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Abstract: The aim of this study is a further characterization of the electrical conductivity (EC) 

signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative 

of the EC variations that can be observed during milking, when considering not healthy 

(NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three 

consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM); 

61–120 DIM; 121–180 DIM), for a total amount of 1512 samples. Bacteriological analyses 

and somatic cells counts (SCC) were used to define the health status of the glands. With 

negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as 

healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, 

glands were classified as NH. For each milk EC signal, acquired on-line and for each gland 

considered, the Fourier frequency spectrum of the signal was calculated and three 

representative frequency peaks were identified. To evaluate data acquired a MIXED 

procedure was used considering the HS, LS and LS × HS as explanatory variables in the 

statistical model.Results showed that the studied frequency peaks had a significant 

relationship with the gland’s health status. Results also explained how the milk EC signals’ 
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pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due 

to the lower frequencies of the peaks) and by an irregular trend (due to the higher 

amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be 

used as new indexes to improve the performances of algorithms based on multivariate 

models which evaluate the health status of dairy goats through the use of gland milk  

EC sensors. 

Keywords: frequency peaks; spectrum; electrical conductivity; Fast Fourier Transform; 

mastitis; dairy goats 

 

1. Introduction 

In dairy farms, the detection of intramammary infections (IMI) by on-site techniques is a rapidly 

growing trend, favored by the time-consumption and costs that classic laboratory analytical techniques 

entail [1]. 

Many of these detection techniques use algorithms and sensors that analyze the electrical 

conductivity (EC) of milk [2–18]. The EC measures the ability of a solution to conduct an electric 

current between two electrodes and it is measured in milliSiemens per cm (mS/cm). In the milk there 

are anions and cations present in solution that give the fluid the ability to conduct an electric  

current [15,19]. The most important ones are: Na+, K+, and Cl−. The sodium pumps regulate the Na+ 

and K+ ions. These pumps are located on the baso-lateral membrane of the secretory cells and they 

pump Na+ into the extra-cellular fluid and K+ into cells while in the milk, the Na+ and K+ ions are 

transported passively across the apical membrane. Furthermore, a paracellular pathway is also present 

across the epithelium that allow Na+ and Cl− to move into the milk and K+ and lactose to move into the 

extra-cellular fluid [15]. When an IMI is present, the EC of the milk increases [20,21] due to a higher 

concentration of Na+ and Cl− in the milk. The destruction of tight junctions and of the active  

ion-pumping system is the main cause of these different concentrations [15]. In fact, Na+ and Cl− leak 

into the lumen of the alveolus, and K+ and lactose move together out of the milk. 

Although many factors, other than the health status of the mammary gland, can introduce some 

interpretation errors such as parity, lactation stage, and milk composition [22–24], the use of this 

parameter is a well consolidated practice with dairy cows [2–18] and many devices that evaluate the 

EC of milk measured in constant current (DC) or alternating current (AC—in a range of frequency 

between 50–70 kHz) [25] are available. On the contrary in dairy goats, the use of algorithms and 

sensors based on the milk EC and included in the milking systems in order to monitor online health 

status (HS) of the animals is not a widespread practice because of the low performances achieved to 

date [26–29]. 

The studies conducted on this technology (applied to dairy goats) are few and focus mainly on the 

relationships between the EC levels of milk and the HS of animals [28–33]. It is reported that milk EC 

signal can increase in infected goats [30] when major pathogens are the cause of the infection [32]. 

Significantly higher levels of milk EC can be found in different lactation stages [28]. The average 

value of the 20 highest measurements of the gland’s milk EC recorded online during a milking and in 
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case of early lactation, may be used for the monitoring of the animals’ HS [28]. However, many of 

these studies suggest the use of more informative indexes built with a better knowledge of the 

relationship between the milk EC’ signal and the animals’ HS, along with improvements on the 

algorithms that analyze these data (based on multivariate models), as a possible way to reach good 

performance detection also in dairy goats [26–29,32–34]. 

In dairy cows, infected quarters may have a signal pattern of the milk EC during a milking with 

larger variations than those shown by healthy quarters. This effect has been highlighted by some  

authors [13] investigating the ability of three different models to detect mastitis based on the milk EC 

from udder quarters. Other authors [18], investigating the relationship between udder health status and 

different indexes based on the milk EC, have confirmed the same result showing that the statistical 

variance of all valid EC measures (σ2
EC) increased from healthy to infected quarters with a greater 

difference in the case of clinical infected quarters. Also in dairy goats, similar results have been found. 

In a study conducted on a group of Saanen goats [28], observed during the entire lactation, our 

research group found that the index σ2
EC was greater in case of infected glands. However, in all these 

studies, the variations of the milk EC signal was evaluated through a general index as the statistical 

variance. Specific indexes able to characterize the milk EC signal patterns were not identified. 

To this end, the spectral analysis of the milk EC signal could be a useful approach. This is a way to 

describe a signal from another point of view. All its characteristics in the time domain, as well as its 

pattern, can be described by its spectrum in the frequency domain. A spectrum can be obtained from a 

signal by specific mathematical operators, such as: the Fourier Transform (FT); the Discrete Fourier 

Transform (DFT), in case of signals discrete and made by a defined number of samples (N); or the Fast 

Fourier Transform (FFT), in case algorithms optimized and suitable for computer elaboration, are 

used. From these descriptions in the frequencies domain, different qualitative and quantitative indexes 

can be identified. 

