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Atlas-based MRI analysis is one of many analytical methods and is used to investigate
typical as well as abnormal neurodevelopment. It has been widely applied to the adult
and pediatric populations. Successful applications of atlas-based analysis (ABA) in
those cohorts have motivated the creation of a neonatal atlas and parcellation map
(PM). The purpose of this review is to discuss the various neonatal diffusion tensor
imaging (DTI) atlases that are available for use in ABA, examine how such atlases are
constructed, review their applications, and discuss future directions in DTI. Neonatal
DTI atlases are created from a template, which can be study-specific or standardized,
and merged with the corresponding PM. Study-specific templates can retain higher
image registration accuracy, but are usually not applicable across different studies.
However, standardized templates can be used to make comparisons among various
studies, but may not accurately reflect the anatomies of the study population. Methods
such as volume-based template estimation are being developed to overcome these
limitations. The applications for ABA, including atlas-based image quantification and
atlas-based connectivity analysis, vary from quantifying neurodevelopmental progress
to analyzing population differences in groups of neonates. ABA can also be applied
to detect pathology related to prematurity at birth or exposure to toxic substances.
Future directions for this method include research designed to increase the accuracy
of the image parcellation. Methods such as multi-atlas label fusion and multi-modal
analysis applied to neonatal DTI currently comprise an active field of research. Moreover,
ABA can be used in high-throughput analysis to efficiently process medical images
and to assess longitudinal brain changes. The overarching goal of neonatal ABA is
application to the clinical setting, to assist with diagnoses, monitor disease progression
and, ultimately, outcome prediction.

Keywords: atlas-based analysis, diffusion tensor imaging, neonatal brain atlas, probabilistic, parcellation map,
tractography

INTRODUCTION

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) modality that exploits the
water diffusion (Brownian motion of water molecules) to compute a tensor, from which various
parameters can be calculated. DTI has been developed and used in human brain research since the
1990s, and it still offers many useful features and advantages. DTI is capable of delineating three-
dimensional whitematter anatomywith high fidelity, and the parameters derived fromDTI, such as
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fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD), and can potentially
indicate the axonal organization, degree of myelination, fiber
coherence, and axonal density, which, altogether, can reflect the
developmental status of the brain (Beaulieu, 2002; Huppi and
Dubois, 2006). Among various MRI modalities based on water
diffusion, DTI can be acquired in short scan times with relatively
higher signal-to-noise ratio, which is advantageous in clinical
studies or studies of babies and the pediatric population, because
such short DTI scans minimizes the potential motion that often
occur during longer scans, which is particularly prevalent in
individuals with illnesses or in infants and children.

Quantification of DTI and other modalities in general, is an
important process that permits the introduction of statistical
analysis. Various methods are used for the quantification of
DTI, and the simplest approach is to place regions-of-interest
(ROIs) on DTI to measure the parameters of selected anatomical
structures. This approach is accordingly useful for hypothesis-
testing research, because the ROIs are selected based on an a
priori hypothesis, and the effect of a disease or condition on
the selected ROIs can be investigated. However, this ROI-based
approach is not suitable for investigations of anatomical areas
where the effects of a disease or condition are initially unknown.
For such studies, whole-brain analysis is the method of choice.

In whole-brain analysis, a template is often used as a target
image and subject images are mathematically transformed in
order to register the brain structures of each individual to those
of the template space. The transformation of the image to the
template is called “normalization.” Since each brain is different
in terms of size, shape, and proportion, a template is necessary
to normalize these features to perform a voxel-by-voxel analysis
of the DTI parameters. After image normalization, comparison
between groups of subjects (e.g., normal vs. diseased groups) or
regression to non-image parameters (e.g., age, clinical status, or
function) can be performed on a voxel-by-voxel basis, which is
known as voxel-based analysis (VBA). In addition to the VBA,
the “parcellation map,” (PM), a set of pre-defined anatomical
boundaries of the template brain, is used for a parcel-by-parcel
statistical analysis (Figure 1). Here, each parcel groups the voxels
together to increase the signal-to-noise ratio by averaging signals
inside the parcel, and to streamline the neuroscientific or clinical
interpretation of the statistical results. Parcel-by-parcel statistical
analysis is also applicable to analysis in the individual space. This
can be achieved simply by transforming a PM from a template
space onto individual images (Figure 2). Currently, there are
more sophisticated variations, including a multi-atlas label fusion
method (Tang et al., 2014).

