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Abstract

The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche.

However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a

challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species

known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted

species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-

adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced

relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a

variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana

from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a

greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila

species, implying some continuity of selective process at these different evolutionary scales.
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Background

Comparative genomic analyses provide new insights into our

understanding of evolutionary processes by helping to identify

genes contributing to adaptive divergence (Ellegren 2008;

Radwan and Babik 2012). If strong divergent selection due

to environmental adaptation or social interactions, such as

sexual selection, act as “barrier loci” by influencing species

isolation, then identifying them can help to understand the

process of speciation (Nosil et al. 2009; Smadja and Butlin

2011). However, accurately identifying such genes is a con-

siderable challenge (Noor and Bennett 2009; Cruickshank and

Hahn 2014; Ravinet et al. 2017; Wolf and Ellegren 2017).

Comparative genomic analyses are often hampered by a

poor understanding of the sources of selection contributing to

species divergence (Ravinet et al. 2017; Wolf and Ellegren

2017). Even when some of the sources of selection seem clear

they are often complex and multifaceted, greatly complicat-

ing our ability to identify the genetic basis of adaptations. One

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

2086 Genome Biol. Evol. 10(8):2086–2101. doi:10.1093/gbe/evy147 Advance Access publication July 13, 2018

GBE

http://creativecommons.org/licenses/by/4.0/


approach to this problem is to apply comparative genomic

techniques to species with distinct ecological specializations.

Several studies have been made of such ecological specialists,

including: cactophilic Drosophila (Matzkin et al. 2006; Smith

et al. 2013), Asian longhorn beetles with specialized feeding

habits (McKenna et al. 2016), climate-mediated adaptations

in honey bees (Chen et al. 2016), and adaptation to high

altitude in humans (Foll et al. 2014). These have successfully

identified some associations, but such studies are still relatively

few, hindering our general understanding of the genomic

landscape of adaptation. Here, we describe the genome of

Drosophila montana, a widely distributed northern member

of the virilis group of Drosophila, which shows unique adap-

tations to seasonally varying environmental conditions prevail-

ing at high latitudes and altitudes. D. montana is the most

cold-tolerant Drosophila species known (Kellermann et al.

2012; Andersen et al. 2015). Their cold tolerance or hardiness

involves multiple adaptations, including both a high general

resistance to cold and a strong inducible cold acclimation re-

sponse (Vesala and Hoikkala 2011), as well as a robust pho-

toperiodic diapause (Tyukmaeva et al. 2011), which all

contribute to its ability to survive through cold and dark win-

ters. The daily and seasonal activity patterns of D. montana,

and the interactions and neurochemistry of the core circadian

clock genes behind these patterns, differs from those of more

temperate species such as D. melanogaster (Kauranen et al.

2012, 2016; Tapanainen et al. 2018). These features have

likely played an important role in allowing D. montana to

colonize and persist in high-latitude environments (Terhzaz

et al. 2015; Kauranen et al. 2016; Menegazzi et al. 2017).

Drosophila montana belongs to the virilis group of

Drosophila, which comprises 13 species or subspecies divided

into two clades, the virilis and montana phylads, the latter

being further split into three lineages (Spicer and Bell 2002).

These phylads are thought to have diverged in South Asia

during the Early Miocene, after which both of them entered

the New World by way of Beringia (Throckmorton 1982). The

virilis phylad is constrained mostly within the temperate zone,

whereas the montana phylad has expanded into a variety of

habitats and spread to higher latitudes (Throckmorton 1982).

Divergence of the two phylads has been estimated to have

occurred 7 (Ostrega 1985) to 11 (Spicer and Bell 2002) Ma,

whereas the North American, European, and Asian D. mon-

tana populations have diverged within the last 450,000–

900,000 years (Mirol et al. 2007). Interestingly, conspecific

D. montana populations have been shown to diverge in traits

that play a role in ecological adaptation (e.g., Lankinen et al.

2013; Tyukmaeva et al. 2015), male sexual cues and female

preferences (e.g., Klappert et al. 2007), and also to show

sexual and postmating prezygotic reproductive barriers

(Jennings et al. 2014). Information on potential candidate ge-

nomic regions and genes for traits involved in cold adaptation

and sexual selection has been accumulated through QTL

(Sch€afer et al. 2010; Tyukmaeva et al. 2015), microarray

(Vesala et al. 2012; Salminen et al. 2015), transcriptome

(Parker et al. 2015; Kankare et al. 2016; Parker et al. 2016),

and RNAi (Vigoder et al. 2016) studies.

Here, we aim to identify genes showing evidence of diver-

gent selection linked to cold adaptation by contrasting the

genomes of species and populations from different climatic

conditions. These analyses were conducted at three levels.

Firstly, we classified Drosophila species with well annotated

genomes into cold-tolerant and non-cold-tolerant species and

used branch tests to identify genes evolving differently be-

tween these contrasts. Secondly, we compared D. montana

with its more temperate relative D. virilis. Finally, we com-

pared three divergent populations of D. montana from differ-

ent geographic regions. Such a multi-level approach allows us

to identify genes that show recurrent divergence associated

with climatic differences between species and populations.