An example of this approach has been recently proposed by our research group [35]. Evaluating the 

spectra of the EC’ signal of dairy goat glands milk, it was discovered that the bandwidth length could 

be a possible index able to characterize the milk EC signal pattern. Results obtained have shown that 

mean values of the bandwidth length increased in the case of not healthy (NH) glands. Furthermore, a 

description was given on how the EC signal pattern changed in the time domain since an increase in 

the bandwidth length generally involves a signal pattern characterized by faster oscillations, most 

likely with larger amplitudes. However, the bandwidth length does not express all the information 

content that the Fourier frequency spectrum of a signal can provide. Other indexes could be added in 

order to reach a more detailed description of the signal pattern in the time domain. For example, often 

a spectrum has peaks of bigger amplitude. These peaks (in some cases called harmonics) characterize 

the signal in the frequency domain and give a further description of the main characteristics of the 

signal pattern also in the time domain. Through these peaks, or subsets of them, new indexes could be 

developed with the future target to improve the detection performances of algorithms that use 

multivariate models to evaluate the HS of dairy goats by the use of online gland milk EC sensors. 

The aim of this study was to further describe the milk EC signal pattern in the time domain, and in 

the case of NH glands, through new qualitative and quantitative indexes based on the frequency peaks 

of the milk EC signal spectrums. 
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2. Experimental Section 

2.1. Animals and Farm Management 

The experiment was carried out at the Experimental Farm of the University of Milan, Italy.  

Forty-two second-parity Saanen goats, 10 ± 5 days after delivery, were randomly selected for the trial. 

Animals were fed twice a day with a common lactating basal diet for the whole experimental period on 

the basis of their nutritional requirements NRC (2007). Goats were milked twice a day at 7:00 a.m. and 

5:00 p.m. with a low-line milking parlor that included: self-locking gates, 32 milking units equally 

distributed on two platforms. Milking parameters set-up for the milking system were: a rate of  

90 pulsations per minute, a machine vacuum level of 40 kPa and had a pulsation ratio of 60%. 

2.2. Experimental Design, Milk Sample Collection and Analyses 

The experiment was carried out for six months with the farm being visited a total of nine times. The 

sampling frequency was weekly and repeated three times for each lactation stage that was evaluated  

(0–60 Days In Milk [DIM]; 61–120 DIM; 121–180 DIM). For each farm visit, the collection of milk 

samples was done during the morning milking after the teat disinfection (with chlorhexidine-moistened 

towels) and the discharging of the first milk streams. From each mammary gland of the animals’ trial 

group, two individual milk samples were taken. 

A total amount of 1512 milk samples were collected during the trial. From these samples, 756 were 

used for bacteriological analysis (i.e., one for each gland, week and LS considered) according to the 

International Dairy Federation standard method (FIL-IDF, 1981) while the other 756 were analyzed for 

somatic cell counts (SCC) using a Bentley SomacountTM 500 analyzer (Bentley Instruments Inc., 

Chaska, MN, USA) and following the FIL-IDF (1995) recommendations. 

According to the results of microbiological tests and SCC, samples were classified as healthy glands 

when somatic cell counts were less than 1,000,000 cells/mL and pathogenic microorganisms were  

absent and deemed NH mammary glands when bacteriological analyses were positive for IMI or SCC 

were more than 1,000,000 cells/mL for non-physiological causes [29,33] (as for example estrus or the 

end of lactation). When milk samples were collected, milk EC signals were also measured and stored 

by the data acquisition system. Milk EC signals acquired were from each mammary gland of the 

animals’ trial group. 

2.3. Milk Electrical Conductivity Measures and Data Acquisition System 

Four experimental milking clusters were used to measure the milk EC from each gland. These 

experimental milking clusters were developed through modifying commercial milking units 

(Vanguard, Interpuls S.p.A., Albinea (RE), Italy) [26–28,35]. Each experimental milking cluster 

included two EC sensors. Each EC sensor was made by a couple of stainless cylindrical electrodes 

(Figure 1) placed at the base of each individual milking claw (Figure 2). This hardware allowed the 

measuring of the specific EC of milk (in milliSiemens—mS/cm) while it was flowing from the gland 

to the milk line. Furthermore, a flow detector was placed inside each short milk tube of the milking 

cluster (Figure 2). It was made by an additional couple of cylindrical stainless electrodes that, 
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measuring a signal proportional to the filling level of the short milk tube, allowed to monitor the 

beginning and the end of each milking and to avoid or correct possible data error due to the presence of 

milk residue in the milking claws. 

 

Figure 1. Dimensions of the EC sensor head. 

 

Figure 2. View of prepared sensor heads. In the left picture, the positions of the 

conductivity meter heads and of the flow detectors, included in each experimental milking 

cluster, are also highlighted. 
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All the electrical signals from the milking clusters were evaluated by four analog conductivity 

boards (output range 0–10 V, accuracy ±0.1%) placed in a separate room next to the milking parlor, 

and acquired from an analogue/digital conversion board installed in a PC (DAQCard AI-16E-4, 

National Instruments, Austin, TX, USA—with a resolution of 12 bit and a total sampling rate of  

250 kS/s). Furthermore, through customized software application developed using LabVIEW 8.02 

(National Instruments), acquired data were sampled with a rate of 1 Hz and stored as .txt files using: 

the goat ID farm number, date and time to name each file. A complete block schematic of the whole 

recording system is provided in Figure 3. 

