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Abstract: The mining industry is one of the pillar industries of Guangxi’s economic and social
development. The output value of mining and related industries accounts for 27% of the whole
district’s total industrial output value. Therefore, the mining eco-efficiency measurement in Guangxi
can be of great significance for the sustainable development of Guangxi’s mining industry. This
study adopted Meta-US-SBM to measure the mining eco-efficiency in Guangxi from 2008 to 2018,
including economic efficiency, resource efficiency, and environmental efficiency. It used the standard
deviation ellipse model to simulate the migration trend of four efficiencies in Guangxi and used
GeoDetector and Tobit models to explore the internal and external factors that affect the mining
eco-efficiency. The four efficiencies in Guangxi show large temporal and spatial heterogeneity, and
the internal and external factors that affect the mining eco-efficiency are different. The following
conclusions can be drawn. (1) Environmental efficiency and mining eco-efficiency are improving,
while economic efficiency and resource efficiency are deteriorating. Cities bordering other provinces
have a significantly better mining eco-efficiency than non-bordering cities. (2) The development
center in Guangxi has migrated to the Beibu Gulf Economic Zone. (3) Natural resources index and
mining economic scale have a great impact on the mining eco-efficiency, and with the increase of
the mining economic scale, the mining eco-efficiency showed a typical “U-shaped” curve. Finally,
this study put forward corresponding policy recommendations to improve the mining eco-efficiency
in Guangxi from four aspects: opening-up, technological progress, regional coordination, and
government control.

Keywords: mining eco-efficiency; Meta-US-SBM; standard deviation ellipse model; GeoDetector;
Tobit Model; Guangxi

1. Introduction

China has achieved rapid economic development over the past ten years, while the
over-utilization of resources and high emissions of pollutants have seriously hindered its
sustainable development. Although China is committed to establishing an environment-
friendly and resource-conserving society, it has not yet transformed from a high-emission
growth mode to a sustainable mode [1]. It is estimated that China’s annual economic
losses due to environmental pollution and ecological damage account for 6% of its gross
domestic product (GDP) [2]. China still needs to make more efforts on the road to achieving
sustainable development. As Burton [3] pointed out that sustainable development refers
to development that meets the present needs without compromising the ability of future
generations to meet their own needs. Eco-efficiency has been proposed as a route to
promote such a transformation [4].

Eco-efficiency was derived from the concept of “environmental efficiency” in the
1970s by Freeman et al. [5], and then Schaltegger and Sturm [6] introduced it as the ratio
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of the economic value created to the environmental impact generated. In 1992, the World
Business Council disclosed the term as the index of economic and environmental efficiency,
namely as a management strategy that links financial and environmental performance to
create more value with less ecological impact [7]. Later, it was defined by Organization for
Economic Co-operation and Development (OECD) [8] as “the efficiency with which ecolog-
ical resources are used to meet human needs”, providing firms, industries, or economies
with the ability to produce goods and services with less impact on the environment while
consuming fewer natural resources [9]. In other words, eco-efficiency increases when the
impact of economic production on ecosystem services is reduced [10], when the increase of
the economic production value corresponds to a decrease of environmental impacts [11].

As an instrument for sustainability analysis, eco-efficiency has received significant
attention in the sustainable development literature and has become the topic of a growing
body of studies. Eco-efficiency can be measured as the ratio between the (added) value
of what has been produced and the (added) environmental impacts of the product or
service [12]. However, it is insufficient to research eco-efficiency using a single indica-
tor [13]. There are four main methods of determining eco-efficiency, including the indicator
system method [14], the ratio approach [15], life-cycle assessment [16], and the frontier
approach [17], among which Data Envelopment Analysis (DEA) is the most frequently
applied. DEA is a well-known frontier approach that calculates the input–output efficiency
of decision-making units using a programming solver. It was first proposed by Charnes and
Cooper [18], and then, Färe et al. [19] integrated the DEA method with the Malmquist index
to examine the effects of dynamic changes and resource utilization efficiency. Tone [20]
further proposed a non-radial slacks-based measure (SBM) model based on relaxation
measurements and incorporate undesirable outputs into the DEA evaluation.

Eco-efficiency has been applied from many perspectives, such as the macro-economic [21],
the meso-economic [22], and the micro-economic levels [23]. Liu et al. [24] considered the
provincial panel data in China during 1978–2017 to measure the agricultural eco-efficiency
by the super-efficiency slacks-based measure (super-SBM) model. Peng et al. [25] created a
comprehensive evaluation index system, including undesirable outputs, and adopted SBM
to analyze the characteristics and evolution of eco-efficiency at an individual tourism desti-
nation. Zhang et al. [12] used real data of 30 provinces in China and employed an empirical
study to illustrate the pattern of regional industrial systems’ eco-efficiency. Hu and Liu [26]
used Australian construction industry data from 1990 to 2013 to assess eco-efficiency based
on directly and systematically dealing with the slacks of reducing resource consumption
and minimizing environmental impacts, together with adding production value. Li and
Hu [27] computed the ecological total-factor energy efficiency of 30 provinces in China for
2005–2009 through the SBM with undesirable outputs. Wang et al. [28] investigated the
eco-efficiency trends of Shandong Province’s Pulp and Paper Industry from 2001 to 2008 in
three fields related to water efficiency, energy efficiency, and environment efficiency. They
used a “de-linking” and “re-linking” tool to attain a further evaluation. Table 1 shows the
use of DEA methodology over the years for assessing the eco-efficiency.
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Table 1. Summary of DEA applications to eco-efficiency.

