
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Stephanie Leigh Servetas,
National Institute of Standards and
Technology (NIST), United States

REVIEWED BY

Sergey Shmakov,
National Library of Medicine, (NIH),
United States
Kevin Xu Zhong,
University of British Columbia, Canada
Qinqin Pu,
University of Pennsylvania,
United States

*CORRESPONDENCE

Yuzhen Ye
yye@indiana.edu

SPECIALTY SECTION

This article was submitted to
Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 01 May 2022

ACCEPTED 09 September 2022
PUBLISHED 28 September 2022

CITATION

Monshizadeh M, Zomorodi S,
Mortensen K and Ye Y (2022)
Revealing bacteria-phage interactions
in human microbiome through the
CRISPR-Cas immune systems.
Front. Cell. Infect. Microbiol. 12:933516.
doi: 10.3389/fcimb.2022.933516

COPYRIGHT

© 2022 Monshizadeh, Zomorodi,
Mortensen and Ye. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 28 September 2022

DOI 10.3389/fcimb.2022.933516
Revealing bacteria-phage
interactions in human
microbiome through the
CRISPR-Cas immune systems

Mahsa Monshizadeh, Sara Zomorodi, Kate Mortensen
and Yuzhen Ye*

Indiana University, Bloomington, IN, United States
The human gut microbiome is composed of a diverse consortium of

microorganisms. Relatively little is known about the diversity of the

bacteriophage population and their interactions with microbial organisms in the

human microbiome. Due to the persistent rivalry between microbial organisms

(hosts) and phages (invaders), genetic traces of phages are found in the hosts’

CRISPR-Cas adaptive immune system. Mobile genetic elements (MGEs) found in

bacteria include genetic material from phage and plasmids, often resultant from

invasion events. We developed a computational pipeline (BacMGEnet), which can

be used for inference and exploratory analysis of putative interactions between

microbial organisms and MGEs (phages and plasmids) and their interaction

network. Given a collection of genomes as the input, BacMGEnet utilizes

computational tools we have previously developed to characterize CRISPR-Cas

systems in the genomes, which are then used to identify putative invaders from

publicly available collections of phage/prophage sequences. In addition,

BacMGEnet uses a greedy algorithm to summarize identified putative

interactions to produce a bacteria-MGE network in a standard network format.

Inferred networks can be utilized to assist further examination of the putative

interactions and for discovery of interaction patterns. Here we apply the

BacMGEnet pipeline to a few collections of genomic/metagenomic datasets to

demonstrate its utilities. BacMGEnet revealed a complex interaction network of the

Phocaeicola vulgatus pangenome with its phage invaders, and the modularity

analysis of the resulted network suggested differential activities of the different P.

vulgatus’ CRISPR-Cas systems (Type I-C and Type II-C) against some phages.

Analysis of the phage-bacteria interaction network of human gut microbiome

revealed a mixture of phages with a broad host range (resulting in large modules

with many bacteria and phages), and phages with narrow host range. We also

showed that BacMGEnet can be used to infer phages that invade bacteria and their

interactions in woundmicrobiome. We anticipate that BacMGEnet will become an

important tool for studying the interactions between bacteria and their invaders for

microbiome research.

KEYWORDS

bacteria-phage interaction, mobile genetic elements (MGE), CRISPR-Cas systems,
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Introduction

Bacteriophages, or phages, are viruses that invade bacterial

and archaeal species. Bacteria–phage coevolution functions as a

driver of ecological and evolutionary processes in microbial

communities (Koskella and Brockhurst, 2014). Due to the size

difference between viral and bacterial genetic material,

metagenomic sequencing projects typically focus on either

bacteria or viruses (including phages), but not both. Special

treatments such as size fractionation prior to DNA extraction

can be used to reduce sources of nonviral DNA in viromes,

enabling the recovery of richer viral populations relative to total

metagenomes (Santos-Medellin et al., 2021). Advances in

metagenomic sequencing and computational tool development

have enabled the accumulation of a large number of

metagenomic data sets, which were used to derive

metagenome-assembled genomes (MAGs) (Almeida et al.,

2021) and putative phages (Camarillo-Guerrero et al., 2019).

Still, existing efforts focus on either side (bacteria or phages), but

not both. As an example, a 2019 study (Hendriksen et al., 2019)

found a systematic regional difference in the bacterial population

and antimicrobial resistance gene (ARG) in global urban sewage,

and only a more recent study (Strange et al., 2021) reanalyzed

the published datasets to identify phages associated with bacteria

and to explore their potential role in ARG dissemination.