 

Figure 3. Block schema of the recording system. In the schema only one “analog 

conductivity board” and milking cluster is reported to simplify the reading of the figure. 

Before the start of the experiment, laboratory tests were carried out in order to check the effects of 

different milk flow rates on the measurements made by the EC sensors. A solution of water and  

chlorine-based detergent for milking machine was used as fluid test. The detergent was added to the 

water to increase its EC up to 6 mS/cm. Two EC sensors (included in the same milking cluster)  

were tested at constant liquid flow rates—from 0.2 L/min to 1.0 L/min in incremental steps of  

0.2 L/min—using a suitable artificial udder equipped with a flow regulator. Ten repetitions were made 

for each flow rate investigated, for a total amount of 100 readings (i.e., 10 repetitions per five flow 

rates per two sensors or milking claws). For each repetition performed, approximately 5 L of fluid test 

passed through the milking cluster and the electrical signals measured from the sensors were stored by 

the recording system. As following steps: (1) electrical mean values of each reading were calculated;  

(2) electrical mean values for each flow rate tested were calculated; (3) the overall measurement 

accuracy was estimated considering the differences between the electrical mean value measured at  

0.6 L/min and electrical mean values of the other flow rates tested. The flow rate of 0.6 L/min was taken 

as reference because considered as the average milking flow rate expected in the following filed tests. 
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Similar laboratory tests were also performed in order check the linearity of the EC sensors and to 

make their calibrations. The same kind of fluid test was used, but in this case, the detergent was added 

to the water to increase its EC from 4 mS/cm up to 12 mS/cm, by incremental steps of 2 mS/cm. All 

the EC sensors were tested at a constant liquid flow rate of 0.6 L/min. Ten repetitions for each EC 

level and for each experimental milking cluster were made for a total of 400 readings (i.e.,  

10 repetitions per 5 EC levels per eight sensors or milking claws). Also in these cases, for each 

repetition performed approximately 5 L of fluid test passed through the milking cluster and the 

electrical signals measured from the sensors were stored by the recording system. As following steps: 

(1) electrical mean values of each reading were calculated; (2) electrical mean values for each EC level 

tested were calculated; (3) on the resulting data, a linear regression was performed for each sensor 

tested. At the end of these tests, obtained results allowed to set-up each EC sensor. 

2.4. Fourier Frequency Spectrum Calculation 

The milk EC signals were evaluated by a dedicated Matlab routine (The Mathworks, Natick, MA, 

USA). The main steps performed by the software routine (Figure 4) were the following: (1) samples 

related to the start and the end of a milking were filtered from the sequence; (2) the mean value of the 

resulting signal was calculated and subtracted to each sample of the sequence in order to have a 

Fourier frequency spectrum with a null peak at the frequency of zero, and consequently, a scaled graph 

in the frequency domain useful in identifying the most important peaks; (3) on the resulting sequence, the 

FFT was calculated. 

As a following step, the software routine was set-up to identify the three highest frequency peaks of 

each Fourier frequency spectrum calculated to use in the statistical analyses (FFT_P1,2,3), and for each 

of them, identify the corresponding frequency and amplitude (magnitude). This set-up was chosen in 

order to consider the most important information included in each spectrum through a reasonable 

number of parameters. 

2.5. Statistical Analyses 

In order to investigate data acquired during the trial, the Shapiro-Wilk test was used to confirm the 

normal distribution of all the variables studied. A MIXED procedure (SPSS Statistics, version 21, IBM 

SPSS, Armonk, NY, USA) was used to evaluate the association between SCC, EC (log transformed in 

order to normalize their distributions) and the explanatory variables. The statistical model used is  

the following:  

௜ܻ௝௞௟ ൌ ߤ ൅	ܪ ௜ܵ ൅ ܮ ௝ܵ ൅ ܵܪ ∗ ܮ ௜ܵ௝ ൅ δ௞ሺε௟ሻ ൅ ε௟ ൅ ݁௜௝௞௟ 

where: Y is the SCC or EC, μ is the mean, HSi is the effect of health status (i = 0–1; 0 = healthy;  

1 = NH), LSj is the effect of lactation stage (j = 1–3; 1 = 0–60 Days In Milking; 2 = 61–120 DIM;  

3 = 121–180 DIM), HS*LSij is the interaction between health status and lactation stage, δk(ɛl) is the 

random effect of the gland (k = 1–2; 1 = left, 2 = right) nested to the goat (l = 1–42), ɛl is the random 

effect of the goat (l = 1–42) and eijkl is the residual error [36]. Furthermore, an unstructured covariance 

structure was used to account for the repeated measurements [29,33].  
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Figure 4. Example of gauges obtained from the milk electrical conductivity (EC) signals 

acquired within a milking. The graphs in red show data concerning the left gland while 

those in blue are reported data for the right gland. In the upper graph the measured EC 

signals of milk acquired during a milking from each gland are reported. In same graph the 

milk flows recorded by the experimental milking cluster used during the trial are also 

shown. The following graphs report on: (1) the sequences without the signal samples 

related to the start and the end of milking (“A: Filtered samples of gland milk EC”); (2) the 

sequences where the mean value of each sequence have been subtracted to each signal 

sample acquired (“B: Scaled samples of gland milk EC”); (3) the spectrums obtained, 

applying the Fast Fourier Transform to the previous sequences of signal samples, and the 

three main frequency peaks identified for each Fourier frequency spectrum (“C: Signal 

spectrum with the main frequency peaks of the gland milk EC”). 