Reference Research Object Inputs Desirable Outputs Undesirable
Outputs Methodology

Zhang et al. [12]

Regional industrial
systems’

eco-efficiency in
China

Water resource
Raw mining resource

Energy

Value-added to
industry

COD discharge
Nitrogen discharge

Sulfur dioxide
emission

Soot emission
Dust emission
Industrial solid

wastes produced

CCR
BCC

Shao et al. [29]
Eco-efficiency of

China’s industrial
sectors

Energy
Labor

Capital

Industrial
value-added

CO2
Solid waste

COD generation
NH3-H generation

SO2 generation
Smoke dust
generation

Two-stage DEA

Huang et al. [30]
Composite

eco-efficiency in 30
provinces

Energy
Labor

Capital
Water
Land

GDP Pollution index Meta-US-SBM

Zhang et al. [22]
Industrial

eco-efficiency in
China

Capital,
Labor

Energy
Environmental

emissions

The gross industrial
output value – Three-stage DEA

Wu et al. [31]
Eco-efficiency of
coal-fired power
plants in China

Water
Oil

Auxiliary power
Coal

Installed capacity
Capital

Electricity generated
Equivalent available

coefficient

CO2 emissions
Dust emission
Concentration
NOx emission
concentration
SO2 emission
concentration

Super efficiency DEA

Yu et al. [32]
Eco-efficiency of 191

prefectural-level
cities in China

Energy
Labor

Capital
Land

GDP Environmental
pollution index Meta-US-SBM

Masuda [33]
Eco-efficiency of

wheat production in
Japan

Global warming
potential
Aquatic

eutrophication
potential

Wheat yield – SBM-Window-DEA

Hu et al. [34]

Eco-efficiency of
centralized

wastewater treatment
plants in 128 Chinese

industrial parks

Investment
Operating cost

Energy
Relative capacity

load
Wastewater

COD removal
efficiency

TN removal
efficiency

NH3-N removal
efficiency

TP removal efficiency

– SBM-DEA

Hu and Liu [26]
Eco-efficiency in the

Australian
construction industry

Number of employed
persons

Value of construction
work done

Gross value added CO2 equivalent SBM-DEA

Liu et al. [35]
Eco-efficiency of
coal-fired power
plants in China

Generator capacity
Operation

expenditure
Net generation – CCR

Extended CCR
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Table 1. Cont.

Reference Research Object Inputs Desirable Outputs Undesirable
Outputs Methodology

Zhang et al. [36] Eco-efficiency in 102
countries

Land area
Energy use
Labor force

GDP CO2 emissions
PM2.5 emissions

Two-stage
Super-SBM

Robaina-Alves
et al. [37]

Eco-efficiency in 27
European countries

Energy
Capital
Labor

GDP Greenhouse gas
emissions

A new stochastic
frontier model

Yang and Zhang [38]
Regional

eco-efficiency in 30
provinces

Capital stock
Labor

Construction land
area

Water
Energy

GDP

Solid waste
emissions

Household refuse
SO2 emissions

Soot and industrial
dust emissions

Waste water
emissions

Global DEA

Note: Cooper–Charnes–Rhodes (CCR), Banker–Charnes–Cooper (BCC), Meta-frontier undesirable outputs super efficiency SBM
(Meta-US-SBM).

Currently, most of the research on eco-efficiency focuses on urban agglomerations [39]
at the national level [36] or provincial level [28], and the research from prefecture-level cities
perspective is scarce. Ignoring the differences between cities will affect the applicability of
the research results due to the regional heterogeneity. The existing eco-efficiency is mainly
analyzed from tourism, construction, agriculture, industry, etc., and there are few studies on
the mining eco-efficiency. Hence, this study is of great theoretical and practical importance,
as it will contribute towards the analysis of the mining eco-efficiency. The research aims
to analyze the temporal and spatial variation of Guangxi’s mining eco-efficiency and the
internal and the external driving factors, which is of great significance to improve its
mining eco-efficiency and the sustainable development of mining in Guangxi.

2. Methodology and Data Source
2.1. Study Site

Guangxi is located on the central and southern regions (104◦26′–112◦04′ E, 20◦54′–
26◦24′ N), as shown in Figure 1. There are 14 cities in Guangxi, covering a total area of over
236,700 km2, with occupies 2.47% of China’s land area. The overall economy of Guangxi has
developed rapidly. Guangxi is rich in mineral resources, with a wide variety of types and
large reserves, especially non-ferrous metals such as aluminum and tin. It is one of the ten
key non-ferrous metal production areas in China. There are currently 145 kinds of minerals
such as manganese, aluminum, tin, iron, arsenic, bentonite, vanadium, tungsten, indium,
lead, zinc, and antimony silver that have been discovered in the territory, and 97 kinds
of mineral reserves have been proven. According to The Overall Planning of Mineral
Resources in Guangxi (2016–2020), the output value of mining and related energy and raw
material processing and manufacturing industries was 673.8 billion yuan, accounting for
31% of the region’s total industrial output value. There are obvious regional differences
in the distribution of mineral resources, mainly in Hechi, Baise, Chongzuo, etc. Most
(82%) of manganese reserves are concentrated in Chongzuo and Baise, 96% of aluminum
reserves are concentrated in Baise, 67% of tin reserves are concentrated in Hechi, and over
85% of rare earth reserves are concentrated in Yulin, Hezhou, and Guigang; 79% of the
barite resource reserves are concentrated in Liuzhou and Laibin, 88% of the kaolin resource
reserves are concentrated in Beihai, and 88% of the coal resource reserves are concentrated
in Baise and Laibin. Part of the mineral reserves in Guangxi are even at the forefront of
the world, so Guangxi is also known as the “hometown of non-ferrous metals.” [40] Thus,
it is essential to study the sustainability of mining, the results of which may accelerate
the construction of a major mining province and provide policy recommendations for
promoting the sustainable economic and social development [41].
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Figure 1. Location of the study area.

2.2. Definition of the Composite Mining Eco-Efficiency

Eco-efficiency refers to creating more goods and services while having less impact
on the environment and less consumption of natural resources. It involves all aspects
of the economy and society and is a complex and multi-dimensional problem [13]. This
study constructs a three-dimensional analysis framework to reveal the relationship be-
tween ecological efficiency, environmental efficiency, resource efficiency, and economic
efficiency. These four types of efficiencies are all based on total factor productivity. In
order to maximize it, economic growth, resource assumptions, and environmental pollu-
tants cannot be fixed, indicating that non-orientation should be more appropriate when
measured eco-efficiency [30]. The meaning of eco-efficiency in this research: maximiza-
tion of economic output, minimization of environmental pollution, and minimization of
energy consumption.