This parcel-by-parcel analysis, either in a template space
or individual space, is called “atlas-based analysis (ABA),”
especially when a standard brain atlas, such as the MNI or
ICBM atlas1,2, with the corresponding PM, is used as the
template. The use of a standard atlas is advantageous to facilitate
communication and comparisons of brain imaging data among
different institutions. There are various types of atlases and PMs,

1http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
2http://www.loni.usc.edu/atlases/

FIGURE 1 | The parcellation map (PM) segments the brain into various
structures and permits parameter-based analysis, such as
measurement of the FA value, at the structural level on images from
various modalities (used with permission from Oishi et al., 2013).

as listed on the websites of the Oxford Center for Functional
Magnetic Resonance Imaging of the Brain3, the Laboratory
of Neuro Imaging4, the University of North Carolina Image
Display, Enhancement, and Analysis Group5, the Athinoula
A. Martinos Center for Biomedical Imaging, Laboratory for
Computational Neuroimaging6, the Research Center Jülich,
Institute of Neuroscience and Medicine7, or the Johns Hopkins
Laboratory of Brain Anatomical MRI8,9, which are used for
different research applications. Various PMs accentuate the
unique features of the brain, such as structural units, vascular
territory, anatomical connectivity, functional connectivity, and
cytoarchitecture. These diverse PMs allow researchers to examine
the different ways neurological diseases can affect the brain.

The ABA has been applied to DTI of pediatric and adult
populations to investigate normal neurodevelopment as well as
the abnormalities caused by various diseases, such as cerebral
palsy (Faria et al., 2010; Yoshida et al., 2013), Williams
syndrome (Faria et al., 2012b), and Rett syndrome (Oishi et al.,
2013). The successes of these researches have engendered the
application of ABA to study neurodevelopment in earlier ages,
especially in perinatal–neonatal brains. However, application of
adult or pediatric brain atlases to neonatal brain research is
not straightforward, because there are substantial differences

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
4http://www.loni.usc.edu/atlases/
5http://www.med.unc.edu/bric/ideagroup/free-softwares
6http://martinos.org/lab/lcn/resources
7http://www.fz-juelich.de/inm/inm-1/EN/Home/
8http://cmrm.med.jhmi.edu
9https://www.mristudio.org
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FIGURE 2 | The image transformation pipeline normalizes original subject images to the atlas space and reverse transforms the atlas’s PM to apply
back onto the subject image.

in cytoarchitecture and myelination between neonatal brains
and older brains that can cause differences in DTI-derived
contrasts (Figure 3). Therefore, DTI atlases with corresponding
PMs specifically created for the neonatal brain are often used
for ABA of the perinatal–neonatal population. Some of the
various types of publicly available atlases and PMs that have
been applied to neonatal DTI studies are summarized in
Table 1.

In this review, currently available neonatal DTI atlases are
introduced, along with studies that applied these atlases.

NEONATAL DTI ATLASES

The initial step for the ABA comprises the creation of a template
(or a set of templates) and the corresponding PM. There are two
types of template images: one in a study-specific space and one in
the standardized coordinates. Study-specific templates retain the
average features of the study population and are advantageous
for accurate image normalization (Hamm et al., 2009; Tang
et al., 2009; Klein et al., 2010; Fonov et al., 2011; Jia et al.,
2011). However, standardized templates are particularly valuable
when the specific brain regions will be compared across different
studies.

