cell lines, (c) FaDu and (d) PE/CA-PJ34. (e) Table comparing the IC50s of 
each cell line.
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knocked down with shRNA (normalized area =  1.00 vs 0.395, p =  0.0358; Fig. S2c). Using siRNA to 
knock down TMEM16A in HPV-negative PE/CA-PJ34 cells (“TMEM16A KD”; Fig. S2d), we also saw 
significantly decreased growth in colonies with TMEM16A knocked down (normalized area =  1.00 vs 
0.804, p =  0.0002; Figs S2e and S2f).

After finding that neither inhibition nor knockdown of TMEM16A results in decreased colony for-
mation or cell survival in an HPV-positive cell line, we wanted to test if overexpression of TMEM16A 
would positively impact survival in an HPV-positive cell line. Using viral transfection, TMEM16A was 
overexpressed in HPV-positive SCC90 cells (“TMEM16A OE”; Fig. 6a) and a colony formation assay was 
performed (Fig. 6b). Overexpression of TMEM16A in SCC90 showed an insignificant difference in area 
of colony formation (normalized area =  1.00 vs 0.9362, p =  0.4826; Fig. 6c). We found that the respective 
IC50s of the wild type SCC90 cells and SCC90 cells with TMEM16A overexpression to CaCCinh were 
149.5 uM and 130.0 uM (Fig. 6d,e), an insignificant difference as calculated by the Extra sum-of-squares F 
test (p =  0.5266). The results of these experiments show that TMEM16A overexpression does not confer 
enhanced survival to HPV-positive cells.

Discussion
TMEM16A/ANO1 has been found to be overexpressed in numerous cancers, including esophageal, gas-
trointestinal stromal tumors, and head and neck cancers7–9. Previous studies on this protein in HNSCC 
have shown that overexpression leads to activation of the RAS-RAF-MEK-ERK1/2 pathway, increased 
cellular proliferation, and decreased patient survival9. Additionally, methylation of its gene promoter 
region has been shown to decrease expression, and this decreased expression may lead to a shift from 
cellular proliferation to metastasis11. Therefore its importance as a potential therapeutic target in HNSCC 
has been established.

This is the first study to compare the role that TMEM16A plays in HPV-positive and HPV-negative 
HNSCC. Our analysis of TCGA as well as our own institution’s tissue microarray (TMA) data clearly 
indicates that TMEM16A is significantly more highly expressed in HPV-negative HNSCC than in 
HPV-positive. Previous studies have shown that overexpression of TMEM16A is associated with decreased 

Figure 5.  Knockdown of TMEM16A by targeting shRNA does not decrease proliferation or survival in 
an HPV-positive cell line. (a) Western Blot showing targeted knockdown of TMEM16A using doxycycline-
induced shRNA in the HPV-positive 93-VU-147T cell line. (b) Representative photo of colony formation 
assay, showing that knockdown of TMEM16A does not decrease colony formation. (c) Knockdown of 
TMEM16A in the HPV-positive 93-VU-147T cell line does not decrease colony formation. (d) In 93-VU-
147T cells, knockdown of TMEM16A does not result in decreased cell viability compared to control groups 
in the CellTiter-Glo assay.
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survival in HNSCC9. Our analysis of TCGA shows that this is likely the case only for patients with 
HPV-negative tumors. In the HPV-positive cohort, TMEM16A overexpression did not lead to a decrease 
in survival. However, since TCGA has limited survival data available for the HPV-positive cohort and 
since the HPV-positive cohort as a whole expresses low levels of TMEM16A, only one patient in this 
group was considered to overexpress TMEM16A. Thus, this survival difference should be re-evaluated 
once more survival data is available from TCGA or other databases. It is well known that patients with 
HPV-positive HNSCC have improved overall survival when compared to those with HPV-negative 
HNSCC5. The differential expression of TMEM16A may help to explain this survival difference and is 
an avenue of study to be explored in the future.