Economic efficiency refers to the efficiency of a decision-making unit to obtain eco-
nomic output at a given time for various resource inputs and undesired output, and other
factors, reflecting its relative potential to maximize economic output. Therefore, this study
adopted an output-oriented model and ensured that the slack of other output variables
is zero. In order to identify frontier decision-making units and ensure inter-temporal
comparability, a super-efficiency model is required. Considering non-radial variation and
heterogeneity, SBM models and meta-frontiers need to be adopted [42].

Environmental efficiency refers to the efficiency of a decision-making unit in minimiz-
ing the output of environmental pollutants in production, reflecting its relative potential to
obtain a given economic output at a minimum environmental cost when other factors such
as various resource inputs and economic output are established. This study adopted an
output-oriented model to measure environmental efficiency [30,43].

Resource efficiency refers to the relative efficiency of a decision-making unit’s resource
utilization in production when other input variables and output variables are established,
reflecting its relative potential to maximize resource utilization. Therefore, this study
adopted an input-oriented model, ensured that the slack of the output variable is zero, and
used the slack variable corresponding to the energy input variable to measure the optimal
resources input; then, it used the ratio of the optimal resources input to the actual usage to
measure resource efficiency [44].

The research framework includes three parts: (1) First, it constructed a measurement
model of mining eco-efficiency based on Meta Undesirable Meta-US-SBM and analyzed
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the mining eco-efficiency development trends from 2008 to 2018, which enriched the field
of eco-efficiency. (2) Then, it analyzed the heterogeneity and spatial effects of Guangxi’s
mining eco-efficiency from both temporal and spatial dimensions, which demonstrated
comprehensively the mining eco-efficiency in Guangxi. (3) Lastly, it adopted the GeoDe-
tector and Tobit model to study the internal and external influencing factors of mining
eco-efficiency, which provided an exhaustive analysis of its driving factors. The research
framework is shown in Figure 2.

Figure 2. Research framework.

2.3. Meta-US-SBM to Measure Mining Eco-Efficiency

Considering the regional heterogeneity in Guangxi, a metafrontier analysis is neces-
sary [45], which include two steps: (1) classifying the prefectural-level cities into different
groups according to their characteristics (e.g., geographical location, economic develop-
ment level, population, income levels, etc.) and estimating a production frontier for each
group, and then (2) estimating the metafrontier by enveloping the group-specific fron-
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tiers [46]. Compared with the traditional DEA model, Meta-US-SBM has a superior ability
in identifying fully the inter-temporal comparability of DMUs [32].

Assume that the number of observed DMUs is N and that they can be divided into H
groups according to heterogeneities, each group containing Nh DMUs and ∑H

h=1 Nh = N.
Then, each DMU uses inputs x = [x1, x2, . . . , xM] ∈ RM

+ to produce desirable outputs
y = [y1, y2, . . . , yR] ∈ RR

+ and undesirable outputs b =
[
b1, b2, . . . , bJ

]
∈ RJ

+. The frontier
production technology of group h can be expressed as follows [43]:

pmeta =

{
(x, y, b) :

H
∑

h=1

Nh
∑

n=1
ξh

nxh
n ≤ xh;

H
∑

h=1

Nh
∑

n=1
ξh

nyh
n ≤ yh;

H
∑

h=1

Nh
∑

n=1
ξh

nbh
n ≤ bh; ξh

n ≥ 0; n = 1, 2, . . . , Nh; h = 1, 2, . . . , H

}
(1)

where pmeta =
{

P1 ∪ P2 ∪ . . . ∪ PH}, and ξh
n is the weight for nth DMU in the hth group

under the meta-frontier.
The optimal solution of the proposed non-oriented Meta-US-SBM model can be

estimated as follows:

ρko
Meta∗ = min

1 + 1
M ∑M

m=1
sx

mko
xmko

1− 1
R+J

(
∑R

r=1
sy

rko
yrko

+ ∑J
j=1

sb
jko

bjko

)
s.t. xmko −∑H

h=1 ∑Nh
n=1,n 6=0 i f h=k ξh

nxmhn + sx
mko ≥ 0

∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nyrhn − yrko + sy

rko ≥ 0

bjko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nbjhn + sb

jko ≥ 0

1− 1
R + J

(
∑R

r=1

sy
rko

yrko
+ ∑J

j=1

sb
jko

bjko

)
≥ ε

ξh
n, sx, sy, sb ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J (2)

where sx, sy, sb are the slacks of inputs, desirable outputs, and undesirable outputs, respec-
tively. ρko

Meta∗ is the measured meta-frontier efficiency of the oth DMU in the kth group.
Under the assumption of variable returns of scale, ∑H

h=1 ∑Nh
n=1,n 6=0 i f h=k ξh

n = 1 is necessary.
The definitions of the composite mining eco-efficiency indicators, including eco-

efficiency and its three sub-efficiencies, are clarified in Section 2.2. Eco-efficiency is eval-
uated by Equation (2), the non-oriented Meta-US-SBM model. As mining eco-efficiency
reflects the comprehensive degree of coordination between economy, resource, and envi-
ronment [47], reducing resource consumption as well as undesirable outputs and raising
desirable production should be taken into account simultaneously. Therefore, the slacks of
both inputs and outputs need to be changed according to the specific situation [30].