Two studies are examples of pioneering work in study-specific
DTI templates (Marc et al., 2010; Wang et al., 2012); both
used an unbiased diffeomorphic atlas-building method based
on a non-linear high-dimensional fluid deformation. Namely,
they first created an initial FA template, which was intensity-
histogram-normalized. Then, non-linear transformations were
applied to the initial template to produce a deformation field
for each image. All the tensor images were then reoriented
into the unbiased space using the finite strain approximation.
The atlas was then developed by averaging all the reoriented
tensor images in log-Euclidean space. Once template is created
and DTIs are normalized to the template space, Tract-Based
Spatial Statistics (TBSS) has been widely used for the VBM, to

FIGURE 3 | The mean diffusivity (MD) map and the fractional
anisotropy (FA) map of a neonate, a 2 years child, and an adult (used
with permission from Oishi et al., 2013).

enhance sensitivity by focusing on the improved registration
accuracy of the core white matter voxels. One TBSS approach was
optimized for neonates by reducing registration errors through
the identification of an appropriate single-subject FA map from
the study population, followed by the creation of a study-specific
FA map template (Ball et al., 2010).

After creating the template, the next step is to construct
the corresponding PM. Producing a PM can be accomplished
manually (Wang et al., 2012), but unless the PM covers the whole
brain, the manually drawn PM is suitable only for the hypothesis-
driven studies. One can also warp a whole-brain gray matter PM
from a standard non-DTI template to the study-specific template,
such as that employed using the University of North Carolina
Chapel Hill neonatal atlas (Brown et al., 2014). This approach
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TABLE 1 | Atlases applied to neonatal DTI studies.

Name of atlas Description/parcellation map (PM)
availability

Contrasts Age range Reference

University of North
Carolina-Chapel Hill
Brain Atlas

Atlas components include intensity models,
tissue probability maps. Uses an anatomical PM

T1w and T2w Neonates,
1 years, and
2 years

Brown et al., 2014

4D Imperial College
London Neonatal
Brain Atlas

Dynamic, probabilistic atlas for stages
(29–44 weeks gestational age) in neonatal brain
development

T1w and T2w Neonate Brown et al., 2014

JHU-MNI
Single-Subject
Brain Atlas (Eve
Atlas)

Provides co-registered T1, T2, and DTI images
from a single subject. Uses a white and gray
matter anatomical PM

T1w, T2w, and DTI Adult Djamanakova et al.,
2014
Faria et al., 2010
Geng et al., 2012
Melbourne et al.,
2014
Tang et al., 2014

ICBM DTI-81 Brain
Atlas

Stereotaxic and probabilistic white matter atlas
integrating DTI-based data with ICBM 152
template. Uses a white matter anatomical PM

DTI Adult Fonov et al., 2011
Klein et al., 2010
Miller et al., 2013
Oishi et al., 2011a
Oishi et al., 2009

JHU Neonatal Brain
Atlas

Group averaged and single subject brain atlas
of the neonatal brain that integrates DTI-data
with co-registered anatomical MRI. Uses a
white and gray matter anatomical PM

T1w, T2w, and DTI Neonate Oishi et al., 2011b
Pannek et al., 2013
Ratnarajah et al.,
2013
Rose et al., 2014a
Rose et al., 2014b
Kersbergen et al.,
2014
Zhang et al., 2014

was effective for the analysis of anatomical connectivity among
cortical structures; however, since the white matter structures
were not fully parcellated, structure-by-structure analysis of the
white matter was outside the focus of that study. For such studies,
whole-brain PM, including white matter structures, is required.
Nevertheless, generating a whole-brain PM for a study-specific
DTI template is laborious and time-consuming, as it needs to
cover the entire brain three-dimensionally, and manual drawing
requires professional anatomical knowledge.

Using a standard template and the corresponding PM is
beneficial for DTI studies, because the white matter area,
which looks homogeneous on conventional T1- and T2-
weighted images, can be parcellated into numerous fiber
bundles (Figure 4). In addition, since defining anatomical
boundaries is often ambiguous, using a standard PM can increase
reproducibility in defining anatomical regions. Templates from
the Montreal Neurological Institute (MNI) and the International
Consortium of Brain Mapping10 (ICBM) have long been used as
the standard template for adult brain images. PMs from these
templates are well-developed and can be applied as a tool for
ABA.