CRISPR-Cas systems are highly prevalent in microbial

genomes and can be grouped into two main classes, each of

which contain multiple types (Barrangou et al., 2007; Levy

et al., 2015; Koonin et al., 2017; Shmakov et al., 2017; Shmakov

et al., 2018). Class 1 CRISPR-Cas Systems includes Types I, III

and IV and use a complex of Cas proteins to degrade foreign

nucleic acids. Class 2 CRISPR-Cas Systems include Types II, V,

and VI and use a single, large Cas protein for the same purpose

(Type II, V and VI use Cas9, Cas12 and Cas13, respectively)

(Makarova et al., 2017). CRISPR arrays are comprised of short

DNA segments, known as spacers, and these provide a

cornerstone to CRISPR-Cas derived adaptive immunity.

Spacers retain the memory of past immunological

encounters, and are primarily acquired as a result of Cas

protein complex mediated acquisition (Koonin et al., 2017).

Newly acquired spacers are typically integrated towards the

leader ends of arrays (Weinberger et al., 2012; McGinn and

Marraffini, 2019). Estimates of species carrying CRISPR-Cas

systems vary, and cautious interpretation of these estimates

with close attention to context is advised. As an example, our

recent analyses of the CRISPR-Cas systems in healthcare

related pathogens showed that species who are normally void

of CRISPR-Cas systems, such as, Staphylococcus aureus,

contained CRISPR-Cas systems in a small fraction of isolates

(0.55% of 12,212 isolates) (Mortensen et al., 2021). While this

may seem like a small number, approximately 67 S. aureus
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isolates contained CRISPR-Cas systems, demonstrating the

importance of context when analyzing CRISPR-Cas systems.

CRISPR spacers are genetic traces of invaders that are

stored in host genomes. As such, CRISPR spacers have

proven useful in phage-host prediction, either alone or in

combination with other signals. This is demonstrated in a

recently published tool CRISPROpenDB that utilizes CRISPR

spacers, predicted from NCBI microbial genomes, in predicting

phage membership to hosts (Dion et al., 2021). Results from

this study were promising, achieving 49% recall and 69%

precision (Dion et al., 2021). This approach is different from

earlier computational approaches for phage host predictions,

which mostly rely on sequence homology. Sequence homology-

based approaches in phage host predictions aim to find similar

phages to the phage of interest, or matches between the phage

of interest and a genome integrated prophage in the bacterial

host (Edwards et al., 2016). HostPhinder (Villarroel et al.,

2016) is an exemplar based on finding similar phages for

prediction of phage host. Other phage-host signals that have

been exploited for phage host prediction include co-occurrence

of phages and hosts across environments and correlations in

nucleotide usage profiles (see this paper (Edwards et al., 2016)

for a comparison of the strengths of the different phage-host

signals for prediction).

Here we address a relevant but distinct computational

problem, which is to infer the phages (and plasmids) that are

likely to be the invaders of a collection of genomes and to infer

the interaction network between the phages (invaders) and

genomes (hosts). CRISPROpenDB takes phage sequences as

input, and attempts to predict putative bacterial hosts based

on pre-calculated CRISPR spacers from the bacterial genomes.

By contrast, our pipeline BacMGENet takes a collection of

genomes, the host(s), as the input and attempts to annotate

the CRISPR-Cas systems in those genomes using our previously

published tool CRISPRone (Zhang and Ye, 2017), and search

identified CRISPR spacers against publicly available phage/

plasmid sequences we collected to identify putative invaders

that were defended against by the CRISPR-Cas systems. The

collection of genomes can be a collection of different isolates of

the same species (e.g., pangenome), or all the genomes found in a

microbiome (e.g., wound microbiome and gut microbiome). We

attempt to obtain a network of bacteria-phage interaction

because there are phages that have a broad range of hosts. The

inferred network will allow us to provide a more complete view

of the microbiome in context of both the microbial species and

phages, even for the studies that only focus on the bacteria, by

taking advantage of the publicly available large collections of

phage/plasmid sequences derived from metagenome sequencing

studies. Interaction networks are also useful in studying the

interaction patterns driven by the ongoing arms-race between

bacteria and phages.
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Materials and Methods