Economic efficiency means that the input and undesired output of a DMU are assumed
to be the same as others, so the slacks, except for desirable outputs, equal zero. This is
consistent with the connotation of the output-oriented efficiency measurement. The specific
measures are formulated as follows:

δko
Meta∗ = min

1

1− 1
R ∑R

r=1
sy

rko
yrko

s.t. xmko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nxmhn ≥ 0

∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nyrhn − yrko + sy

rko ≥ 0

bjko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nbjhn ≥ 0
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ξh
n, sy

rko ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J. (3)

When assessing environmental efficiency, the slacks of resource inputs and economic
production are assumed to be zero. It can be calculated using the following output-
oriented model:

θko
Meta∗ = min

1

1− 1
J ∑R

r=1
sb

jko
bjko

s.t. xmko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nxmhn ≥ 0

∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nyrhn − yrko ≥ 0

bjko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nbjhn + sb

jko ≥ 0

ξh
n, sb

jko ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J. (4)

Generally, scholars use the ratio of target input to actual input as resource effi-
ciency [48]. This study employed the input-oriented Meta-US-SBM approach to measure
resource efficiency. It can be defined as follows:

ηko
Meta∗ = min(1 +

1
M ∑M

m=1

sx
mko

xmko
)

s.t. xmko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nxmhn + sx

mko ≥ 0

∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nyrhn − yrko ≥ 0

bjko −∑H
h=1 ∑Nh

n=1,n 6=0 i f h=k ξh
nbjhn ≥ 0

ξh
n, sx

mko ≥ 0; m = 1, 2, . . . , M; r = 1, 2, . . . , R; j = 1, 2, . . . , J. (5)

Then, according to Equation (5), it can measure the efficiency of the mth resource based
on the slack scalar sx

mko and actual input xmko.

REko
Meta∗ =

xmko − sx
mko

xmko
(6)

where xmko − sx
mko denotes the target volume of input, xmko is the actual input.

2.4. GeoDetector

The GeoDetector method is a quantitative technique that determines whether the spa-
tial distribution of a geostatistical variable is consistent with an independent variable [49].
The fundamental theory of the GeoDetector was first proposed by Wang et al. [50] as a
method of detecting the risks of neural tube defect diseases. The GeoDetector applies the q
value to measure the heterogeneity and autocorrelation of the dependent variable quan-
titatively and detects the association between the dependent variable and its influencing
factors [51].

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (7)

where N is the number of samples in the study area; Nh is the number of samples in zone
category h of factor X; σ2 is the total variance of γ in the study area; σ2

h is the variance of γ

within category h of factor X; and L is the number of categories of factor X. ∑L
h=1 Nhσ2

h is
within the sum of variances, and Nσ2 is the total sum of variances. The greater the value of
q, the more factor X explains γ [52].
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2.5. Tobit Model

Tobin [53] proposed the Tobit regression model and mainly addressed the construction
problem of limited or truncated dependent variables [54]. The mining eco-efficiency
measured by the Meta-US-SBM DEA model is affected by many factors, which include
not only the input and output indicators but also some other external factors [55]. This
study set the mining eco-efficiency of 14 prefecture-level cities in Guangxi Province as the
dependent variable and selected external factors such as the mining economic scale, foreign
direct investment, technology innovation, and environmental regulations as independent
variables to establish the Tobit model. This model was expressed as follows, and Tobit
regression analysis is done by STATA® (StataCorp LLC, Texas, TX, USA).

ME∗it = βxit + εit, yit =

{
y∗it, y∗it ≥ 0
0, y∗it ≤ 0

i = 1, . . . , N and t = 1, . . . , T, εit ∼ N
(
0, σ2) (8)

where i denotes the 14 prefectural cities in Guangxi, while t represents different years, xit
denotes independent variables, while β is a regression parameter, and εit is the disturbance
term. The selected external influencing factors are described in detail as follows:

(1) Mining economic scale (MES) is represented by the ratio of mining gross output
divided by GDP. A higher level of mining economic development in the region means that
the ability to gather talent is higher and the ability to absorb technology is stronger, so the
ability to promote mining eco-efficiency is also stronger.

(2) Foreign direct investment (FDI) is represented by the portion invested by foreign
capital in gross industrial output value. Technological progress has had a profound impact
on the environmental results of mining economic activities, and it is also affected by the
degree of openness to the outside world [56]. Since the foreign direct investment (FDI) data
of the extractive industries in the region cannot be obtained, this paper calculates the ratio
of the regional extractive industry output value to the regional GDP and then multiplies it
by the FDI of the Chinese extractive industry to replace [57].

(3) Technology innovation (TI) is represented by the ratio of the number of R&D
personnel to the total number of employees. The level of technological innovation can
reflect the development potential of an industry [58].

(4) Environmental regulation (ER) is represented as the total investment ratio in mining
environmental rehabilitation to total investments. Reasonable environmental regulations
can stimulate the enthusiasm of enterprises for innovation [59], which can improve the
enterprise’s resource optimization level, production efficiency, environmental performance,
and technological innovation level [60].

2.6. Variables and Data Source

Within the process of production, input and output are the fundamental factors. This
study has selected indicators that are all specific indicators that reflect the input and
output of the mining industry. Among them, capital, labor, and energy were chosen
as the three classic inputs [37], plus two other important inputs: land and water [38].
Then, gross mining output was regarded as a proxy of the desirable output. Mining
wastewater discharge, mining dust emissions, and waste rock emissions are identified
with the undesirable outputs [32]. In order to simplify the selection of undesired output
indicators, this study adopted the entropy method to index them and obtained the mining
environmental pollution index as the final undesirable outputs indicator [30].

This study collected data on the above variables for 14 prefecture-level cities in
Guangxi over the period from 2008 to 2018. The mining data were derived from Guangxi
Statistical Yearbooks (2008–2018), China City Statistical Yearbooks (2008–2018), China
Environmental Statistics Yearbook (2008–2018), and China Energy Statistical Yearbooks
(2008–2018). Specific indicators are shown in Table 2.
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Table 2. The selection of input indicators and output indicators.

Type Indicator Unit Obs. Min. Max Mean Std. Dev.