Creating the ICBM atlas and the single-subject atlas follows
a protocol that is highlighted by the alignment of the
anterior commissure–posterior commissure (AC-PC) line. Using
similar steps, a set of neonatal DTI atlases was constructed
with co-registered T1- and T2-weighted atlases (Oishi et al.,

10http://www.loni.usc.edu/atlases/

2011b). The set included the Johns Hopkins University
neonate linear (JHU-neonate-linear), non-linear (JHU-neonate-
non-linear), and single-subject (JHU-neonate-SS) atlases11. The
JHU-neonate-linear and the JHU-neonate-non-linear atlases
are group-averaged images based on co-registered T1- and
T2- weighted DTI images acquired from normal term-born
neonates. The JHU-neonate-linear was created using only linear
transformations, such as rotation, translation, scaling, and
shear, among the component images. The large deformation
diffeomorphic metric mapping (LDDMM; Ceritoglu et al., 2009)
was used to create the JHU-neonate-non-linear atlas. The JHU-
neonate-SS atlas was created from a representative single–
individual image with the shape and size adjusted to represent
population-averaged features. The associated PMs include both
gray and white matter structures that cover the entire neonatal
brain.

The possible drawback of using standard templates is that
they may not necessarily represent the average anatomical
features of the study population, although, for DTI without
visible abnormalities, the study-specific template and the
standardized template resulted in similar normalization accuracy,
as demonstrated by (Zhang and Arfanakis, 2013). However, when
the template is applied to a population with specific diseases,
which typically demonstrates local alterations in volume and
shape, the accuracy in image normalization is usually lower
than when a study-specific template is applied. An attempt

11http://cmrm.med.jhmi.edu
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FIGURE 4 | The DTI, T1, and T2 maps were transformed from the subject space to the atlas space via co-registration and normalization. The
application of the PM permits analysis of FA,MD, T1, and T2 values at the structural level (used with permission from Oishi et al., 2011b).

to overcome this limitation is the Volume-based Template
Estimation (VTE) method (Zhang et al., 2014). VTE enables
iterative modifications of the standard atlas toward the average
of the study population to create a template and a PM that are
customized for the study. This method can increase the accuracy
of image normalization, especially in the cortical area of neonatal
brains, while the boundary definitions of the PM are maintained
at those of the JHU-neonate-SS atlas.

APPLICATION OF NEONATAL ATLASES

The neonatal atlas has been applied to perform ABA on neonatal
brains. It has been used to measure parameters derived from
DTI and to investigate connectivity among brain regions. Such
applications demonstrate the potential utility of quantitative tools
in neurodevelopmental assessments.

ANALYSIS OF DTI-DERIVED
PARAMETERS

Brain Development
To examine developmental changes of the neonatal brain with
age, the JHU-neonate-SS atlas was applied to full-term healthy
neonates at 37–53 post-conception weeks (Oishi et al., 2011b,
2013). A multimodality approach that consists of DTI, T1-, and
T2-maps was adopted to assess the microstructural development
of 122 anatomical structures determined by the PM. Increases
in FA and decreases in diffusivity, T1, and T2 with age
were generally observed, congruent with the histopathological
evidence of ongoing myelination and axonal development during
this age-range that occurs in the posterior-to-anterior and
central-to-peripheral directions (Kinney et al., 1988). Following
this healthy neonatal DTI study, Rose et al. (2014a) examined
whether these specific directions of brain maturation could be
seen in very-low-birth-weight neonates as well. Sixty-six such
neonates with no evidence of congenital brain abnormalities

successfully underwent DTI scans and the JHU-neonate-SS
atlas was used for the quantification. The posterior-to-anterior
and central-to-peripheral pattern was again observed, especially
in the corona radiata, corpus callosum, and internal capsule.
Within projection and association fibers, centrally located fibers,
such as the cerebellar peduncles and the posterior limb of the
internal capsule, were also observed with greater FA values
than those in peripheral areas, such as the superior longitudinal
fasciculus or the external capsule. These studies demonstrated the
possibility of creating a standardized growth percentile chart of
brain development based on MRI- and DTI-derived parameters
via ABA. However, since the study design was cross-sectional,
information about intra-individual changes in MRI- or DTI-
derived parameters was not provided.