Such genes are likely to be particularly important for thermal

adaptation, giving insight into the genes and functional pro-

cesses involved in the evolution of cold tolerance in insects

more generally. Thus, our results thus give a novel insight into

genomic patterns of selection-driven divergence at different

evolutionary scales, in addition to providing a well-annotated

genome for a uniquely cold adapted insect species.

Materials and Methods

Samples and Sequencing

Genomic DNA for the D. montana reference genome was

extracted from an inbred isofemale line originating from

Vancouver, Canada (Can3F9) in summer 2003. This line

was inbred via full-sib matings for 37 generations, relaxed

for nine generations and maintained on malt food

(Lakovaara 1969) at 19 �C in constant light. Quality checked

DNA extracted from 210 males using a Gentra Puregene

Tissue Kit (Qiagen) was used to produce three libraries with

different insert sizes: 200, 400, and 3,000 bp. The 200 and

400 bp libraries were sequenced using an Illumina HiSeq 2000

at Edinburgh Genomics to produce paired-end reads

(101þ 101bp). The 3,000bp library was sequenced using an

Illumina MiSeq at The Centre for Genomic Research, University

of Liverpool to produce mate-pair reads (101þ 101bp). This

strategy produced 65107854 paired-end reads for the 200bp

library, 25618163 paired-end reads for the 400bp library and

19020110 mate-pair reads for the 3,000bp library. Reads from

the 200 and 400bp libraries were trimmed using scythe

(Buffalo 2014) to remove adaptors and sickle (Joshi and Fass

2011) to quality trim reads (bases with phred quality of <20

were trimmed from the tail end of each read). Reads from the

3,000bp library were trimmed in the same manner, with the

addition of a linker sequence removal step.

An initial assembly using reads from the 200 and 400 bp

libraries was made using CLC assembly cell (4.0.12). Contigs

from this were then blasted (blastN) to two subsets of NCBI’s
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nt database (arthropod and bacteria) with an e-value thresh-

old of 1 � 10�40. Bit scores of blast hits from the arthropod

and bacterial databases were compared for each contig, and

any with a higher bit score for bacteria than arthropods were

considered to be contaminants (supplementary fig. 9,

Supplementary Material online). Reads were mapped to con-

tigs identified as contaminants using BWA (v. 0.7.12) (Li and

Durbin 2009) and then the unmapped reads were assembled

using CLC assembly cell (4.0.12) (default options, minimum

contig length ¼ 200 bp). Contigs were then scaffolded using

the 3,000 bp mate pair library using SSPACE-BASIC-2.0. This

assembly contained 68,950 scaffolds (N50¼ 39,341). This as-

sembly was then further screened for contaminants using

DeconSeq (v. 0.4.3) (Schmieder and Edwards 2011).

Bacterial (2,786) and viral (4,359) genomes were downloaded

from NCBI on January 20, 2016 and used as the contamina-

tion databases in DeconSeq along with the human genome

(hg38). The D. melanogaster (r6.09) and D. virilis (r1.05)

genomes were used as retention databases. DeconSeq iden-

tified 5,208 scaffolds as contaminants, which were removed

from our assembly. We then used this assembly for all subse-

quent analyses. To assess the completeness of our genome

assembly we used the CEGMA analysis pipeline (v. 2.4) (Parra

et al. 2007, 2009) which identifies the presence of 248 con-

served eukaryote genes, and the BUSCO pipeline (v.1.22)

(Sim~ao et al. 2015) which identifies the presence of 2,675

conserved arthropod genes.

Genome Annotation

Full details of the genome annotation are given in the supple-

mentary methods. Briefly, we used the Maker2 pipeline (Holt

and Yandell 2011) to first mask putative repeats within the

genome, and then used ab initio gene predictors SNAP and

AUGUSTUS, and gene evidence (from protein homology and

RNA-seq data) to generate gene predictions. Gene predictions

from Maker2 were reciprocally blasted to proteins from D.

virilis (r1.2) with the following cutoffs: e-value < 3 � 10�13,

query cover >60% to give reciprocal best blast hits (RBBH).

Orthologs for D. melanogaster, D. sechellia, D. simulans, D.

erecta, D. yakuba, D. ananassae, D. persimilis, D. pseudoobs-

cura, D. willistoni, D. mojavensis, and D. grimshawi were then

obtained from FlyBase using D. virilis FlyBase numbers. Genes

without a single ortholog for each species were discarded

from multi-species selection analyses (below).

Linkage Map Construction

For the genetic map construction, we selected 192 samples

from a previous QTL study (Tyukmaeva et al. 2015), which

consisted of two families (four parent individuals and their F2

progeny, females only). We used RAPiD Genomics’ (Florida,

USA) facilities to develop a set of oligonucleotide probes for

13,975 selected regions in the largest scaffolds of the D. mon-

tana genome. These probes were used to capture sequence

these target loci with 100 bp single end reads using an

Illumina HiSeq 2000. A resulting SNP dataset was cleaned

with Genotype Checker to eliminate possible errors in pedi-

gree/genotyping (Paterson and Law 2011). The R/qtl package

(Broman et al. 2003) was used to construct a genetic linkage

map after discarding any polymorphic loci that were hetero-

zygous for both parents, duplicated markers, markers show-

ing segregation distortion, and individuals with fewer than

2,000 markers. Reads from the 200 and 400 bp genome ref-

erence libraries were mapped back to anchored scaffolds us-

ing BWA (v. 0.7.12) (Li and Durbin 2009). Multi-mapping

reads were discarded. Since the genome reference libraries

were produced from males, X linked regions should have half

the coverage of autosomal regions, we used the coverage of

these scaffolds to validate our linkage map.