Input

Labor Labor force Person 154 883 35,156 8397.92 6783.06

Capital
Annual

investment in
mining

10,000 yuan 154 1686.00 4,070,893.49 65,993.92 328,381.88

Natural
resources

index

Mining water
consumption 100 million m3 154 2.02 2116.32 140.65 294.78

Use area of the
mining area hectares 154 114.48 28,451.7 4296.26 4606.62

Comprehensive
energy

consumption of
mining industry

10,000 tons of
SCE 154 0.10 22.06 3.43 3.46

Output GMP Gross mining
output 10,000 yuan 154 4324.50 1,375,290.86 140,291.87 13,671.29

Undesirable
output

Mining
environmental
pollution index

Mining
wastewater
discharge

10,000 tons 154 4.07 7822.18 463.16 1097.564

Mining dust
emissions ton 154 5.037 23,210.37 876.39 2056.80

Waste rock
emissions 10,000 tons 154 0.01 675,166.00 4580.26 54,391.46

3. Results and Discussion
3.1. Mining Eco-Efficiency and Spatial Pattern

The mining eco-efficiency and its three sub-efficiencies in 14 prefecture-level cities
in Guangxi from 2008 to 2018 were calculated by the Meta-US-SBM DEA model, and the
mining eco-efficiency was discussed from the spatial–temporal dimensions. From Figure 3,
it can be concluded that the economic efficiency of Guangxi has shown a downward trend,
dropping by 10%; its environmental efficiency and mining eco-efficiency have both shown
a “U-shaped” curve, with increasing by 24.11% and 10.53%, respectively; its resource effi-
ciency has shown an “inverted N-shaped curve” and fluctuates a lot. The mining industry
is one of the pillar industries of Guangxi’s economic and social development. The output
value of mining and related industries accounts for 27% of the total industrial output
value of the whole district [61]. In addition, it is also a major industrial province. Such an
economic development mode leads to the lowering of the regional economic efficiency, en-
vironmental efficiency, resource efficiency, and mining eco-efficiency. However, in 2015, the
State Council promulgated the “Overall Plan for the Reform of the Ecological Civilization
System”, which proposed to improve the paid use system of mineral resources and the
ecological compensation system. It promoted the construction of ecological civilization
to an important strategic position, namely, the ecological efficiency and environmental
efficiency of the mining industry in Guangxi. Significant improvement has been achieved,
which shows that the paid development of mineral resources and the system of mineral
resources compensation play an important role in improving the ecological efficiency of
China’s mining industry [57].
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Figure 3. The average value of the eco-efficiency in Guangxi.

From the regional distribution in Figure 4, we can conclude that there exist appar-
ent differences between regions in Guangxi. Overall, economic efficiency and resource
efficiency have decreased, while environmental efficiency and mining eco-efficiency have
improved. The areas with higher mining eco-efficiency are mainly concentrated in north-
west Guangxi and northeast Guangxi. Among them, Hechi, Baise, and Chongzuo belong to
the “resource-rich area of western Guangxi”. As an under-developed resource-rich area, the
resource-rich area of western Guangxi has focused on developing resource-based industries
such as aluminum, manganese, and non-ferrous metals. The resource-based industry and
the heavy chemical industry account for a relatively high proportion of all industries in
all cities in western Guangxi. Resource-based industries occupy a dominant position in
the industrial structure, making the economic growth of the resource-rich areas in western
Guangxi a typical resource-consuming and investment-driven type. With the deepening of
the construction of ecological civilization, the region has realized the improvement of the
mining eco-efficiency by optimizing the industrial layout and promoting the intensive use
of land. In addition, the mining eco-efficiency has been improved in bordering cities such
as Liuzhou, Guilin, Wuzhou, etc. This benefited from the implementation of the Western
Development Strategy. Guangxi relies on its location advantages and resource advantages
and actively undertakes manufacturing industries in the eastern region. The transformation
and upgrading of the regional industrial structure have improved the regional mining
eco-efficiency [62].

From Table 3, we can conclude that different regions show different degrees of eco-
nomic efficiency, environmental efficiency, resource efficiency, and mining eco-efficiency.
In terms of economic efficiency, Beihai, Chongzuo, and Guilin perform better than other
regions; Liuzhou, Laibin, and Guigang are relatively poor. In terms of environmental
efficiency, Guilin, Wuzhou, and Beihai do better than other regions; Guigang, Hezhou, and
Hechi are relatively poor. In terms of resource efficiency, Beihai, Chongzuo, and Hezhou
are better than other regions; Guigang, Laibin, and Qinzhou are relatively poor. In terms of
mining eco-efficiency, Beihai, Guilin, and Chongzuo are better than other regions; Guigang,
Laibin, and Qinzhou are relatively poor.
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Figure 4. Regional distribution of mining eco-efficiency, economic efficiency, environmental efficiency, and resource
efficiency in 2008 and 2018.
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Table 3. The average value and ranking of the eco-efficiency by region.

Prefecture-Level
Cities

Economic
Efficiency Rank Environmental

Efficiency Rank Resource
Efficiency Rank Mining Eco-

Efficiency Rank

Baise 0.9052 7 0.8318 6 0.8332 8 0.7012 6
Beihai 1.1352 1 0.8683 3 1.3417 1 1.0493 1

Chongzuo 1.0242 3 0.8379 5 0.9836 2 0.9484 3
Fangchenggang 0.9238 5 0.8505 4 0.9162 4 0.6869 7

Guigang 0.7027 13 0.4916 13 0.6113 11 0.4839 10
Guilin 1.1166 2 0.9847 1 0.8969 5 1.0125 2
Hechi 0.7332 11 0.4632 14 0.6098 12 0.5769 9

Hezhou 0.7834 8 0.5038 12 0.9593 3 0.6055 8
Laibin 0.4399 14 0.5543 11 0.2606 14 0.1771 14

Liuzhou 0.7117 12 0.5827 10 0.7563 10 0.4399 13
Nanning 0.7796 9 0.6345 8 0.8236 9 0.4807 12
Qinzhou 0.7629 10 0.6254 9 0.5799 13 0.483 11
Wuzhou 0.9157 6 0.8927 2 0.8918 6 0.7109 5