To overcome the limitation of cross-sectional analysis,
longitudinal design was adopted to investigate developmental
changes during 30 to 40 post-conceptional weeks (Kersbergen
et al., 2014). The JHU-neonate-SS atlas was used for the ABA to
quantify FA and diffusivity measures from 40 preterm neonates
without brain injury and with normal developmental outcome
at 15 months of age. FA was found to have increased in 84
brain regions, most significantly in the posterior limb of the
internal capsule, the cerebral peduncles, the sagittal stratum,
the corona radiata, and other central structures. Conversely,
FA values decreased most in the temporal and occipital cortical
regions, while MD, AD, and RD values decreased in most brain
regions.

Genetic Effects
To assess how influential genetic and environmental factors
could be on WM microstructure in neonates, Geng et al. (2012)
analyzed the heritability of WM microstructures evaluated by
DTI in healthy full-term neonate twins. The JHU-DTI-MNI
(a.k.a. “Eve”) atlas (Oishi et al., 2009) with the PM was adjusted
to the study-specific template to perform ABA of 98 anatomical
structures in 173 neonates; 63 twin sets, and 47 unpaired twins
were included. To assess the genetic and environmental effects
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on the DTI-derived parameters of each structure, a univariate
twin modeling approach was applied (Neale and Cardon, 1992).
Namely, effects of additive genetic factors and environment,
shared or unshared by twin pairs, were modeled and fitted to
test the significance of each effect on DTI measures. The results
indicated that structures with high FA and low RD, which might
be associated with high maturation at the time of the DTI scan,
tended to show less influence of genetic effects on DTI than that
of other structures. For example, the genetic contribution to the
FA of right posterior limb of the internal capsule was 0.00, while
the contribution of common environmental factors was 0.50. The
study suggests that the strength of the genetic effect depends on
the regional maturation status of the neonatal brain.

Population Differences
To investigate differences in neuroanatomical features
among ethnic groups, Bai et al. (2012), quantified brain
size, morphology, and DTI parameters of Malay, Chinese,
and Indian neonates. The JHU-neonate-SS was iteratively
transformed to construct a study-customized atlas to evaluate
177 neonates. Indian neonates had more elongated brains
despite similar brain volume among the three ethnicities.
Compared to Indian neonates, the Malay neonates had
lower FAs in the left anterior limb of the internal capsule,
the left thalamus, the anterior corpus callosum, and the left
midbrain, while the Chinese neonates had only lower FA in
the anterior part of the corpus callosum. These results suggest
that ethnicities should be considered when performing a
statistical comparison of the DTI-derived parameters among
groups.

Effects of Prematurity and Related Risk
Factors
Prematurity is one amongst a host of perinatal stressors that is
known to adversely affect neurological development in neonates.
Preterm birth is also related to the occurrence of other risk factors
that might affect brain development. Therefore, it is important
to investigate the respective contributions of prematurity and
other risk factors to explain developmental alterations that
occur in babies born preterm. The effects of other medical
factors, including bronchopulmonary dysplasia, retinopathy of
prematurity, necrotizing enterocolitis, sepsis, and serum levels
of C-reactive protein, albumin, glucose, and bilirubin, were
studied (Rose et al., 2014b). The JHU-neonate-SS atlas was used
for the ABA on a cohort of 66 very-low-birth-weight preterm
infants who underwent DTI scans at a term-equivalent age.
Among anatomical structures, the posterior thalamus MD was
associated with lower gestational age at birth and lower levels of
albumin and bilirubin. These findings imply that the thalamus
may be a structure vulnerable to prematurity and accompanying
risk factors. However, interactions among brain abnormality,
prematurity, and risk factors still need to be demonstrated.