The BacMGEnet pipeline (Figure 1) reveals potential

interactions between input microbial species (as a collection of

genomes or in a metagenome) and their putative MGEs, and

summarizes the putative interactions in a network. It utilizes

computational tools that we have previously developed for

characterizing CRISPR-Cas systems in genomes/metagenomes,

and the large collections of MGE sequences that are currently

available to identify potential MGEs with their traces found in

predicted CRISPR-Cas systems in the bacterial genomes.
Collection of the MGE datasets

We gathered a collection of mobile genetic element (MGE)

databases, and collectively refer to these databases as the ‘MGE

database’ for simplicity. The MGE database includes phage and

plasmid sequences. The phage sequences were collected from the

Gut Phage Database (Camarillo-Guerrero et al., 2019) (GPD),

MicrobeVersusPhage (Gao et al., 2018) (MVP) database, the

reference viral database (Goodacre et al., 2018) (RVDB), and

mMGE (a database for human metagenomic extrachromosomal

mobile genetic elements) (Lai et al., 2021). The GPD, MVP,

RVDB and mMGE collections we used contain 142809, 32825,
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825901, and 421635 entries, respectively. The plasmid sequences

were collected from the Comprehensive and Complete Plasmid

Database (Douarre et al., 2020) (COMPASS), and PLSDB

(Galata et al., 2019). The phage and plasmid databases

included sequences from the NCBI reference database, NCBI

nucleotide database, prophages identified in prokaryotic

genomes and MGEs identified from metagenomic assemblies.

We made available the MGE database we collected for users to

download and use.
Identification of the CRISPR arrays

Our pipeline provides two differentmethods of characterizing

CRISPR arrays in genomes or metagenome assemblies, from

which spacers can be extracted for predicting host-MGE

interactions. The first approach utilizes CRISPRone, a pipeline

we previously developed for annotating CRISPR-Cas systems

including CRISPR arrays and associated cas genes (Zhang and

Ye, 2017). Identification of CRISPR arrays can be challenged by

repetitive sequences that mimic CRISPR array structures

(CRISPR artifacts). CRISPRone uses an ensemble method to

remove potential false-positives such as tandem repeats and

STAR-like sequence (Zhang and Ye, 2017). The second

approach (also available in CRISPRone) uses known CRISPR
FIGURE 1

A schematic diagram of the BacMGEnet pipeline.
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repeats to guide the discovery of CRISPR arrays such that only

CRISPR arrays containing identical, or very similar, repeats are

included for analyses. The use of repeat guides, as in the latter

approach, is advantageous because it reduces the possibility of

including unwanted CRISPR artifacts and enforces precise

boundaries around spacers. This is in contrast to de novo

prediction where the detection of CRISPR arrays is purely based

on the repeat-spacer repetitive structure. In cases where repeats

are known, or users are interested in specific repeats associated

with CRISPR-Cas systems, the guided prediction approach can be

useful. We demonstrate the use of both approaches in this study.
Identification of the interaction between
microbial organisms and phages using
the CRISPR arrays

Once CRISPR arrays are characterized in microbial

genomes, spacers are extracted from identified CRISPR arrays

and used for identification of invaders containing segments that

match the spacers (i.e., protospacers). Unique spacers (100%

nonredundant by CD-HIT-EST (Li and Godzik, 2006)) are

queried against the MGE database using BLASTN (Camacho

et al., 2009) to search for putative invaders that were targeted by

the hosts containing the CRISPRs. All unique spacers are used in

this analysis to increase the search sensitivity. Results are filtered

to retain hits with a greater than 90% sequence identity, query

coverage per hsp greater than 80%, and an e-value of less than

0.001. These parameters were used to ensure good matches

between potential protospacers and spacers, and at the same

time to allow a small number of mismatches between them

caused by mutations or sequencing errors. Similar practice was

used in previous work including our own (Zhang et al., 2013;

Edwards et al., 2016; Dion et al., 2021).