Yulin 0.9399 4 0.6932 7 0.8633 7 0.7451 4

Among them, the geographical characteristics of Chongzuo give it advantages in
the development of the port economy. In 2017, Chongzuo’s GDP grew by 9.3%, ranking
second in Guangxi; in 2018, Chongzuo’s GDP grew by 11.3%, the growth rate ranked first
in Guangxi; in 2019, Chongzuo’s GDP increased by 8%, with 57 newly added industrial
enterprises in scale, and the growth rate ranked second in Guangxi. The positive economic
development has steadily improved economic efficiency, and the development of the “port
economy” allowed Chongzuo to find new opportunities for economic development [63].
In addition, Guilin and Beihai are popular tourist cities in Guangxi, and their tourism
revenue has brought enormous economic development space for the local area, making
their economic efficiency rank in the forefront. As the industrial city in Guangxi, Liuzhou
has always adhered to the concept of “industry revitalizing the city”. It formed an industrial
system with heavy and chemical industries as the mainstay, automobile, metallurgy, and
machinery as the three pillar industries, which has promoted Liuzhou’s industrial economic
development. However, industrial economic development has also brought about negative
characteristics such as environmental degradation and resource consumption. Therefore,
although Liuzhou’s economic development is relatively good, its economic efficiency is
relatively backward. This also reflects that Liuzhou urgently needs to adjust the industrial
structure and use technological innovation to achieve the harmonious development of the
“economy–social–environment.”

In summary, we can conclude that the quality of economic efficiency does not depend
on the total economic development or economic development level. It focuses more on
whether the regional economic development mode has achieved efficient development.
Therefore, the improvement of economic efficiency requires an improved coordination of
economy, environment, and society. As the largest inland port city in Southwest China,
Guigang has outstanding warehousing, ship construction, and machinery manufacturing.
However, its urbanization level and urbanization quality rank low in Guangxi Province. In
addition, Guigang is the only prefecture-level city in Guangxi without a university. The
backwardness of higher education has directly caused the inconsistency of job positions
and the quality of workers, which has caused the transformation and upgrading of the
industrial structure to be out of touch with economic development. All the above factors
make Guigang’s economic efficiency, environmental efficiency, resource efficiency, and
mining ecological efficiency rank low [64].

The SDE model was used to visually express the spatial distributions and dynamic
evolutionary processes of efficiencies by ArcGIS, for which the major standard ellipse axis
reflected the spatial distribution element ranges. The size of the ellipse reflects the spatial
concentration of efficiencies, and the semi-major axis reflects the dominant direction of the
efficiencies. The parameter changes of the standard deviation ellipses of regional mining
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eco-efficiency are shown in Table 4, and the spatial distribution is shown in Figure 5. We
can conclude that Guangxi’s mining eco-efficiency, economic efficiency, environmental
efficiency, and resource efficiency show significant regional migration trends.

Table 4. Changes of elliptical parameters of standard deviation from 2008 to 2018.

Mining Eco-Efficiency Economic Efficiency

Year Center Long and
short axis ratio Rotation Center Long and

short axis ratio Rotation

2008 109.12◦ E,
23.76◦ N 0.617 74.213 109.12◦ E,

23.58◦ N 0.678 70.063

2018 109.09◦ E,
23.07◦ N 1.180 92.896 109.14◦ E,

23.16◦ N 0.792 75.551

Environmental Efficiency Resource Efficiency

Year Center Long and
short axis ratio Rotation Center Long and

short axis ratio Rotation

2008 108.99◦ E,
23.61◦ N 0.615 69.918 109.15◦ E,

23.58◦ N 0.609 71.736

2018 109.23◦ E,
23.42◦ N 0.752 69.335 109.09◦

E,22.97◦ N 0.871 63.816

The distribution of the four efficiencies in Guangxi tends to be a circle, reflecting a
relatively balanced distribution of efficiencies in Guangxi. With economic development
and strategic tilt, regional development disparity is gradually narrowing, leading to a
balance in regional efficiency. From 2008 to 2018, the ratios of the long and short axes of the
mining eco-efficiency, economic efficiency, environmental efficiency, and resource efficiency
increased by 0.563, 0.114, 0.137, and 0.262, respectively. The increase in the long and
short axis ratio indicates the expansion of the effective area, indicating the overall trend of
improvement. From 2008 to 2018, the rotation gaps in mining eco-efficiency have significant
increasing trends. The ellipse was rotating clockwise, and the direction of the ellipse being
elongated to the south and east, indicating that the mining eco-efficiency in the south, east,
and southeast of the ellipse were faster. The above results show that the development
of the center area of mining eco-efficiency, economic efficiency, environmental efficiency,
and resource efficiency is gradually shifting to the Beibu Gulf Economic Development
Zone. Currently, many developed countries regard ports as the breakthrough point for
the development of logistics, promote the development of port industry through the
development of port logistics, and radiate the surrounding areas to promote import and
export trade, which promotes the development of port logistics. With the implementation
of the national strategy of the “Guangxi Beibu Gulf Economic Zone Development Plan”
and the establishment of the “China-ASEAN Free Trade Area”, the Guangxi Beibu Gulf
Economic Zone has become the fastest-growing region in Southwest China. With the
further manifestation of the radiation effect of the Beibu Gulf Economic Zone, the mining
eco-efficiency, economic efficiency, environmental efficiency, and resource efficiency have
become more balanced [65].
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Figure 5. Standard deviational ellipses of mining eco-efficiency in Guangxi.