As a following step, in order to investigate the milk EC signal spectrums, another MIXED procedure 

was used. The association between the frequency peaks investigated (FFT_Pn) and the explanatory 

variables were studied. The statistical model used was the same as above described. In the model, the 

frequency peaks—in terms of frequency and amplitude of each peak—were set-up as dependent variables. 
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As a final step, in order to show which parameter would be the most useful index to detect the 

health status of dairy goats for each frequency peak evaluated—always in terms of frequency and 

amplitude of each peak—sensitivity and specificity were calculated. In this context, sensitivity 

represents the percentage of glands correctly identified as NH respect to all the cases of milk samples 

classified as belonging to NH glands:  

Sensitivity = True Positive/(True Positive + False Negative)*100 

The specificity indicates the percentage of glands correctly identified as healthy in respect to all the 

cases of milk samples classified as belonging to healthy glands: 

Specificity = True Negative/(False Positive + True Negative)*100 

In order to complete the comparison between the peaks studied, a sensitivity of 80% was chosen 

because it is considered as the gold standard of human observation [37]—although this threshold can 

be affected by variables such as the skills of the milker and the severity of the case. Accordingly, for 

each frequency peak evaluated, specific cut-off levels were determined in order to reach a sensitivity of 

at least 80%. The resulting pairs of sensitivity and specificity were calculated and considered the level 

of accuracy reached by each parameter investigated. 

3. Results 

Laboratory tests carried out at different flow rates showed an overall sensor accuracy of 0.94%, 

with no relevant differences between the two EC sensors evaluated. Furthermore, linear trends within 

the range of the EC levels investigated were confirmed for all the EC sensors tested. In the Table 1 the 

parameters of the linear regressions performed are reported. 

Table 1. Parameters of the linear regressions performed on the EC sensors used in the 

experiment and evaluated at different EC levels—from 4 mS/cm up to 12 mS/cm, by 

incremental steps of 2 mS/cm. 

Sensor Angular Coefficient R2 

1 2.36 0.98 
2 2.17 0.99 
3 2.22 0.97 
4 2.15 0.98 
5 2.30 0.99 
6 2.11 0.97 
7 2.19 0.98 
8 2.15 0.95 

After the microbiological evaluation of milk, seven samples resulted contaminated. The prevalence of 

positive samples was 68.4% (n = 517, Table 2) with Coagulase-negative Staphylococcus as the most 

prevalent mastitis agent (62.6%, Table 2). After the count of somatic cells in the milk samples, the resulting 

prevalence of glands with SCC > 1,000,000 and without pathogenic microorganisms was 4.8% (n = 36, 

Table 3). No cases of SCC > 1,000,000 due to physiological causes were observed. The overall prevalence 

of samples from NH glands was 73.8% (Table 3) and no cases of clinical mastitis were observed. 
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Table 2. Distribution of pathogenic microorganisms found in infected mammary glands. 

Overall means and standard errors, of SCC (log) and EC (mS/cm) of gland milk samples, 

according to each of the groups of pathogenic microorganisms found were also reported. 

Isolated Bacterial Strains n % 
SCC  

Mean ± S.E. 
(logSCC) 

EC  
Mean ± S.E. 

(mS/cm) 

Coagulase-negative Staphylococcus (CNS) 473 62.6 5.44 ± 0.02 14.37 ± 0.27 
Escherichia coli 3 0.4 5.32 ± 0.48 11.90 ± 2.45 

Streptococcus spp. 18 2.4 5.34 ± 0.09 11.24 ± 0.51 
Lactose-negative bacteria 13 1.7 5.55 ± 0.10 15.02 ± 0.61 

Pseudomonas spp. 10 1.3 5.53 ± 0.09 15.77 ± 0.36 
Contaminated 7 0.9 - - 
BC negative 232 30.7 5.38 ± 0.03 12.56 ± 0.03 

Table 3. Distribution of mammary glands for each health status considered. Samples  

were classified as collected from healthy glands when somatic cell counts were less than 

1,000,000 cells/mL and pathogens were absent, and classified as collected from NH 

mammary glands when bacteriological analyses were positive for IMI or SCC were more 

than 1,000,000 cells/mL. 

Health Status  

of Glands 
n % 

Samples with Positive 

Bacteriological Analyses 

and SCC < 1,000,000 

(cells/mL) 

Samples with Positive 

Bacteriological Analyses 

and SCC > 1,000,000 

(cells/mL) 

Samples with with Negative 

Bacteriological Analyses 

and SCC > 1,000,000 

(cells/mL) 

n % n % n % 

Healthy 196 26.2 - - - - - - 

Not healthy 553 73.8 434 57.9 83 11.1 36 4.8 

Not healthy glands showed a higher significant mean value of SCC (5.20 ± 0.04 [logSCC] vs.  