Effect of In Utero Exposure to Stimulants
To investigate the effects of prenatal exposure to stimulants,
such as methamphetamine or nicotine, DTI scans were acquired

longitudinally from babies who were prenatally exposed to
stimulants, and the results were compared to those from babies
without any prenatal stimulant exposure (Chang et al., 2012). The
JHU-neonate-SS atlas was applied for the ABA to quantify the
FA, MD, AD, and RD of each structure. Although conventional
T1- and T2- weighted images of these babies were normal
appearing, the age-related increase in FA tended to be lower
in stimulant-exposed infants, especially in the superior fronto-
occipital fasciculus (Figure 5), which suggests a slower rate or
delayed myelination in stimulant-exposed babies. This indicated
the potential for ABA to detect anatomical alterations related
to stimulant exposure, although relationships between detected
anatomical alterations and later neurological, behavioral, and
cognitive functional outcomes need to be elucidated.

ANALYSIS OF BRAIN CONNECTIVITY

Diffusion tensor imaging, analyzed with graph theory, is useful
in non-invasively mapping and assessing neural networks
(connectome) of the brain in adults (for review, Lo et al., 2011;
Griffa et al., 2013). Brain atlases and the PMs are often used to
parcellate the brain into local areas that serve as the network
nodes (de Reus and van den Heuvel, 2013; O’Donnell et al.,
2013). Although the application to investigate developmental
changes is still challenging (for review, Tymofiyeva et al., 2014),
an increasing number of studies are investigating connectomes of
neonatal brains, some of which are introduced below.

Asymmetrical Neural Network
Development
The human brain is structurally asymmetrical, a feature that
reflects its diverse, specialized functions. However, it has not
been well-established whether such asymmetries can be traced
back to the perinatal period. This was one of the aims in a
study (Ratnarajah et al., 2013) that acquired DTI in 124 healthy,
full-term neonates, and the FA maps were transformed to the
JHU-neonate-SS atlas for the image parcellation. For whole-
brain tractography, the fiber-assignment by continuous tracking
(FACT) algorithm (Mori et al., 1999) was used to compute
the fiber trajectories that connect between parcels. In order
to characterize the brain, the fibers were analyzed for small-
worldness, type of efficiency (global or local), and betweenness-
centrality. Small-worldness defines a network wherein any two
nodes are not necessarily neighbors, but are relatively well-
connected (Watts and Strogatz, 1998). Global efficiency describes
how efficiently information can pass through the network
(Latora and Marchiori, 2001). Local efficiency indicates how
well information can be exchanged in a local neighborhood, or
subnetwork (Rubinov and Sporns, 2010). Betweenness-centrality
is a statistic that identifies the most central nodes of a network
(Freeman, 1978). These values were used altogether to calculate
a lateralization index (LI), a proxy for brain asymmetry. The
analysis on connectivity revealed that, in neonates, both cerebral
hemispheres exhibited small-world characteristics, and that the
LI was higher in the left hemisphere. This suggested that the
left hemisphere of neonates was better equipped to balance
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FIGURE 5 | Stimulant (Methamphetamine and tobacco)-exposed
infants (n = 25) had less steep age-dependent increase in FA than the
unexposed infants (n = 25) in the superior fronto-occipital fasciculus.
Each infant was scanned 2–3 times during the first 3 months of life. Repeated
measures analysis using mixed model with resolution, sex and Index of Social
Position as covariates. PM Age = postmenstrual age (from poster
presesentation at Neurobehavioral Teratology Society by Chang et al., 2012).

local necessities and wide-range interactions. Furthermore, the
study insinuates that the neonatal brain favors a local flow of
information and seeks to reduce the number of long-distance
connections. This small-world preference of the neonatal brain
has also been observed in the brains of adults (Gong et al.,
2009), which suggests that the brain provides an efficient network
from birth. In addition, LI values indicate a significantly leftward
tendency in the precentral gyrus, the precuneus fusiform, the
entorhinal cortex, and the insular cortex, and, likewise, a
rightward tendency in the gyrus rectus, the cingulate gyrus,
the hippocampus, and the putamen. Such LI values indicated
that those structures communicated more efficiently in their
respective hemispheres, demonstrating a betweenness-centrality
asymmetry in the neural network. These results suggest that the
brain already exhibits asymmetry at birth.