3.2. Analysis of the Driving Factors of the Mining Eco-Efficiency

Mining eco-efficiency requires as much economic and social benefits as possible with
as little environmental cost as possible to achieve a win–win situation of “economy–society–
ecology” [55]. It is believed that the spatial differentiation of mining eco-efficiency in
Guangxi is attributable to structural factors and economic and social factors, namely inter-
nal and external sources. Therefore, this study takes capital, labor, energy, natural resources
index, GMP, and mining environmental pollution index as internal factors, and it selects
mining economic scale (MES), foreign direct investment (FDI), technology innovation (TI),
and environmental regulation (ER) are used as exogenous factors [25]. GeoDetector and
Tobit model are adopted to analyze internal and external factors, respectively, which can
further reveal the spatial differential of mining eco-efficiency in 14 prefecture-level cities in
Guangxi [66]. Based on Environmental Kuznets Theory [67], as social income increases,
the eco-environment will deteriorate, which will not improve until the economy reaches a
higher level. Thus, to determine the relationship between mining economic development
and mining eco-efficiency, the quadratic term of mining economic scale was incorporated
into the Tobit model [68].

3.2.1. Analysis of Internal Factors of Eco-Efficiency of the Mining Industry: GeoDetector

The internal factor coefficients of mining eco-efficiency calculated using GeoDetector
are expressed in Table 5. It shows the q statistics value of each influencing factor, where the
larger the q value, the greater the degree of influence. We took 2013 as the demarcation
point for the sample period due to the significant inflection and measured both the period
before and after it. During 2008–2018, the influencing degree of internal factors are ranking
as natural resources index (0.121) > labor (0.101) > GMP (0.067) > mining environmental
pollution index (0.065) > capital (0.011). During 2008–2013, the influencing degree of
internal factors are ranked as natural resources index (0.051) > capital (0.012) > GMP (0.011)
> mining environmental pollution index (0.010) > labor (0.009). During 2014–2018, the
influencing degree of internal factors are ranked as natural resources index (0.318) > GMP
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(0.164) > mining environmental pollution index (0.147) > labor (0.129) > capital (0.100). The
degree of internal factors in Guangxi from 2014 to 2018 was significantly higher than that
of 2008 to 2013. The ranking of factors affecting the differences in mining eco-efficiency
has been rotated around 2014. Due to the low technical level of resource-based industries
and high sunk costs, resource-based cities are prone to form a path-dependent progressive,
which leads to a cluster of resource extraction and processing industries. Compared
with other cities, resource-based cities are more likely to produce crowding effects, which
caused a rebound in environmental pollution [69]. Among them, the impact of GMP and
mining environmental pollution on the mining eco-efficiency has gradually increased. This
phenomenon may be due to the promulgation of the “Environmental Protection Law of the
People’s Republic of China” in 2014, which has promoted environmental protection to an
unprecedented position, and people’s attention to environmental protection has gradually
increased. Therefore, it is reflected in the significant increase in mining environmental
pollution on the mining eco-efficiency. The natural resources index is the most important
factor affecting the mining eco-efficiency in different periods. This further reflects that the
mining development depends on a resource-based development mode. Therefore, it is
necessary to transform the resource-dependent development mode and use technological
innovation to fundamentally improve mining eco-efficiency in improving mining eco-
efficiency and promoting the sustainable mining industry.

Table 5. The q statistics of external factors based on GeoDetector.

Period X1 X2 X3 X4 X5

2008–2018 0.011 0.101 0.121 0.067 0.065
2008–2013 0.012 0.009 0.051 0.011 0.010
2014–2018 0.100 0.129 0.318 0.164 0.147

Note: X1 represents Capital, X2 represents Labor, X3 represents Natural resources index, X4 represents GMP, X5
represents Mining environmental pollution index.

3.2.2. Analysis of External Factors of Mining Eco-Efficiency: Panel Tobit Model

We adopted the panel Tobit regression model to verify the impact of the four external
factors of MES, FDI, TI, and ER on the mining eco-efficiency. To avoid non-stationarity
caused by different data dimensions in parameter estimation and to maintain the character-
istics of panel data, this study adopted the natural logarithm of the relevant variable. The
panel Tobit model used in this research is as follows.

Model 1:

MEit = β0 + β1MESit + β2lnFDIit + β3TIit + β4ERit + εit (9)

Model 2:

MEit = β0 + β1MESit + β2MES2
it + β3lnFDIit + β4TIit + β5ERit + εit. (10)

The Tobit model of mining eco-efficiency factors was estimated on Stata 15.0. The
empirical results are presented in Table 6 below. The influencing degree of external factors
are ranking as MES > TI > ER > FDI.
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Table 6. Tobit regression results for external driving forces of mining eco-efficiency.

Variable Model (1) Model (2)

MES 2.117 * −6.383
(1.757) (5.110)

MES2 57.226 *
(32.418)

lnFDI 0.209 *** 0.257 ***
(0.047) (0.054)

TI 0.419 * 0.419
(0.829) (0.819)

ER 0.360 * 0.322 *
(0.244) (0.243)

cons −0.205 −0.289
(0.239) (0.241)

Note: ∗ and ∗∗∗ were shown to be significant at 0.1 and 0.01 levels.

(1) The estimated coefficient of MES was positive and passed the 10% significance
level test. For every 1% increase in MES, the mining eco-efficiency will also increase by
2.117%. This reflects that the increase in the mining economy scale will inject more capital,
technology, etc., into the mining industry. A certain scale of economic investment can
improve the regional mining eco-efficiency. The quadratic coefficient of the MES is positive,
indicating that there is a typical “U-shaped” curve between the MES and the mining eco-
efficiency, which is consistent with Wang et al. [70]. It reflects the leading role of the MES
in different development stages of the mining industry. Before the turning point of the
“U-shaped” curve is the early stage of mining development, which is mainly manifested as
an unsustainable development mode. In the early stage of mining development, resource
consumption and environmental pollution are prominent, making the mining eco-efficiency
gradually decline as the MES increases. Nevertheless, with the mining economy entering a
mature stage, the investment in technological innovation, the improvement of management
systems, and the deepening of environmental protection concepts have gradually improved
the mining eco-efficiency.