Selection Analyses

Multispecies Analysis

13 species with fully annotated genome sequences available

were divided into cold-tolerant and non-cold-tolerant ones;

six species with a knockdown temperature <3 �C

(Kellermann et al. 2012; MacMillan et al. 2015) were classified

as cold-tolerant, the remainder as non-cold-tolerant fig. 1).

This approach for classifying species was taken to a maximize

the power of PAML’s branch tests (see below). To identify

genes showing elevated signatures of selection in these

species we extracted the longest CDS (N¼ 5,619) for each

D. erecta

D. montana

D. virilis

D. simulans

D. grimshawi

D. mojavensis

D. willistoni

D. persimilis

D. yakuba

D. ananassae

D. sechellia

D. pseudoobscura

D. melanogaster

FIG. 1.—Tree used for multi-species PAML analyses. Cold-tolerant

species (species that have a knockdown temperature of<3 �C) are shown

in blue (data from Kellermann et al. [2012] and MacMillan et al. [2015]).
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ortholog and codon-aligned them using PRANK (v.140110)

(Löytynoja and Goldman 2005). Sequences were then ana-

lyzed in codeml from the PAML (v4.8) package (Yang 1997;

Yang and Bielawski 2000). Two models were compared; the

“null” model (clock ¼ 0; fix_omega ¼ 0, model ¼ 0, NSSites

¼ 0) which assumes a single common value for x with an

alternative model (clock ¼ 0; fix_omega ¼ 0, model ¼ 2,

NSSites ¼ 0) which assumes one value of x (dn/ds) for all

the cold-tolerant species and a separate value of x for the

non-cold-tolerant species. Nested models were compared us-

ing a likelihood ratio test and P values corrected for multiple

testing using a Bonferroni correction. Additionally, results

were filtered to exclude sequences with dN, dS or x> 10.

This comparison tests whether there is a different rate of mo-

lecular evolution in cold-tolerant species compared with non-

cold-tolerant species.

Pairwise Analysis

To identify protein-coding genes with elevated signatures of

selection we estimated pairwise x (dN/dS) for each gene that

had a reciprocal best blast hit (RBBH) to a D. virilis gene. The

longest coding sequence of each gene and its RBBH ortholog

were codon-aligned using PRANK (v.140110) (Löytynoja and

Goldman 2005), before estimating x using codeml in PAML

(v. 4.8) (Yang 1997; Yang and Bielawski 2000). To determine

if any genes showed x> 1, we compared genes using a

Bayesian estimation of x in codeml (runmode ¼ �3, model

¼ 0, NSsites¼ 0) (Angelis et al. 2014) with default priors. The

P values were corrected for multiple testing using a strict

Bonferroni correction. We further filtered to exclude any

genes where estimates of dN, dS or x were >10.

Wethencomparedmeanx values inseveral candidategene

sets (genes involved in immune function, reproduction, and

cold tolerance) against the genomic background. Genes

were classified into two “immune” classes firstly using the

GO term “immune response” from FlyBase (version 6.05)

and secondly using orthologs of genes identified as being in-

volved in immunefunctionbySacktonetal. (2007).Next,genes

connected to reproduction were classified into several repro-

ductive classes following Haerty et al. (2007): sex and repro-

duction related genes (SRR), female reproductive tract (FRTP)

and seminal fluid proteins (SFP). Finally, cold tolerance genes

were classified into two classes with genes differentially

expressed in response to cold in D. montana and in D. virilis

(Parker et al. 2015). Parker et al. (2015) found that from the

differentially expressed genes, 42 were the same in both spe-

cies but 550 were different, allowing genes to be classified into

“cold tolerance same” and “cold tolerance different” groups.

Population Resequencing

For population comparisons we used D. montana flies from

three populations: Oulanka (Finland; 66�N), Crested Butte,

Colorado (USA; 39�N) and Vancouver (Canada; 49�N).

These populations were established from the progenies of

fertilized females collected in the summer of 2008 in

Oulanka and Vancouver, and in the summer of 2009 in

Colorado. Population cages were set up using 20 F3 genera-

tion individuals from approximately 20 isofemale lines for

each population. Population cages were maintained at

19 �C in constant light (for more details see Jennings et al.

[2011]). In March 2013, Genomic DNA was extracted from a

pool of 50 females for each population and sequenced at

Beijing Genomics Institute using an Illumina HiSeq 2000 to

produce paired-end reads (90þ 90 bp, insert size ¼ 500 bp).