Effect of Prematurity at Birth
The effect of prematurity was also examined from a network-
based perspective (Pannek et al., 2013). To investigate the effect
of prematurity, cortico-cortical connections in 18 preterm and
nine full-term babies were compared. The JHU-neonate non-
linear atlas was used as an initial template to create a study-
specific FA map upon which the structural PM could be applied,
and to define 24 cortical regions as nodes for connectivity
analysis. Network-based statistical analysis was then performed
to compare DTI-derived measurements (FA and MD) and T2
values between the cohorts. In all, 433 connections were analyzed.
FA was lower in preterm neonates than in full-term controls in a
network of nodes whose central nodes were the superior temporal
lobe, the left fusiform gyrus, and a network of connections
between the frontal andmotor nodes. MDwas found to be higher
for preterm infants in a majority of the connections, leading to
a global elevation of diffusivity. T2 was higher in the preterm

group in a network that included the left superior frontal lobe,
the left cingulate gyrus, and the right precuneus. Although there
were no correlations between gestational age at birth and DTI-
derived measurements, a negative correlation between T2 and
gestational age at birth was identified in a network that included
the bilateral precuneus, the left lateral orbito-frontal gyrus, the
left middle temporal gyrus, the left superior temporal gyrus,
and left lingual gyrus. This study demonstrated the possible
influence of prematurity on brain microstructure, as assessed
by DTI and T2, as well as the utility of multimodal analyses
to detect different developmental processes in the neonatal
brain.

Relationship between White Matter
Connections and the Cortical Folding
Patterns
The cortex has developed over evolutionary time an exquisitely
complex folding pattern, which is unique to the human
brain. The role and nature of cortical folding still remains
controversial, although the folding of the brain was hypothesized
as a natural consequence of connectivity to subcortical areas
(Van Essen, 1997). To investigate correlations between white
matter connections and the cortical folding pattern, one
study quantified the amount of cortical connectivity through
tractography and the local cortical folding patterns through
ABA of the gyrification index, as well as the sulcation
ratio using the JHU-neonate atlas (Melbourne et al., 2014).
The white matter connectivity correlated specifically with
the sulcation ratio of the overlying cortex, suggesting that
the gyrification pattern represents the development of the
underlying white matter. As demonstrated, the ABA is especially
useful for the integration of information from multiple
modalities.

FUTURE OF NEONATAL DTI ATLAS

Multi-atlas-based Structural Parcellation
Conventional ABA methods usually utilize a single atlas.
However, the limitation of a single-atlas approach is that the
template does not necessarily represent the features of a study
population. The possibility of voxel mismatch due to differences
in contrast and morphology between the subject image and the
template image is a factor that can contribute to inaccuracy in
the parcellation. In order to overcome this limitation, a multi-
atlas label fusion method has been developed and applied to adult
brain images. In this approach, multiple atlases with different
anatomical features are transformed to the target image, and
the anatomical labels based on the transformed PMs are fused
to define a target-specific PM. Studies have been performed
to assess the accuracy of parcellations via multiple atlas fusion
protocols, and have reported higher accuracy than single-atlas
methods in the adult and pediatric populations (Heckemann
et al., 2006; Aljabar et al., 2009; Tang et al., 2013, 2014). Such
successes encourage the application of such methods to the
neonatal population and to create accurate PM for each brain.
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Multi-modal Analysis
A multi-modal approach rather than a single-modality approach
has been shown to be superior in detecting abnormalities
related to neurological diseases (Allder et al., 2003; Brockmann
et al., 2003; Rostasy et al., 2003; Kauczor, 2005; Wiest et al.,
2005; Oishi et al., 2011a). Typically, the different modalities
complement each other, and, together, can permit more detailed
interpretation of the brain. However, one of the biggest
challenges for multi-modal analysis is to establish a common
anatomical framework that can integrate intra-subject as well
as cross-subject multi-modal imaging data, which would enable
structure-by-structure, location-dependent statistical analysis.
ABA is suitable for such a multi-modal approach because it
can be applied to serve as the common anatomical framework
(Oishi et al., 2011b, 2013; Faria et al., 2012a). The application
of a multi-modal approach to the neonatal population is
anticipated, as it can enhance the information available to
describe the variety of anatomical features seen in neonatal
brains.