TMEM16A expression has been shown to be regulated by promoter methylation11. Since data from 
TCGA and TMA showed decreased expression in HPV-positive patients, we sought to determine if 
degree of methylation differs between HPV-positive and HPV-negative tumors. Indeed, we did find that 

Figure 6.  Overexpression of TMEM16A in an HPV-positive cell line confers no increase in proliferation 
or survival. (a) Western Blot showing forced overexpression of TMEM16A in the HPV-positive SCC90 cell 
line. (b) Representative photo of colony formation assay, showing that forced overexpression of TMEM16A 
does not confer increased colony formation. (c) Forced overexpression of TMEM16A in the HPV-positive 
SCC90 cell line does not confer enhanced proliferation. (d,e) In SCC90 cells, forced overexpression of 
TMEM16A does not result in resistance to CaCCinh, as evidenced by the nearly identical IC50 to the wild 
type SCC90 cell line.
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the TMEM16A gene has significantly less promoter methylation in HPV-negative tumors in both TCGA 
and our institution’s TMA. This difference in methylation, in combination with the difference in gene 
amplification, helps to explain why TMEM16A is more highly expressed in HPV-negative HNSCC.

When working with HPV-negative and HPV-positive cell lines in vitro, we saw the importance 
of TMEM16A for survival in HPV-negative cell lines. We found concurring results when inhibiting 
TMEM16A either with CaCCinh, a small molecule inhibitor, or by knockdown of TMEM16A with 
either doxycycline-induced shRNA or siRNA. The HPV-negative cell lines, FaDu and PE/CA-PJ34, were 
much more sensitive to CaCCinh than the HPV-positive cell lines, SCC90 and 93-VU-147T. Using col-
ony formation assays, we found that knockdown of TMEM16A did not alter colony formation in the 
HPV-positive 93-VU-147T cells, but did decrease colony formation in HPV-negative FaDu and PE/
CA-PJ34 cells. Similarly, overexpression of TMEM16A in HPV-positive SCC90 cells did not confer a 
survival benefit, showing that this is not a protein that promotes survival in HPV-positive tumors.

In conclusion, we have shown that TMEM16A plays a more important role in HPV-negative 
HNSCC than in HPV-positive HNSCC. We have determined that 1) HPV-negative tumors express 
more TMEM16A at the DNA, mRNA, and protein level; 2) only patients with HPV-negative HNSCC 
have decreased survival when TMEM16A is overexpressed; 3) HPV-negative tumors have decreased 
promoter methylation of TMEM16A compared to HPV-positive ones; 4) HPV-negative cell lines are 
more sensitive to pharmacologic inhibition of TMEM16A than HPV-positive cell lines; 5) Knockdown 
of TMEM16A decreases colony formation in HPV-negative cell lines but not HPV-positive cell lines; and 
6) TMEM16A overexpression does not confer an increase in colony formation in HPV-positive cell lines. 
Taken together, these results suggest that TMEM16A may be a viable target for therapy in HPV-negative 
tumors, but not necessarily for head and neck squamous cell carcinoma that has been caused by HPV.

Materials and Methods
Primary Tissue Samples.  All experiments were carried out after obtaining approval from the 
University of Pittsburgh Institutional Review Board, and all experiments were performed in accordance 
with guidelines set out by that institution. Before obtaining primary tissue samples, informed consent was 
obtained from each subject. As described by Shiwarski et al.11, primary pharynx tissues were collected for 
tissue microarray (TMA). Tissue samples were formalin fixed and paraffin embedded from patients who 
underwent curative surgery for HNSCC. Immunohistochemistry for p16 (G175–405; BD Pharmingen, 
San Diego, CA), as a surrogate marker for HPV, was performed as per manufacture’s protocol. Cases 
were considered positive if more than 70% of tumor cells showed diffuse strong cytoplasmic and nuclear 
staining. Staining was also performed with anti-TMEM16A antisera (clone SP31 ThermoFisher). Slides 
were scored using a semi-quantitative system.

Fluorescence in situ hybridization (FISH) studies were carried out on the TMA samples using a 
probe for the centromere of chromosome 11 (CEP11) labeled with SpectrumGreen (Abbott Molecular) 
and a probe prepared from a BAC clone (RP11-805J14; CHRI) and labeled by nick translation with 
SpectrumOrange9. A minimum of 30 cells per case were analyzed, and a quantitative system compar-
ing signal-to-nucleus ratio and centromere-to-nucleus ratio was used to describe the degree of gene 
amplification.