Sequencing produced 84938118 paired-end reads for

Colorado and 82663801 for Oulanka. Two runs for

Vancouver resulted in 303365095 reads. Reads were quality

trimmed (leading or trailing bases with a phred score of<20,

or if two consecutive bases had an average phred score of

<32 the read was trimmed at this point) and screened for

adaptor sequence using trimmomatic (v. 0.30) (Bolger et al.

2014). Reads containing adaptor sequence or that had a

length of <85 bp after quality trimming, were discarded.

Since coverage depth can influence the estimation of allele

frequency (Zhu et al. 2012), reads for Vancouver were ran-

domly sampled prior to mapping to the mean number of

reads from Colorado and Oulanka. Reads were mapped to

the genome assembly using BWA (v. 0.7.12) (Li and Durbin

2009). Reads with a mapping quality of <20 were then re-

moved, and an mpileup file was produced using samtools (v.

0.1.19) (Li et al. 2009). From this, a sync file was produced

using PoPoolation2 pipeline (v 1.201) (Kofler et al. 2011).

Outlier detection was performed on the raw read count

data with BayeScan v. 2.1 (Foll and Gaggiotti 2008; Foll

et al. 2010; Fischer et al. 2011), which performs comparably

alongside other outlier methods in several simulation studies

(P�erez-Figueroa et al. 2010; Vilas et al. 2012; Villemereuil et al.

2014). SNPs were filtered to include only sites with a mini-

mum coverage of 25 and a maximum coverage of 93 (corre-

sponding to the median 10th and 90th percentiles of the

population coverage distributions). At the same time, SNPs

were only considered if the minor allele had a read count

>4 across all populations. BayeScan was run with five pilot

runs of 1,000 iterations each followed by a main run of 2,000

iterations, a thinning interval of 10 and a burn in of 1,500.

Additionally, three pairwise runs of BayeScan were performed

with the same parameters as above. The three pairwise anal-

yses compared Colorado to Vancouver, Vancouver to

Oulanka, and Colorado to Oulanka populations, respectively.

Functional Enrichment

To examine functional enrichment of genes for the species

level selection analyses and population level FST scans, we

used GOrilla (Eden et al. 2009). For the pairwise selection

analyses genes were ranked by x (from high to low and
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low to high). For the multispecies selection analyses, we

ranked genes by P value and direction so that genes with

the lowest P values and a higher x in cold-tolerant species

were at the top, and genes with lowest P values and higher x
in non-cold-tolerant species were at the bottom, allowing us

to identify enriched GO terms for genes showing elevated x
in cold-tolerant species. To examine GO terms for genes

showing elevated x in non-cold-tolerant species the list order

was simply reversed. For population level analyses genes were

ranked by the most significantly differentiated SNP occurring

within 1, 10, or 100 kb of a gene for each population. Results

from GOrilla were then visualized using ReviGO (Supek et al.

2011), using the January 2017 version of Gene Ontology.

We used DAVID (v6.8) (Huang et al. 2009a, 2009b) to

identify enriched functional groups of genes. A functional

group was considered to be significantly enriched if its enrich-

ment score (the geometric mean (in –log scale) of the P values

of the GO terms in the group) was >1 (P< 0.1). For the

pairwise selection analyses we identified functional clusters

for genes occurring in the top and bottom 10% of genes

for x estimates. For the multispecies selection analyses we

identified functional clusters for genes that showed a signifi-

cantly (FDR < 0.1) higher x in cold-tolerant species or in

non-cold-tolerant species separately. For population level

analyses we identified functional clusters for genes containing

(within 1 kb) significantly differentiated SNPs for each

population.

To take advantage of the superior annotation of D. mela-

nogaster (Tweedie et al. 2009), we used D. melanogaster

orthologs for all of the above function enrichment analyses.

For the DAVID analyses the “background” list used was the

subset of D. melanogaster genes available for each analysis.

Results

Genome Sequencing and Assembly

The assembled D. montana genome (table 1) has a total

length of 183.6 Mb, which falls within the range seen for

Drosophila species (111–187 Mb), and is similar to that of D.

virilis (172 Mb), a close relative of D. montana with a se-

quenced genome. CEGMA identified 238 complete orthologs

(96%) and 244 partial orthologs (98%) of the 248 CEGMA

proteins and BUSCO identified 2,457 genes as complete

(92%) and failed to identify only 46 (1.7%). RepeatMasker

identified that 14.4% of the assembly was composed of re-

peat elements, the major classes of which were: Simple

repeats (4.5%), LTR elements (4.3%), Unclassified (2.9%),

and LINEs (1.9%) (supplementary fig. 1, Supplementary

Material online). The total percentage of repeat elements

identified was around half of that found for related

Drosophila species (D. virilis ¼ 25.9%, D. mojavensis ¼
23.8%, and D. grimshawi¼ 26.1%) likely reflecting the prob-

lem of assembling repetitive regions with short reads.

For the genetic map construction, the final dataset con-

tained 5,858 polymorphic SNPs. The median depth of the

SNPs in the final dataset was 52.4 and the average missing

data rate was 0.003. The initial analysis formed five major

linkage groups (as expected since D. montana has five chro-

mosomes in total). Chromosome number was assigned by

blasting genes assigned to the linkage groups to the D. virilis

genome, which have been localized to chromosomes and is

largely syntenic with D. montana (Sch€afer et al. 2010).