(2) The estimated coefficient of FDI was positive and passed the 1% significance
level test. For every 1% increase in FDI, the mining eco-efficiency will also increase by
0.209%. The research results are consistent with Fang et al. [57]. The FDI generally has
technical spillover channels by horizontal, forward, and backward, which affect the local
enterprises. The FDI brings the market competition effect and demonstration imitation
effect, thereby improving the technical and production efficiency of enterprises in the
same industry in the host country, but the room for potential technology development is
gradually narrowing. In 2008, with the advancement of the Administrative Measures on
Foreign-invested Mineral Exploration Enterprises of the Ministry of Commerce and the
Ministry of Land and Resources of the People’s Republic of China, the scale of the extractive
industries attracting foreign investment gradually expanded, which played a positive role
in the structural adjustment and green transformation of China’s mining industries.

(3) The estimated coefficient of TI was positive and passed the 10% significance level
test, indicating that R&D human intensity promotes mining eco-efficiency. For every 1%
increase in TI, the mining eco-efficiency will also increase by 0.419%. The traditional
approach of improving mining eco-efficiency, which solely relies on structural adjustment,
has a minimal effect. With the steady increase of industrial production cost, increasing
mining R&D investment can fundamentally improve mining eco-efficiency and is the only
way to realize continuous improvement of mining eco-efficiency.

(4) The estimated coefficient of ER has a significant positive correlation with mining
eco-efficiency, which agrees with our expectation. For every 1% increase in ER, the mining
eco-efficiency will also increase by 0.306%. Hence, strict environment regulation can force
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enterprises to reduce emissions. With the growing awareness of environmental problems
in China, enterprises have no option but to choose advanced clean production technologies,
facing the high cost induced by environmental regulation. In this way, enterprises will
consume much less energy and emit far fewer pollutants [71].

4. Conclusions and Policy Implications

In this paper, mining eco-efficiency is established from the perspective of inputs and
outputs, and it was split into economic efficiency, environmental efficiency, and resource
efficiency. After discussing the regional difference and dynamic evolution of mining
eco-efficiency, we empirically analyzed the internal and external influencing factors with
GeoDectector and Tobit models, respectively. The main conclusions are as follows:

(1) The mining eco-efficiency, economic efficiency, environmental efficiency, and re-
source efficiency of Guangxi fluctuate considerably, mainly as follows: the economic
efficiency of Guangxi has shown a downward trend; its environmental efficiency and
mining efficiency have both shown a “U-shaped” curve; its resource efficiency has shown
an “inverted N-shaped” curve.

(2) The economic efficiency, environmental efficiency, resource efficiency, and min-
ing eco-efficiency have huge regional differences. Among them, cities bordering other
provinces, such as Chongzuo, Beihai, Hechi, Liuzhou, Guilin, Hezhou, Wuzhou, etc., have
a significantly better mining eco-efficiency than non-bordering cities.

(3) The mining eco-efficiency, economic efficiency, environmental efficiency, and re-
source efficiency show significant regional migration trends. The regional center has shifted
to the Beibu Gulf Economic Development Zone, and the inter-regional development has
become more and more balanced.

(4) In the analysis of internal influencing factors, the natural resource index has the
greatest impact on the mining eco-efficiency; in the analysis of external influencing factors,
the mining economic scale has the most significant impact on the mining eco-efficiency,
and with the increase of the mining economic scale, the mining eco-efficiency showed a
typical “U-shaped” curve.

Based on the conclusions above, we mainly put forward corresponding policy recom-
mendations from four aspects: opening-up, technological progress, regional coordination,
and government control to improve the mining eco-efficiency in Guangxi.

(1) The impact of foreign direct investment in mining eco-efficiency is very significant
and positive. Related government should encourage clean extraction technologies and
independent innovations conducive to clean production and energy conservation, make
better use of the technological spillover effects of opening-up, and reduce product structure
effects. At the same time, absorb and learn from the advanced technological achievements,
management experience, and environmental protection standards of foreign-funded enter-
prises in the process of green industrial transformation.

(2) Schultz [72] believes that human capital is an important factor determining the
regional economic growth and causing the gap between the rich and the poor. Therefore,
Guangxi should always regard scientific and technological progress as the leading force
in the development of the mining economy, focus on improving the quality of scientific
and technological human resources, promote the effective combination of scientific and
technological progress and the mining economy, play the guiding role of market and social
needs, and promote the transformation of scientific and technological achievements into
productive forces.

(3) The improvement of Guangxi’s mining eco-efficiency requires inter-regional co-
operation and a coordinated mining development pattern. The resource-enriched area
of western Guangxi should give full play to its advantages, realize the transformation of
resource advantages into economic advantages, and bring advanced technology and practi-
cal experience to drive the development of mining technology and scale in the surrounding
areas and the whole province. The Xijiang Economic Belt should make use of its good loca-
tion advantages, actively undertake the transformation and upgrading of coastal industries,
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gradually accumulate funds, cultivate technology and talents, support the development of
advanced mining technologies and industries, eliminate some backward industries in due
course, and realize industrial development while undertaking the industrial transfer. The
Beibu Gulf Economic Zone should give full play to its advantageous industries, expand its
leading mining-related industries, strengthen cooperation in mining projects invested by
cross-regional enterprise groups, and form a driving force for sustainable development in
the future.

(4) Governments should increase the intensity of financial transfer payments in various
regions, develop counterpart assistance modes, encourage developed mining economies
to cooperate with underdeveloped regions, establish special development funds, and ul-
timately achieve mutual benefit and joint development in all regions. In addition, the
government should support the merger and reorganization of mining enterprises and
expand the scale of production through incentive mechanisms and corresponding sup-
porting measures so as to improve the mining eco-efficiency. Finally, the government
can strengthen the enforcement of environmental laws and regulations, improve the re-
gional environmental protection management system and evaluation mechanism, increase
environmental supervision, and strengthen the supervision of pollutant emissions from
industrial enterprises. At the same time, it should introduce incentives and penalties to
encourage innovation, environmental protection, and emission reduction and increase the
enthusiasm of enterprises in R&D innovation and environmental protection.
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