A greedy algorithm is applied to select the minimum

number of MGEs that collectively contain all protospacers

matching the spacers. This step is necessary as the redundancy

of the sequences in the MGE database is high, and including all

MGEs that contain matching protospacers will make the

network unnecessarily complex. The greedy algorithm works

as follows. The MGEs are first sorted in descending according to

the number of protospacers they contain. The MGE that

contains the largest number of protospacers is selected (all the

protospacers that this MGE contains are then considered to be

covered or explained). The remaining MGEs are re-sorted

according to the protospacers that they contain and are not

yet covered by previously selected MGEs. The MGE containing

the largest number of the protospacers is then selected. This

process is repeated until all protospacers are covered by selected

MGEs. Similarly, the greedy algorithm is applied to select the

minimum number of hosts that contained all identified spacers

and only included them in the network. Selected MGEs and

hosts are then used for building spacer-MGE and host-MGE
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networks. In the spacer-MGE network, spacer sequence clusters

(called spacers for simplicity) and MGEs are represented as

nodes and an edge is added between a spacer node and MGE

node if the MGE contains a segment that matches the spacer

(i.e., protospacer). In the host-MGE network, an edge is added to

a host and a MGE if the host and MGE pair contain at least one

matching protospacer and spacer.

The spacer-MGE and host-MGE network can be of different

uses; for example, the spacer-MGE network can be used to

compare the involvement of different types of CRISPR-Cas

systems in the interaction of bacteria and phages, and host-

MGE network can be used for comparison of the interaction

between phages and different bacteria. We used NetworkX

(https://networkx.org/) to analyze all the networks that we

inferred in this study, e.g., to compute connected components.

All visualizations and manual inspection of the networks are

performed using Cytoscape (Shannon et al., 2003).
Phocaeicola vulgatus genomes

P. vulgatus is one of the commonly found bacterial species in

human microbiome. In previous work, we showed that P.

vulgatus is one of the generalists that are found in gut

microbiomes of healthy individuals and individuals with

diseases using metaproteomics datasets (Stamboulian et al.,

2022). This served as motivation to include P. vulgatus in our

current study. We downloaded P. vulgatus genomes from the

NCBI ftp site (with the most release on March 17, 2022). In total

there are 403 genomes, with 7 complete and 396 draft genomes.
Human gut genomes

We used the human gut metagenomic-assembled genomes

(MAGs) derived from 12 fecal samples (Jin et al., 2022b) for our

gut bacteria-phage interaction prediction. This data is one of the

most recent collections of human gut MAGs and it was shown

that the use of a HiSeq-PacBio hybrid, ultra-deep metagenomic

sequencing approach helped improve the sequencing coverage

of the low-abundance subpopulation in the gut microbiome (Jin

et al., 2022b). We downloaded a total of 472 MAGs from this

website (Jin et al., 2022a).
Wound microbiome and data processing

We also applied our tools to analyze wound microbiomes.

We downloaded 196 metagenomic shotgun sequencing datasets

of diabetic foot ulcer microbiome (Kalan et al., 2019) from the

NCBI short reads archive (BioProject Accession PRJNA506988).

Since some of these wound microbiome datasets have a large

fraction of human reads (Kalan et al., 2019), we first applied
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Kraken2 and Bracken (Lu and Salzberg, 2020) to quantify the

taxonomic composition (and also bacterial reads) for these

datasets. We then selected the five wound microbiome datasets

that contain the most non-human reads: SRR8247654 (referred

as w1), SRR8247673 (w2), SRR8247619 (w3), SRR8247751 (w4)

and SRR8247633 (w5) for analysis in this paper.

We assembled the five wound microbiome datasets. The

sequencing data was first trimmed with Trimmomatic version

0.39 (Bolger et al., 2014). Next, the output of the trimming tool

were mapped to the human reference genome assembly or

GRCH38 using bowtie2 (Langmead and Salzberg, 2012) to

remove human reads. The non-human reads were assembled

using SPAdes version 3.15.4 using the –meta flag (Nurk

et al., 2017).
Availability of the pipeline

We made available our computational pipeline for bacteria-

MGE interaction network inference given characterized

CRISPR arrays (called mge_net), as well as a pipeline for

characterizing CRISPR arrays redin genomes/metagenomes

(called crispr ann) as a GitHub repository (called BacMGEnet)

at https://github.com/mgtools/.BacMGEneta as open source

codes. In addition to using the MGE database we provide,

users can make their own customized database for discovery

of MGEs that interact with the bacteria they are interested in.