Although the analysis showed clear linkage groups, the order

of markers was not totally resolved, likely due to lack of re-

combination events among F2 progeny (supplementary fig. 2,

Supplementary Material online). The tentative scaffold order

and position are given in supplementary table 1,

Supplementary Material online. Using this map, we were

able to anchor approximately one third of the genome assem-

bly to chromosomes. To validate our linkage map, we exam-

ined coverage of anchored scaffolds. X-linked regions were

found to have approximately half the coverage of autosomal

regions, as expected since the reference genome was pro-

duced from male-only samples (supplementary fig. 3,

Supplementary Material online).

Between-Species Comparisons Identify Genes Showing
Accelerated Divergence between Cold- and Warm
Adapted Species

Across the 13 Drosophila species we found 250 genes that

had significantly different rates of evolution (x) in cold- and

non-cold-tolerant species (fig. 1 and supplementary table 2,

Supplementary Material online). dS was on average lower for

cold-tolerant species than for non-cold-tolerant species while

dN was very similar (fig. 2 and supplementary table 3,

Supplementary Material online). x was on average greater

for cold-tolerant species, probably driven by generally lower

values of dS in these species (supplementary table 3,

Supplementary Material online). 203 and 47 genes showed

higher values of x for cold-tolerant and for non-cold-tolerant

species, respectively (fig. 3). Genes with elevated x in cold-

tolerant species were enriched for 23 GO terms (Biological

Table 1

Summary Statistics of D. montana Genome Assembly

Metric Value

Total assembled length (bp) 183585048

Scaffolds (n) 63742

Scaffold N50 (bp) 40647

Largest scaffold (bp) 515352

GC content (%) 40.57

Number of predicted gene models 13683

Number of predicted gene models

with RBBH to D. virilis genome

10898

CEGMA pipeline analysis (% complete/partial) 95.97/98.39

BUSCO (% complete/missing) 91.85/1.72
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Processes:Molecular Functions:Cellular Components¼ 6:10:7)

(FDR < 0.1) (supplementary table 4, Supplementary Material

online),whichsemanticallycluster intothefollowingcategories:

response to drug, male courtship behavior, olfaction, ion-

channel activity, and developmental processes (fig. 4). Of

genes with elevated x in non-cold-tolerant species, we iden-

tified 50 enriched GO terms (Biological Processes:Molecular

Functions:Cellular Components¼ 34:3:13) (FDR< 0.1) (sup-

plementary table 5, Supplementary Material online), which

semantically cluster into the following categories:

proteasome-mediated ubiquitin-dependent protein cata-

bolic process, reproductive processes, response to fungus,

animal organ morphogenesis, regulation of biological, and

cellular processes (fig. 4). Moreover, DAVID identified 11

functional group clusters for genes with significantly higher

x in cold-tolerant species (supplementary table 6,

Supplementary Material online) including: Nucleotide-

binding, Olfaction, Transmembrane proteins, Neural develop-

ment, Leucine-rich repeat containing proteins, GTPase/GTP

binding, Cytoskeleton/Microtubule, and Ion Transport.

Finally, DAVID identified three functional group clusters for

genes with significantly higher x in cold-tolerant species (sup-

plementary table 7, Supplementary Material online) including:

Calcium-binding EGF domain containing proteins,

Transmembrane proteins, and Cytoskeleton/Microtubule.

Comparison of D. montana and D. virilis

We estimated x (dN/dS) for each of the one-to-one orthologs

between D. montana and D. virilis (supplementary table 2,

Supplementary Material online). No genes had a x signifi-

cantly >1 after filtering and multiple-test correction.

Comparison of mean x for several candidate gene sets (genes

involved in immune function, reproduction, and cold toler-

ance) found that none of the candidate genes sets differed

significantly from the genomic background (fig. 5). By ranking

genes by x we identified GO terms enriched in genes with

relatively high and low x. For those with high x we identified

23 enriched GO terms (Biological Processes:Molecular

Functions:Cellular Components ¼ 10:4:9) (FDR < 0.1) (sup-

plementary table 8, Supplementary Material online). Semantic

clustering of these GO terms shows that they fall into the

following categories: Reproduction, detection of chemical

binding/olfaction, amino sugar metabolism, and chitin bind-

ing (fig. 6). DAVID identified nine functional group clusters

(supplementary table 9, Supplementary Material online) in-

cluding two related to chitin production and two related to

olfactory functions, congruent with the findings from the sin-

gle GO term enrichment analysis (above). In addition, DAVID

also identified two clusters involved in: immune defense (C-

type lectin domain carrying genes, and Fibrinogen related

genes), Transcription factor binding, and a cluster containing

geneswitheither a CAP (cysteine-rich secretory protein)or SCP

(Sperm-coating protein) domain. We identified 662 enriched

GO terms for genes with low x between D. montana and D.

virilis (Biological Processes:Molecular Functions:Cellular

Components¼ 485:80:97) (FDR<0.1). As expected for genes

with very low x the enriched GO terms are consistent with

housekeeping roles in the cell (cell cycle control, cell communi-

cation, cell developmental process etc.), which are expected to
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be under strong purifying selection (supplementary table 10

and figs. 4–6, Supplementary Material online).