The Cancer Genome Atlas.  Using the Head and Neck Squamous Cell Carcinoma in Revision 
database from The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/), parameters of 279 
HNSCC patient samples and associated clinical data were analyzed. The data were accessed using the cBi-
oPortal14,15 for Cancer Genomics, via R statistics software16. Data collected include patient HPV status, 
patient survival, relative levels of TMEM16A mRNA expression assessed by RNA Seq Version 2, DNA 
copy number alterations assessed via array-based Comparative Genomic Hybridization (aCGH), and 
DNA methylation profiling using Illumina Infinium HumanMethylation450 BeadArray.

Cell Culture.  All cell lines were used after genotype verification. HPV-positive cells included 
93-VU-147T17 (gift from Dr. Hans Joenje, VU Medical Center Van der Boechorststraat 7, The Netherlands) 
and UPCI:SCC9018. HPV-negative PE/CA-PJ34 and FaDu cells19 were obtained from Sigma Aldrich and 
American Type Culture Collection, respectively. All cell lines were grown in DMEM with 10% Fetal 
Bovine serum.

Stable cell line generation.  Stable cell lines either overexpressing or knocking down TMEM16A 
were generated using retroviral transduction as described previously11. Briefly, retroviral particles were 
created by transfecting Plat-A cells (ATCC) with the appropriate plasmids. Viral supernatant was then 
used to transduce the requisite cell lines. Antibiotic selection with puromycin (1 ug/ml) was used to 
select for transduced cells. Stable cells were used for 10 passages, and then discarded. Similar methods 
were used to achieve knockdown of TMEM16A in a doxycycline-induced shRNA system as well as for 
siRNA knockdown.

Cell Viability Assay.  For proliferation and viability analysis, cells were plated in black walled 96-well 
optical plates at 5 ×  103 cells/well. Cells were treated with various concentrations of CaCCinh-A0113 
(referred to as “CaCCinh” throughout this study), a small molecule inhibitor of TMEM16A. 48 hours 
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after treatment, the CellTiter-Glo Assay (Promega) was used according to the manufacturer’s directions 
to establish proliferation viability for each cell line. Each experiment was run in triplicate unless other-
wise stated.

Colony formation assay.  As described previously11, 5 ×  104 cells suspended in 0.7% agar solution 
were plated in a 35-mm dish on top of 1.4% agar. Colonies were stained with crystal violet after 2 weeks 
of growth, and then area was measured after 3 weeks. Total area of colony formation was calculated using 
ImageJ software. Normalized areas are reported here.

Bisulfite treatment and Quantitative methylation-specific PCR.  The method of methyl-
ation analysis was similar to that described by Shiwarski et al.11. Briefly, the EpiTect Bisulfite Kit 
(Qiagen) was used to convert unmethylated cytosines in DNA to uracil according to the manufactur-
er’s instructions. Quantitative methylation-specific PCR (qMSP) was carried out in a 7900 sequence 
detector (Perkin-Elmer Applied Biosystems, Carlsbad, CA) and analyzed by a sequence detector sys-
tem (SDS 2.3; Applied Biosystems). The TMEM16A qMSP primer sequences designed were: Forward 
5′ - AGGATCGTAGCGTTTATATTA -3′ , and Reverse 5′ - CGCGACCCTCCCGCC -3′ . The TMEM16A 
qMSP probe sequence was 6FAM 5′ - CGCACTCACCGTACCCTCG -3′  TAMRA.

Leukocyte DNA from a healthy individual was methylated in vitro with excess SssI methyltransferase 
(New England Biolabs, Inc., Ipswich, MA) to generate completely methylated DNA. Serial dilutions  
(30–0.003 ng) of this bisulfite-treated methylated DNA were used to construct a calibration curve. All 
data points were within the range of sensitivity and reproducibility of the assay based on the calibration 
curve. The methylation levels in each sample were determined as a ratio of qMSP-amplified gene to 
β -actin (reference gene) and then multiplied by 1000 for easier tabulation (average value of gene tripli-
cates divided by the average value of β -actin triplicates ×  1000).

Statistical Analysis.  Statistical analysis was performed using GraphPad Prism 5. All data are reported 
as mean ±  SEM unless stated otherwise. For continuous variables, t-tests and ANOVA were performed 
where appropriate. For categorical data, chi-squared test was used to determine signifance. Correlations 
were calculated using Pearson’s r2. Survival analysis was performed using the Kaplan-Meier method and 
log-rank testing. For cell viability assays, IC50 was calculated by constraining maximal response to 100% 
and minimal response to 0%. For colony formation assays, all areas are reported with the control group 
normalized to 1.
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