Our pipeline outputs annotations (if available) and the fasta

sequences of identified phages, and their interactions with

bacterial hosts in a standard network format. Users can use

the sequences and apply other phage annotation tools such as

PhaGCN (Shang et al., 2021) to assign the taxonomic groups

such as ICTV families (Lefkowitz et al., 2018). Results of the

examples reported in this paper are also available at the

same repository.,
Results

Using P. vulgatus pangenome to identify
its invaders

The P. vulgatus pangenome contains three types of CRISPR-

Cas systems, among which Type V is the rarest, found in only

one of the 403 P. vulgatus isolates (isolate W0P25.017). The

other two types of CRISPR-Cas systems are more prevalent, with

Type I-C CRISPR-Cas systems found in 169 (42%) genomes,

and Type II-C CRISPR-Cas systems in 79 (20%) genomes. In

total, about half of the isolates (213, 53%) contain at least one

type of CRISPR-Cas systems in their genomes. Figure 2 shows

the representative structures of these three CRISPR-Cas systems

found in the pangenome. A total of 1532 spacers were identified
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from the 213 P. vulgatus genomes containing CRISPR-Cas

systems, among which 1190 (78%) spacers had hits in the

MGE database, leading to identification of a total of 277

MGEs (260 phages and 17 plasmids)—these MGEs collectively

contain all the protospacers that match the identified spacers.

Among the 277 phages, 73 (26%) were from the GPD collection

and have host predictions. Based on the pangenome-level

analysis, we predict P. vulgatus as one of the putative hosts of

all the remaining 204 phages.

A network of the spacers and MGEs was created (see

Figure 3), in which the spacers and MGEs are the nodes and

there is an edge between a spacer and a MGE if the MGE

contains a segment matching the spacer. The network contains

two large, highly connected modules (module 1 and 2

highlighted in Figure 3), each containing many Type I-C and

Type II-C spacers, indicating interactions between different P.

vulgatus isolates and phages (and their variants). Examination of

the network also reveals a few modules (which are smaller) that

mostly only contain spacers associated with one CRISPR-Cas

system type; for example, module 3 and module 6 mainly

contain Type II-C spacers, whereas module 7 only contains

Type I-C spacers, suggesting differential activities of the different

types of CRISPR-Cas systems against some of the invaders.

Specifically, module 3 contains 4 phages and 61 spacers, among

which 59 are Type II-C spacers and only 2 are Type I-C spacers.

Although Type V-A CRISPR-Cas system was found in one of the

P. vulgatus genomes, no protospacers were found in the MGE

database that match the CRISPR spacers in this Type V-A

CRISPR-Cas system and therefore Type V-A spacers are

absent from this network.
Phages with a broad spectrum of host
ranges in human microbiome

Application of our pipeline to the collection of 472 human

gut MAGs resulted in a collection of 8488 unique CRISPR

spacers, among which 3812 (45%) found matching

protospacers in the MGE database. Using these spacers as tags

revealed a complex interaction network between gut microbial

organisms and their putative invaders. The network contains

1871 nodes, including 237 nodes of microbial organisms (i.e.,

54% of the MAGs are included in the network), and the

remaining 1634 MGE nodes. Majority of the MGEs(1607) are

phages, and only 27 are plasmids. Among the bacterial MAGs

with their invaders identified through the CRISPR-Cas systems,

236 are bacteria, and only one archaeon (MAG ID: Y7.M001, a

Methanobrevibacter_A smithii). Although rare, archaea are

found to be important residents in human gut (Gaci et al., 2014).

Analysis of the bacteria-MGE network reveals some interesting

patterns. The network contains a total of 96 connected components

(see Figure 4). All components, except the second largest
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component (see Figures 4A, B) and the seventh largest component,

each contain only bacteria from a phylum (if we don’t distinguish

Firmicutes A (Almeida et al., 2021) and Firmicutes). Notably, the

biggest component has 575 nodes including 73 bacteria all

belonging to Firmicutes (but these bacteria represent at least 32

species including Tyzzerella nexilis, Fusicatenibacter saccharivorans

and Faecalicatena faecis).

The second largest component (see Figure 4B) contains 110

nodes with 10 bacteria nodes and 100 MGE nodes; the 10

bacteria belong to three different phyla, including five

Bacteroidota (Parabacteroides distasonis), four Actinobacteria

(one Bifidobacterium infantis , two Bifidobacterium

pseudocatenulatum, and one Bifidobacterium longum) and one
Frontiers in Cellular and Infection Microbiology 06
Firmicutes A (Eubacterium_R sp000436835). The other

component that contains bacteria from different phyla is the

seventh largest component, which contains five Firmicutes

bacteria and one Bacteroidota. All the results show that

although there are specific interactions between certain phages

and certain bacteria (such as the many small components with

bacteria largely belonging to a specific clade), there are cases with

interconnected interactions between phages and bacteria even

from different phyla.