Genes Showing Significant between-Population
Divergence Are Enriched for Functional Processes
Associated with Cold Adaptation

Significant outlier SNPs were found in, or within 1 kb of,

1801, 155, and 1387 genes (from pairwise comparisons be-

tween Colorado: Oulanka, Colorado: Vancouver, and

Oulanka: Vancouver, respectively) (see supplementary mate-

rial for detail on SNP numbers). 10 genes overlapped between

all the three pairwise comparisons (supplementary fig. 7

and table 11, Supplementary Material online). Although

this is a relatively small number of genes, it is significantly

greater than expected by chance (P¼ 0.00013). By rank-

ing genes by q-value we could identify GO terms enriched

in genes with high divergence for each population com-

parison (Colorado: Oulanka ¼ 74 (Biological

Processes:Molecular Functions:Cellular Components ¼
27:29:18) (supplementary table 12, Supplementary

Material online), Colorado: Vancouver ¼ 66 (Biological

Processes:Molecular Functions:Cellular Components ¼
19:28:19) (supplementary table 13, Supplementary Material

online), Oulanka: Vancouver ¼ 91 (Biological

Processes:Molecular Functions:Cellular Components ¼

37:39:14) (supplementary table 14, Supplementary Material

online). As with genes, there was a significant overlap of

enriched GO-terms between population comparisons (N¼ 22,

P¼ 1.74 � 10�79, supplementary fig. 7 and table 15,

Supplementary Material online). Semantic clustering of GO

terms (fig. 7) and functional clustering (supplementary table

16–18, Supplementary Material online) showed that the dom-

inant terms include: membrane components, ion transport,

small molecule binding, and neuron/synaptic associated terms.

Interestingly, outlier SNPs were not randomly distributed

throughout the genome (fig. 8 and supplementary fig. 8,

Supplementary Material online). There was a significant ex-

cess of outlier SNPs on the X-chromosome in all pairwise

comparisons (Colorado: Oulanka—Chi-squared ¼ 3,029.4,

d.f. ¼ 4, P< 0.01; Colorado: Vancouver—Chi-squared ¼
31.9, d.f. ¼ 4, P< 0.01; Oulanka: Vancouver—Chi-squared

¼ 2477.7, d.f. ¼ 4, P< 0.01). These results held when the

proportion of the total genome length of each chromosome

was taken to calculate the expected numbers of SNPs.

Genes Showing Divergence between Species and between
Populations Overlap

We examined whether genes showing significant divergence

between populations were the same as those showing higher

rates of evolution between cold-tolerant and non-cold-
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tolerant species. We found 68 genes that had both an ele-

vated rate of evolution between species and significant diver-

gence in at least one population comparison (supplementary

table 19, Supplementary Material online). This is signifi-

cantly greater than we would expect by chance (Fisher’s

exact test ¼ 1.447, P¼ 0.0006) and implies that genes un-

der divergent selection within species are also more likely to

diverge between species. The functions of these genes mir-

ror those enriched in each of the separate comparisons

(transmembrane transport/ion transport [9/68], sexual re-

production [16/68], and neurological system process/

neurogenesis [15/68]), implicating these genes’ involve-

ment in similar differences in cold adaptation and repro-

duction between populations and species.

Discussion

Ecological studies with Drosophila montana have shown that

it is able to thrive at high latitudes due to a number of adap-

tations including the evolution of increased cold tolerance and

reproductive diapause. By sequencing the genome of this

species we were able to use comparative genomics to identify
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genes and functional processes that differ between D. mon-

tana and its less cold-adapted relatives. We find evidence for

selection acting on neuronal, membrane-transport and ion-

transport related genes at both the inter and intraspecific

levels. These findings likely result from selection for an ability

to overwinter under harsh environmental conditions, as these

processes have clear links to both increased cold tolerance

and reproductive diapause.

Genome Assembly and Features

We assembled the D. montana genome using a combination

of Illumina paired-end reads and mate-pair reads. We anno-

tated 13,683 genes, which is comparable to other Drosophila

species that have been sequenced (Clark et al. 2007). 10,898

of these genes (80%) were then assigned to a D. virilis ortho-

log, comparable to the number of orthologs identified be-

tween D. melanogaster and D. simulans. Together with the

high BUSCO and CEGMA scores, this suggests that the genic

component of the assembled genome is largely complete and

successfully annotated.

Inter and Intraspecific Comparisons Show Evidence for
Cold Adaptation

Firstly, in the comparison between multiple Drosophila

species, we identified 250 genes with an elevated rate of

evolution between cold-tolerant and non-cold-tolerant

Drosophila species. Interestingly, the increased rate of evolu-

tion was biased toward cold-tolerant species, with 77% of

these genes showing a higher rate of evolution in these spe-

cies. Secondly, we compared D. montana to its sequenced

relative D. virilis. Although D. montana and D. virilis are both

relatively cold-tolerant species, D. montana is significantly

more cold-tolerant than D. virilis (Vesala et al. 2012), and D.

montana is also more desiccation tolerant (Kellerman et al.