5.49 ± 0.03, Table 4). Furthermore, the second and third lactation stage showed significantly increased 

levels of SSC (5.19 ± 0.04 [logSCC] vs. 5.46 ± 0.04 and 5.59 ± 0.04, Table 4) if compared with the 

first lactation stage. However, the interaction between the HS and LS was not significant. 

Table 4. Overall means and standard errors of SCC (log) of gland milk samples according 

to HS and lactation stages. 

Health Status 
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. 

(logSCC) 

61–120  
Mean ± S.E. 

(logSCC) 

121–180  
Mean ± S.E. 

(logSCC) 

0–180  
Mean ± S.E. 

(logSCC) 

Healthy 5.10 ± 0.05 5.30 ± 0.10 5.52 ± 0.10 5.20 A ± 0.04 
Not healthy 5.28 ± 0.06 5.50 ± 0.04 5.61 ± 0.04 5.49 B ± 0.03 

All 5.19 X ± 0.04 5.46 Y ± 0.04 5.59 Y ± 0.04 5.41 ± 0.02 
A,B means in the same column with different uppercase superscripts differ significantly (p < 0.01); X,Y means 

in the same row with different uppercase superscripts differ significantly (p < 0.01). 
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Not healthy glands also showed significantly higher values of milk EC (12.27 ± 0.17 [mS/cm] vs. 

14.27 ± 0.10, Table 5). Furthermore, a significantly lower mean value of milk EC was observed in the 

first stage when compared with the other lactation stages (11.13 ± 0.08 [mS/cm] vs. 15.12 ± 0.04 and 

14.87 ± 0.03). Also for these cases, the interaction between the HS and LS was not significant. 

Table 5. Overall means and standard errors of EC (mS/cm) of gland milk samples 

according to HS and lactation stages. 

Health Status 
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. 

(mS/cm) 

61–120  
Mean ± S.E. 

(mS/cm) 

121–180  
Mean ± S.E. 

(mS/cm) 

0–180  
Mean ± S.E. 

(mS/cm) 

Healthy 10.95 ± 0.09 14.86 ± 0.34 14.53 ± 0.39 12.27 A ± 0.17 
Not healthy 11.32 ± 0.11 15.39 ± 0.13 15.21 ± 0.11 14.27 B ± 0.10 

All 11.13 X ± 0.08 15.12 Y ± 0.04 14.87 Y ± 0.03 13.75 ± 0.09 
A,B means in the same column with different uppercase superscripts differ significantly (p < 0.01); X,Y means 

in the same row with different uppercase superscripts differ significantly (p < 0.01). 

About the spectrums evaluated and the relative frequency peaks investigated, data showed a normal 

distribution for the frequencies and amplitudes of the peaks. Mean values of FFT_P1 frequency were 

significantly lower in NH glands (13.98 ± 0.82 × 10−3 (Hz) vs. 9.94 ± 0.31 × 10−3, Table 6) and 

significantly lower in different lactation stages (13.74 ± 0.64 × 10−3 (Hz), 11.05 ± 0.55 × 10−3 and  

8.28 ± 0.39 × 10−3). Furthermore, the peak’s mean amplitude was significantly higher in NH glands 

(34.01 ± 2.13 (dB) vs. 48.58 ± 1.53—Table 7) and during the progress of lactation (29.26 ± 1.39 (dB), 

49.87 ± 2.37 and 56.05 ± 2.40). However, the interaction between the HS and LS was not significant 

for both the mean values of frequency and amplitude of the peak. With the peak FFT_P2, the mean  

frequency values showed a significant trend between different HS (62.02 ± 5.09 × 10−3 (Hz) vs.  

46.23 ± 1.99 × 10−3—Table 8) and it reported significantly lower levels during the progress of lactation 

(60.77 ± 4.40 × 10−3 (Hz), 48.61 ± 3.50 × 10−3 and 41.53 ± 1.95 × 10−3). Furthermore, the mean peak 

amplitude values showed a significant increase in NH glands (12.56 ± 0.74 (dB) vs. 18.47 ± 0.53—Table 

9) and significantly higher levels during the progress of lactation were observed (10.76 ± 0.53 (dB),  

18.47 ± 0.80 and 21.76 ± 0.78). This peak also showed that the interaction between the HS and LS was 

not significant. Ultimately, the third peak evaluated (FFT_P3) showed similar results as of those 

obtained by the other studied peaks. Significantly lower means of frequency were observed between 

different statuses of the mammary glands (111.01 ± 7.16 × 10−3 (Hz) vs. 81.21 ± 3.15 × 10−3, 

respectively for healthy or NH glands—Table 10) and lactation stages (112.27 ± 6.07 × 10−3 (Hz), 

89.05 ± 5.72 × 10−3 and 66.31 ± 3.30 × 10−3), and significantly higher mean values of amplitude were 

measured in NH glands (7.65 ± 0.46 (dB) vs. 11.57 ± 0.34—Table 11) and in different lactation stages 

(6.29 ± 0.30 (dB), 11.10 ± 0.49 and 14.28 ± 0.52). Interaction between the HS and LS was also in this 

case not significant. 
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Table 6. Overall means and standard errors of the frequency of peak FFT_P1, according to 

health status and lactation stages. 