Multiple PMs and Multiple Granularity
Analysis
The application of a predefined single PM has several limitations,
the most important of which, perhaps, is that there are multiple
criteria that can be used to define structures. For instance,
when using a PM to detect pathological changes related to a
specific disease, the ideal PM should define the brain structures
or areas vulnerable to the disease. In diseases that affect the
vasculature of the brain, a PM that is based on vascular territories
might be able to quantify changes with higher sensitivity than
an ontology-based brain parcellation. Application of multiple
PMs with different criteria enables reasonable extraction of
anatomical features. Moreover, in order to detect changes related
to diseases that cause widespread pathology of the brain, a PM
with lower granularity can detect such changes with higher
sensitivity than a PM with higher granularity. However, a PM
with higher granularity is suitable for the detection of focal
changes. To extract anatomical features of various diseases,
a multiple granularity approach was developed (Djamanakova
et al., 2014) that can flexibly change the granularity level of the
PM based on the hierarchical relationships of 254 structures
(parcels) defined in the JHU-MNI-SS atlas (Oishi et al., 2009).
In this multiple granularity approach, the 254 structures were
dynamically combined at five different hierarchical levels, down
to 11 structures, to provide a flexible view from which to extract
the anatomical features of the brain. This approach is also
anticipated for neonatal image analysis since various diseases
can cause either widespread changes (e.g., leukodystrophies
or metabolic diseases) or focal changes (e.g., focal cortical
dysplasia).

High-throughout Analysis
The ABA is an ideal method for use in the emergent big-
data analysis because it can quantify and extract relevant
information from medical images. The PM could compress
raw images (usually more than 100 MB pixels each) into a

manageable size (∼200 structural units each) in an interpretable
way. High-throughput analysis is advantageous because of its
potential to efficiently analyze the large amounts of imaging data
using machine-learning and supervised clustering algorithms.
There is also the possibility of integrating non-image related
parameters. Research in the emerging field of neuroinformatics
seeks to incorporate all of these data, such as those constructed
in a pipeline to evaluate neuropsychiatric disorders (Miller
et al., 2013) or for normal neurodevelopment in typically
developing children (Jernigan et al., 2015). Particularly for
the neonatal studies, in which early prediction of the later
neurological, psychological, and cognitive outcomes is the
desired goal, big-data analysis is essential since multiple
factors, from genetics to environment, might affect the result
and all of these factors need to be incorporated into the
analysis.

Clinical Applications
Atlas-based analysis has the potential to enhance the usefulness
of DTI as a modality with which to predict neurological
and psychiatric outcomes. However, scientific success does not
necessarily guarantee clinical success. Contrary to researchMRIs,
clinical MRIs contain artifactural heterogeneity, which comprises
variations in scan protocol and hardware performance (Back and
Miller, 2014). Consequently, the image quality is usually not as
stable as that of research MRIs. Moreover, there is biological
heterogeneity, which comprises variations of demographics
and co-morbidities, as opposed to the homogeneous research
population selected through strict inclusion and exclusion
criteria. In general, heterogeneity in clinical practice is one
of the major causes of failure in the clinical application of
scientific discovery. Extending the ABA to test its robustness
in clinical scenarios, especially with age and sex-appropriate
age-related growth curves for the individual brain regions, is
required in the future, and is a future direction of DTI research
in general.

CONCLUSION

Atlas-based analysis has shown great potential for the study
of neurodevelopmental patterns in normal and abnormal
cohorts in the pediatric and adult populations. Currently, DTI
studies incorporating ABA to study the neonatal population
has demonstrated its utility in assessing neurodevelopmental
progress. Further studies are needed to overcome the current
limitations of ABA and incorporate it into high-throughput
analyses, with the ultimate goal of application to the clinical
setting.
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