2012). In addition, unlike D. virilis, D. montana females enter

reproductive diapause in late summer, which further increases

their chances to survive over the cold season and produce

progeny in spring (Watabe 1983). However, genes in the D.

montana genome showed little evidence for divergent selec-

tion when compared with D. virilis, with most genes showing

evidence for purifying selection. Finally, we compared D.

montana populations from Oulanka, Colorado and

Vancouver. These populations face quite different abiotic

and biotic conditions throughout the year, and hence can

be expected to vary in several traits affecting flies’ life-cycle

and stress tolerances. We identified many SNPs that show

significant divergence between the three populations; the

number of divergent SNPs was smallest between Colorado

and Vancouver populations reflecting the likely later diver-

gence times of these populations. Although no divergent

SNPs were shared between all population comparisons,

when SNPs were grouped by gene, we found evidence for

a significant number of overlapping genes. Divergent SNPs

were overrepresented in the X chromosome which often
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shows elevated rates of evolution due to a combination of

effects including a smaller effective population size, increased

efficacy of selection in hemizygous males, and sexual antag-

onism. However, as some of the populations are known to

differ in sexual behavior and postmating pre-zygotic repro-

ductive barriers (Klappert et al. 2007; Jennings et al. 2014), as

well as ecological adaptations, it is not possible to distinguish

among the multiple possible sources of any divergent selec-

tion on X-linked SNPs.

Inmostof thesecomparisons thegeneswithelevateddN/dS

or FST were enriched for functional processes previously dem-

onstrated as important in cold adaptation (see below). In par-

ticular changes to membrane components and ion transport,

as well as in the neurological system were heavily represented

in our enrichment analyses in all comparisons. In addition, we

also found enrichment of many small-molecule binding terms,

but thespecific termsenrichedtendedtobemorevariedacross

the different comparisons. Finally, several comparisons were

also enriched for many reproduction-associated terms, which

are unlikely to be linked to cold adaptation per se. We discuss

each of these functional groups below.

Functional Processes Enriched in Inter and Intraspecific
Comparisons

Cellular Membranes

The composition of the cell membrane is critical for mainte-

nance of cellular function in suboptimal temperatures (Hazel

1995; Ko�st�al et al. 2003) with changes to cell membrane

viscosity shown to be a critical component of cold acclimation

in many species (Hazel 1995), including D. melanogaster

(Cooper et al. 2014). We found enrichment of many terms

associated with membrane structure (e.g., intrinsic compo-

nent of membrane, integral component of membrane,

plasma membrane, transmembrane region, etc.) across all

our comparisons, providing further evidence for the impor-

tance of adjusting cell membrane structure to better survive in

cold environments. In addition to these terms, we also found

enrichment of other key processes that likely contribute to the

functioning of cell membranes at low temperatures. The most

important of these are functions associated with cellular ionic

balance (e.g., ion channel activity, transmembrane transporter

activity, calcium transport, ion binding). Many of the mecha-

nisms involved in the maintenance of cellular ion balance are

known to be temperature specific (Heitler et al. 1977;

Kivivuori et al. 1990). Failure to maintain the ionic balance

of cells leads to metabolic perturbations which can cause a

wide range of negative consequences, including cellular dam-

age and even death (Hochachka 1986; Ko�st�al et al. 2004).

One class of cells particularly affected by low temperature are

neurons (Montgomery and Macdonald 1990; Janssen 1992;

Robertson and Money 2012) which are particularly suscepti-

ble to cold injury (Hochachka and Somero 2002). In line with

this we also found enrichment of several terms related to

neuron function (cell projection membrane, dendrite mem-

brane, signal transducer activity, etc.). Finally, we observed

that membrane, ion transport, and neuronal terms often

functionally clustered together, showing that changes to

each of these functions are in fact interrelated. Taken to-

gether this suggests that the adjustment of cell membranes

for increased cold tolerance is complex, requiring changes
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to many genes to improve cellular functioning at low

temperatures.

Small-Molecule Binding

We observed enrichment of many small-molecule binding

terms (small-molecule binding, ATP-binding, kinase,

nucleotide-binding, nucleotide phosphate-binding,

carbohydrate derivative binding, ribonucleotide binding,

anion binding, etc.), both in the population and in the

multi-species comparisons. At low temperatures the activity

levels of many reactions are reduced meaning that during

cold adaptation there is selection to adjust chemical reac-

tions to work better in cold environments (Margesin 2017).

In particular ATP-binding and associated terms were

enriched in most of our comparisons suggesting that
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FIG. 7.—Semantic clustering of significantly (FDR < 0.1) enriched GO-terms for genes showing significant divergence between populations of D.

montana. Circle size corresponds to the number of genes annotated to the term in the reference database. Circle colour indicates log10 FDR of the GO term.
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adjustments to ATP-binding may be particularly important

for cold adaptation. This finding is supported by the fact

that low temperatures adversely affect ATP metabolism

across a broad range of taxa (Napolitano and Shain 2004;

Morrison and Shain 2008), including freeze-tolerant species

like the terrestrial earthworm (Enchytraeus albidus) that are

able to survive winters in a frozen state (Boer et al. 2017).