Health Status  
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. (Hz) 

61–120  
Mean ± S.E. (Hz) 

121–180  
Mean ± S.E. (Hz) 

0–180  
Mean ± S.E. (Hz) 

Healthy 14.88 ± 1.05 × 10−3 13.00 ± 1.55 × 10−3 11.56 ± 2.1 × 10−3 13.98 A ± 0.82 × 10−3 
Not healthy 12.71 ± 0.74 × 10−3 10.62 ± 0.57 × 10−3 7.85 ± 0.34 × 10−3 9.94 B ± 0.31 × 10−3 

All 13.74 X,x ± 0.64 × 10−3 11.05 y ± 0.55 × 10−3 8.28 Y ± 0.39 × 10−3 10.99 ± 0.32 × 10−3 
A,B means in the same column, with different uppercase superscripts differ significantly (p < 0.01); X,Y means 

in the same, row with different uppercase superscripts differ significantly (p < 0.01); x,y means in the some 

row, with different lowercase superscripts differ significantly (p < 0.05). 

Table 7. Overall means and standard errors of the amplitude of peak FFT_P1, according to 

health status and lactation stages. 

Health Status  
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. (dB) 

61–120  
Mean ± S.E. (dB) 

121–180  
Mean ± S.E. (dB) 

0–180  
Mean ± S.E. (dB) 

Healthy 27.40 ± 1.92 42.32 ± 4.90 50.63 ± 8.08 34.01 a ± 2.13 
Not healthy 30.93 ± 1.43 51.52 ± 2.67 56.77 ± 2.51 48.58 b ± 1.53 

All 29.26 X,x ± 1.39 49.87 y ± 2.37 56.05 Y ± 2.40 44.76 ± 1.28 
a,b means in the same column with different lowercase superscripts differ significantly (p < 0.05); X,Y means 

in the same, row with different uppercase superscripts differ significantly (p < 0.01); x,y means in the some 

row, with different lowercase superscripts differ significantly (p < 0.05). 

Table 8. Overall means and standard errors of the frequency of peak FFT_P2, according to 

health status and lactation stages. 

Health Status  
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. (Hz) 

61–120  
Mean ± S.E. (Hz) 

121–180  
Mean ± S.E. (Hz) 

0–180  
Mean ± S.E. (Hz) 

Healthy 66.23 ± 7.26 × 10−3 61.29 ± 8.90 × 10−3 46.13 ± 5.35 × 10−3 62.02 a ± 5.09 × 10−3

Not healthy 55.84 ± 5.21 × 10−3 45.83 ± 3.78 × 10−3 40.93 ± 2.09 × 10−3 46.23 b ± 1.99 × 10−3

All 60.77 X ± 4.40 × 10−3 48.61 ± 3.50 × 10−3 41.53 Y ± 1.95 × 10−3 50.36 ± 2.00 × 10−3 
a,b means in the same column with different lowercase superscripts differ significantly (p < 0.05); X,Y means 

in the same, row with different uppercase superscripts differ significantly (p < 0.01). 

Table 9. Overall means and standard errors of the amplitude of peak FFT_P2, according to 

health status and lactation stages. 

Health Status  
of Glands: 

Days in Milking: 
0–60  

Mean ± S.E. (dB) 
61–120  

Mean ± S.E. (dB) 
121–180  

Mean ± S.E. (dB) 
0–180  

Mean ± S.E. (dB) 
Healthy 10.33 ± 0.73 14.14 ± 1.43 19.61 ± 2.65 12.56 A ± 0.74 

Not healthy 11.15 ± 0.76 19.42 ± 0.91 22.04 ± 0.82 18.47 B ± 0.53 
All 10.76 X ± 0.53 18.47 Y ± 0.80 21.76 Z ± 0.78 16.92 ± 0.44 

A,B means in the same column, with different uppercase superscripts differ significantly (p < 0.01);  
X,Y,Z means in the same, row with different uppercase superscripts differ significantly (p < 0.01). 
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Table 10. Overall means and standard errors of the frequency of peak FFT_P3, according 

to health statuses and lactation stages. 

Health Status  

of Glands: 

Days in Milking: 

0–60  

Mean ± S.E. (Hz) 

61–120  

Mean ± S.E. (Hz) 

121–180  

Mean ± S.E. (Hz) 

0–180  

Mean ± S.E. (Hz) 

Healthy 118.85 ± 9.53 × 10−3 111.52 ± 13.95 × 10−3 79.30 ± 14.52 × 10−3 111.01a ± 7.16 × 10−3 

Not healthy 106.35 ± 7.71 × 10−3 84.13 ± 6.23 × 10−3 64.60 ± 3.20 × 10−3 81.21b ± 3.15 × 10−3 

All 112.27 X ± 6.07 × 10−3 89.05x ± 5.72 × 10−3 66.31Y,y ± 3.30 × 10−3 89.01 ± 3.02 × 10−3 
a,b means in the same column with different lowercase superscripts differ significantly (p < 0.05); X,Y means 

in the same, row with different uppercase superscripts differ significantly (p < 0.01); x,y means in the some 

row, with different lowercase superscripts differ significantly (p < 0.05). 

Table 11. Overall means and standard errors of the amplitude of peak FFT_P3, according 

to health statuses and lactation stages. 