Figure 4C shows the 9th largest component representing

interactions between five bacteria of family Lachnospiraceae

(Firmicutes_A) and their putative phage invaders. The MAGs of

the five bacteria are Y7_M011, Y5_M001, Y6_M027, Y7_M048,
FIGURE 2

The CRISPR-Cas systems found in P. vulgatus pangenome. The genes and CRISPR arrays are shown as arrows and hexagons in the plots,
respectively, with CRISPR arrays labelled by their number of repeats in blue text. The cas genes associated with different CRISPR-Cas types are
shown in different colors, with a few important genes labelled by their gene names including cas9 in Type II-C and cas12a in Type V CRISPR-
Cas systems.
FIGURE 3

Spacer-host network inferred for P. vulgatus pangenome and its putative invaders. In this figure, CRISPR spacers found in P. vulgatus isolates/
genomes are shown in green or blue rectangles (Type I-C spacers in green and Type II-C spacers in blue). Phages and plasmids are shown as
yellow and red ovals, respectively.
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and Y8_M073 with the latter three sharing 0.95 ANI with UHGG

genomes (Almeida et al., 2021) GUT_GENOME095973,

GUT_GENOME000706, and GUT_GENOME000818,

respectively. No finer taxonomic assignment was available for

these five Lachnospiraceae. Y7_M011 and Y5_M001 are among

the 24 new MAGs that were not found in any public genome

database, thanks to the application of hybrid, ultra-deep

metagenomic sequencing according to this paper (Jin et al.,

2022b). This component represents a case where phages interact

with a specific clade of bacteria in this case Lachnospiraceae.

Among the 25 putative invaders (all are phages) that have

protospacers matching the CRISPR spacers in these

Lachnospiraceae genomes, ivig_2421 has protospacers matching

Y5_M001 and Y6_M027, and uvig_539974 has protospacers

matching CRISPR spacers in Y5_M001, Y6_M027 and
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Y7_M048 (these phages are highlighted with labels in

Figures 4). According to GPD annotation, these two phages'

bacteria hosts are Dorea scindens (Lachnospiraceae). Our

component-based network analysis reveals phage-bacteria

interaction that is consistent with the GPD annotation, and

suggests potential bacterial host for phages with unknown host

such as unk (SRR10479817P) in Figure 4C

Above we showcased a few representative components

found in the human gut bacteria-MGE network. We note that

the network (in the gml format) can be used by users

programatically (e.g., by using functions available in NetworkX

red(https://networkx.org/)) or visually (e.g., in Cytoscape

(Shannon et al., 2003)). As an example to demonstrate that

the network can be used to search for specific genome and its

invaders, searching for Y7.M001 in Cytoscape visualization of
B

C

A

FIGURE 4

Human gut bacteria-MGEs interaction network. In this figure, bacteria hosts are shown in green rectangles, phages and plasmids are shown as
yellow and red ovals, respectively. (A) is the global view of the network composed of 96 connected components. Three modules are
highlighted with numbers; component 1 is the largest connected module containing many MAGs and putative MGEs. The blue arrow highlights
the small component representing the interactions between the only archaeon found in this collection of human gut MAGs and nine putative
MGEs. (B) and (C) show zoomed-in views of component 2 and 9, respectively. There are five P. distasonis bacteria in (B) and all bacteria host in
component 9 (green nodes) are Lachnospiracea (C).
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the human gut bacteria-MGE newwork resulted in a small

module, highlighted in Figure 4A, revealing the interactions

between the only archaeon found in this collection of human gut

MAGs with nine putative MGEs.
Bacteria-phage interaction in wound
microbiome

We first analyzed the taxonomic composition of the chosen

wound microbiome datasets (w1-w5). Figure 5 (left) shows the

heatmap of the relative abundances of detected bacterial species

in the five microbiome datasets (only species that were found in

at least one of the samples with at least 1% relative abundance

were included): Staphylococcus aureus is the dominant species in

w1 and w2, Porphyromonas asaccharolytica is the dominant

species in wound microbiome w3 and w5, and Pseudomonas

aeruginosa is the dominant species in w4.