Reproduction

Genes involved in reproduction typically show faster rates of

divergence than other genes (Swanson and Vacquier 2002;

Clark et al. 2006). Consistent with this we find reproductive-

associated terms (male courtship behavior, single organism

reproductive process, reproductive process) are enriched at

each comparison level. Different species of Drosophila (in-

cluding D. montana and D. virilis) are known to vary for a

number of reproductive traits and so this finding is not too

surprising. Interestingly, the only pairwise population com-

parison that shows enrichment for reproductive-associated

terms (reproductive structure development, gonad develop-

ment) is between Colorado and Vancouver. Although all

populations show some evidence of reproductive isolation,

crosses between Colorado and Vancouver showed the

highest proportion of nondeveloping eggs (Jennings et al.

2014). Moreover, although the exact cause of nondevelop-

ing eggs is unknown, one possibility is that it could be due

to a negative interaction between sperm and the female

reproductive tract. Some support for this idea comes from

examining the top differentiated genes between Colorado

and Vancouver which include the transcription factor ken

and barbie which has a major role in the development of

genitalia of D. melanogaster (Lukacsovich et al. 2003).

Functional Processes Enriched in Specific-Comparisons

Although we observe many terms related to cold tolerance

common to each of our comparisons (described above), we

also observe enrichment of several other functional processes

which are restricted to one or two of our comparisons. Of

these, two (Olfaction and cuticular processes) are of particular

interest due to their potential link to cold adaptation and are

discussed below.

Cuticular Related Processes

Cuticular and chitin related processes show an extensive en-

richment in genes showing elevated dN/dS between D. mon-

tana and D. virilis, but not in the multi-species or population
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comparisons. Changes to the cuticle are linked to increased

cold and desiccation tolerance in insects (Gibbs 2002; Dennis

et al. 2015) and in particular to enhancing the stress resistance

of the cuticle during diapause (Li and Denlinger 2009; Benoit

2010). This is particularly interesting as D. montana, unlike D.

virilis, has a reproductive diapause meaning the changes we

observe in cuticular related genes may have resulted from

selection for increased stress resistance to help D. montana

successfully overwinter. This idea is consistent with the fact

that cuticular related processes are only found in the D. mon-

tana–D. virilis comparison, as this is the only one of our com-

parisons that directly compares non-diapausing and

diapausing capable groups.

Olfaction

Drosophila flies have various kinds of olfaction-driven behav-

iors including the location of food and mates (Amrein 2004;

Libert et al. 2007) and the genomic repertoire of olfactory loci

is correlated with environmental variation (Gardiner et al.

2008). A cold environment may affect the perception of olfac-

tory signals as the detection of odorants at low temperatures

is more difficult due to the reduced concentration of olfactory

cues in the air. Previous work in D. melanogaster has shown

that the sensitivity of the olfactory system increases in re-

sponse to cold temperature (e.g., Dalton 2000), and that

this change is accompanied by a change in expression in

olfactory genes (Riveron et al. 2009, 2013). Since both sexual

and nonsexual olfactory signals are likely to be affected by

colder temperatures, we hypothesize that the changes in

olfaction-related genes we observe in the present study are

a product of adaptation to living in a colder environment as

well as of sexual selection to distinguish conspecific flies from

the heterospecific ones. Olfaction related terms were enriched

in both species-level comparisons, but not population

comparisons.

Population and Species Divergence at Common Loci

Phenotypic variation in similar traits between and within spe-

cies may or may not arise from the same genes even when

selection processes are similar (Wittkopp et al. 2009). Here,

we find that genes which show divergence between popula-

tions were also more likely to show elevated differences be-

tween species. The functions of these genes mirror those

enriched in each of the separate comparisons (transmem-

brane transport/ion transport sexual reproduction and neuro-

logical system processes), implicating these genes’

involvement in similar differences in cold adaptation and re-

production between populations and species. Although any

of these genes may be important in cold adaptation, one

gene in particular, Task6, stands out as an interesting candi-

date. Task6 encodes a subunit of two-pore domain potassium

(K2P) channels, which are important in setting the membrane

potential and input resistance of neurons in Drosophila

(Döring et al. 2006). Temperature impacts a cell’s ability to

maintain ionic balance, and in particular a loss of potassium

ion balance has been shown to cause membrane depolariza-

tion, induction of chill-coma, and cell death (Andersen et al.

2015; Andersen et al. 2017). As such the changes we observe

in Task6 may be involved in thermal adaptation of species and

populations.

Conclusion

Drosophila montana is an exceptional species of Drosophila in

terms of cold adaptation, as well as a species used for studies

of behavioral variation and reproductive isolation. Here, we

report the first description of its genome. Although there are

few strong signals of divergent selection on coding sequence

variation, especially with its closest available relative, contrasts

between cold-adapted species and intraspecific population

sequencing suggest that the genome contains a clear signal

of selection for cold tolerance. We identify many genes po-

tentially important in adaptation and speciation in this eco-

logical specialist species.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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