Health Status  
of Glands: 

Days in Milking: 

0–60  
Mean ± S.E. (dB) 

61–120  
Mean ± S.E. (dB) 

121–180  
Mean ± S.E. (dB) 

0–180  
Mean ± S.E. (dB) 

Healthy 5.88 ± 0.37 9.19 ± 0.99 12.85 ± 1.85 7.65 a ± 0.46 
Not healthy 6.65 ± 0.47 11.52 ± 0.55 14.46 ± 0.54 11.57 b ± 0.34 

All 6.29 X ± 0.30 11.10 Y ± 0.49 14.28 Z ± 0.52 10.54 ± 0.29 
a,b means in the same column with different lowercase superscripts differ significantly (p < 0.05); X,Y,Z means 

in the same, row with different uppercase superscripts differ significantly (p < 0.01). 

Lastly, the health status detection accuracy reached by the studied frequency peaks was 

investigated. Specific cut-off levels were determined for each frequency peak in order to reach a 

sensitivity of at least 80%. Consequently, pairs of sensitivity and specificity were calculated.  

Results showed that the amplitude value, of the frequency peak FFT_P2, reached the best accuracy 

(specificity = 42.9% and sensitivity = 80.1%, Table 12) with a cut-off level equal to 16.05 dB followed 

by the frequency value of the frequency peak FFT_P1 (specificity = 39.8% and sensitivity = 80.1%) 

with a cut-off level equal to 12.00 × 10−3 Hz. 

Table 12. Accuracy of the studied frequency peaks reported in terms of sensitivity and 

specificity of each peak at specific cut-off levels. 

Peaks  
(FFT_Pn) 

Characteristics  
Frequency (Hz)—Amplitude (dB) 

Cut-off Level  
(Hz–dB) 

Specificity  
(%) 

Sensitivity  
(%) 

FFT_P1 
Frequency 12.00 × 10−3 39.8 80.1 
Amplitude 40.94 36.7 80.1 

FFT_P2 
Frequency 60.50 × 10−3 25.0 80.1 
Amplitude 16.05 42.9 80.1 

FFT_P3 
Frequency 102.00 × 10−3 32.7 80.1 
Amplitude 8.81 38.3 80.3 
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4. Discussion 

Laboratory tests showed that the specific design of the milking cluster selected for the experiment 

allowed us to isolate a defined quantity of milk in all the range of flow rates investigated. 

Consequently, the overall accuracy achieved by the sensors was fine. The EC sensors also showed a 

good linearity in the range of the EC levels studied. Therefore, the calibrations of the EC sensors were 

possible through the angular coefficients found and the measurements of the specific EC of milk 

available for the following field tests carried out. 

The microbiological analyses showed a high prevalence of bacteriological positive samples 

(69.0%). The persistence of subclinical IMI, during lactation, is variable according to the causative 

pathogen. However, the persistence of subclinical IMI is generally high if Staphylococci (as it was in this  

study—CNS: 91.5%) is the major pathogen because it has the potential to become a chronic  

infection [38]. Somatic cell count was significantly higher in milk samples from NH glands and 

showed to significant increase between the first, the second, and third lactation stage. Other authors 

found the highest values of SCC for infected glands [29,32] and a significant increase of the average 

value of SCC during lactation [28,33]. Also the mean values of milk EC showed to be significantly 

higher in NH glands and increased during the progress of lactation. Similar results were reported by 

other authors. In cases of infected glands a significant increase of milk EC was observed [32,33] and 

with the progress of lactation, higher levels of milk EC were measured [28]. 

Mean values of milk EC, found in the present study, were higher than those reported by other  

authors [1,29,32–34,39]. These different results may be explained by the characteristics of the 

measuring system used. It included four experimental milking clusters developed in order to measure 

online the gland’s milk EC signal without affecting the flow of milk from glands and the vacuum of 

the milking system. Having these targets, the lowest number of components was added to the 

commercial milking clusters. Thus, no temperature sensors were included, and consequently, no 

temperature adjustments were possible during the recordings of the milk EC data. Effects related to the 

milking procedures could have also conditioned the milk EC readings [39]. For example, it is possible 

that the average quantity of milk, in the measurement chamber of the EC sensors, was not the same as 

supposed by the calibration procedure. However, the spectral analyses performed were not affected by 

all these aspects because, during the elaboration of the data acquired, the mean value of each milk EC 

signal was calculated and subtracted for each sample of the corresponding sequence recorded. 

In order to investigate the milk EC signals’ spectrum, the relationship between the studied 

frequency peaks (FFT_Pn) and the glands HS were studied. All the peaks showed significant lower 

values of frequency in case of NH glands and significantly increased levels of amplitude when NH 

glands were considered. These results described how the milk EC signals’ spectrum changed in case of 

infected glands. The results highlighted that the EC signals’ pattern of milk from infected gland—in 

the time domain—were characterized by an increased internal variation (since the amplitude of the 

peaks were generally higher in NH cases). Similar results were also reported by other authors 

analyzing the standard deviation (σ2
EC) of the milk’s EC signal. In a study conducted on a group cows, 

some authors [13] found higher values of σ2
EC, in the case of mastitis (0.58 to 0.71—depending on the 

specific minute of milking evaluated), than in the case of healthy quarters (0.16 to 0.34). In another 

study on cows, other authors [18] confirmed that σ2
EC increased between healthy quarters and infected 
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quarters. Furthermore, they found that the difference between clinical infected quarters and healthy 

quarters was greater than the difference between subclinical infected quarters and healthy quarters. 