A total of 2875 unique CRISPR spacers were extracted from the

five wound microbiomes. Only 625 (22%) of these spacers found

match protospacers in the MGE database. The bacteria-phage

network (Figure 5; right) shows that the most phage sharing is

found between w3 and w5, which is consistent with the taxonomic

similarity between thesemicrobiome datasets. Microbiome w4 has a

very different (and also the simplest) taxonomic composition with

P. aeruginosa contributing more than 98% of the total reads in this

microbiome dataset, and only two phages were identified for this

microbiome, which is not surprising as this microbiome has low

composition complexity with only one dominating species. Finally,

although wound microbiome w1 and w2 have similar bacterial

composition, they share few common MGEs. This could be

explained by that the dominating species in these two

microbiome is S. aureus, which is a species that rarely contains

CRISPR-Cas systems in its genomes. We observed that among 12
Frontiers in Cellular and Infection Microbiology 08
thousands of S. aureus isolates, only 0.55% of them contain

CRISPR–Cas systems (Mortensen et al., 2021).
Discussion

CRISPR-Cas systems are themselves subject to horizontal

transfer (Singh et al., 2021). We reason that Type V-A CRISPR-

Cas system found in the P. vulgatus pangenome analyzed was

likely acquired through horizontal gene transfer since the

occurrence was rare (only found in one isolate). Since no

protospacers were found that match the Type V-A spacers, the

Type V-A spacers did not cause false identification of phages

that interact with this bacterial species. However, it is possible

that the mapping of spacers found in CRISPR arrays and

segments in phage genomes could lead to false prediction of

bacteria-phage interactions. This is a potential limitation of our

approach, and any approach that uses spacers for phage

host prediction.

The three collections of genomic/metagenomic datasets

received different ratios of spacers that have matches in phages.

The P. vulgatus pangenome has the highest ratio (about 78% of

identified spacers have their counterparts in phages/pladmids).

This result is expected since P. vulgatus is a bacterial species that is

commonly found in the gut microbiome, and metagenomic

sequencing projects have resulted in the accumulation of phages

that are associated with this species. For comparison, the human

gut MAG collection has a lower ratio (45%), indicating that using

the existing MGE database might still be insufficient for

comprehensive identification of phage-bacteria interaction in

gut microbiome, which has been shown to be highly variable

between individuals, and different time points of the same

individuals (Zaoli and Grilli, 2021). The wound microbiome has

the lowest ratio of its spacers matched to phages (22%), reflecting
FIGURE 5

Comparison of taxonomic composition and phage-bacteria interaction in five wound microbiomes. The wound microbiome datasets are: w1
(SRA accession number: SRR8247654), w2 (SRR8247673), w3 (SRR8247619), w4 (SRR8247751), and w5 (SRR8247633). Left: the heatmap of the
relative abundances of differnet bacterial species found in the microbiomes. Right: network of microbiome and its MGEs; in this figure, the
yellow and red nodes represent different phages and plasmids that contain protospacers matching spacers found in the microbiomes, and each
green rectangle represents a microbiome (w1-w5).
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that the MGE database is underrepresented for phages that invade

species in the wound microbiome.

We showed that results from network-based analyses can

provide insight into the interaction between phages and bacteria

(such as the differential defense activities of the CRISPR-Cas

against different phages), and the modularity of the networks can

be utilized for prediction of phage hosts. For example, module 9

in the gut bacteria-MGE network (Figure 4C) is likely a result of

the specific interaction between Lachnospiracea and its invaders,

and therefore can be used to provide confident prediction of

hosts for the phages with unknown hosts.

It was found that about half of bacterial genomes contain

CRISPR-Cas systems, while most archaea contain them (Koonin

et al., 2017; Zhang and Ye, 2017). Archaea are rare in human gut

microbiome, as a result, using our pipeline can reveal the potential

invaders of about half of the microbial species in the gut

microbiome (see Results). An apparent limitation of our

pipeline is that it won’t be able to reveal the invaders of the

genomes that don’t contain CRISPR-Cas systems. Nevertheless,

our work helped reveal the bacteria-MGE interactions that are

mediated through the CRISPR-Cas systems, one of the most

important defense systems that microbial organisms have to fight

against their invaders. Finally, we applied a greedy algorithm to

select non-redundant set of identified MGEs from the pipeline,

which was to simplify the interaction networks. This step would

eliminate some bacteria-MGE interactions that users might be

interested in. Users could look back into the intermediate outputs

from the pipeline to recover those interactions if needed.
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