Finally, also our research group, in a previous study that involved a group of goats monitored for the 

whole lactation [28], reported that σ2
EC was grater in infected glands during the second and third 

lactation stage (0.14 vs. 0.16 and 0.21 vs. 0.22). 

A general index like the statistical variance is not able to characterize the milk EC signal pattern in 

the time domain. For this purpose, the spectral analysis of the milk EC signal can be a useful approach. 

A recent study [35] on the milk EC signals collected from dairy goats, conducted by our research 

group, shows that the mean value of the bandwidth length increased in the case of NH glands (from 

0.24 Hz to 0.29 Hz). This result confirms that in the case of infected glands an increased signal 

variance is expected. However, this information is not enough to characterize the milk EC signals’ 

pattern in a unique way because an increase of the bandwidth length can be due to a vast number of 

changes in frequencies and/or amplitudes of the main peaks that characterize the spectrum. On the 

contrary, the results obtained in the study gave more detailed information on how the milk EC signal 

patterns changed in the time domain. In the case of infected glands, results showed that the signals’ 

pattern is generally characterized by slower fluctuations (due to the lower frequencies of the peaks) 

and by a more irregular trend (due to the higher amplitudes of all the main frequency peaks). 

The frequency peaks that were investigated also showed significant results during lactation. All the 

peaks (FFT_Pn) showed lower mean values of frequency between different lactation stages and higher 

mean values of amplitude during the progress of lactation. Obtained results highlighted that an increase 

of the internal variation of the milk EC’ signal can be expected with the progress of lactation (since the 

values of amplitude of the peaks were generally higher in the case of the progress of lactation). Our 

research group found similar results in a previous study [28], analyzing the general statistical index: 

σ2
EC. We found that σ2

EC increased during lactation stages for both healthy and infected glands. 

However, the results obtained in the present study allowed for a better description of the expected 

changes of the milk EC signal’s pattern during the progress of lactation. They show that EC signal’ 

pattern, when progressive lactation stages are evaluated, is generally characterized by slower 

fluctuations (due to the lower frequencies of the main peaks) and by a signal’s more irregular trend 

(due to the higher amplitudes of all the considered peaks). 

The accuracy shown by the studied frequency peaks in the detection of the goat health status was 

not high when compared with results reported in other studies. Best values of specificity and 

sensitivity were reached by the frequency peak FFT_P2 (42.9% and 80.1%, respectively) using as 

parameter the amplitude of the peak and the frequency peak FFT_P1, (39.8% and 80.1%, respectively), 

using as parameter the frequency of the peak. However, these results were expected. Romero [29] 

reported low sensitivity and specificity of mastitis detection with EC, when different milking fractions 

and thresholds were evaluated. Furthermore, Romero [29] highlighted that such low performance was 

consistent with the results obtained by Díaz [33] in a study carried out to obtain further knowledge on 

milk EC as a tool for detecting mastitis in goats by analysing effects such as farm, parity, stage of 

lactation, SCC and health status. Also our research group found similar results. In a study on the use of 

time series evaluation of the milk EC to detect health status of dairy goats, and in another study that 

applied fuzzy logic technology to a multivariate model with the same aim, we confirmed that a better 

accuracy can be reached considering the intrinsic variation of animals and that simple thresholds have 
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to be avoided (as in cows). However, all the studies on this topic suggest that a better knowledge of the 

relationship between the milk EC signal and the animal HS, in order to find more informative indexes, 

could lead to better results in detecting HS of dairy goats [26–29,32–35]. With this in mind, results 

obtained in the present study have to be evaluated. They showed that the studied frequency peaks were 

able to better characterize the milk EC signal than other traits. Therefore, they have to be considered a 

necessary step in order to find new indexes that should improve the performances of monitoring 

systems that evaluate the HS of dairy goats through the use of the milk EC in a multivariate approach. 

Under a practical point of view, starting from these results, new milking systems for dairy goats 

could be developed. These systems could acquire the gland milk EC, online and during a milking, by 

sensors included in the improved milking clusters. At the end of milking, the Fourier frequency 

spectrum of the signal could be calculated and the frequency peaks determined. A following evaluation 

of acquired data, by a dedicated control algorithm, could allow the discrimination of the HS of each 

goat. If these monitoring systems will reach accuracies comparable with those obtained in dairy cows 

then positive results in terms of herd management will be achieved by farmers in the goat farming 

agricultural sector. 

The future steps in this research will regard the developing of a complete monitoring system and a 

test of this system in a real scenario. The system will perform an automatic monitoring of the HS of 

goat using as input the data collected from each mammary gland by the EC sensors. The new indexes 

identified in the present study (but not only) will be used by the control algorithm in a multivariate 

approach. Different system set-ups will be tested in order to reach the best possible accuracy. 

5. Conclusions 

The present study showed that the Fourier frequency spectrum of the milk EC signal can be better 

characterized by the evaluation of the main frequency peaks and that the changes of milk EC signal 

patterns in the time domain can be well described by the changes of the corresponding frequency 

peaks. Furthermore, these indexes showed a significant relationship with the health status of the  

goat glands. Therefore, they could be useful in improving the performances of future monitoring 

systems—based on multivariate models—which evaluate the HS of dairy goats by the use of gland 

milk EC sensors. 
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