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Introduction
A comprehensive understanding of the molecular mecha-
nisms of complex diseases, such as cancer, is one of the main 
current challenges to develop precision medicine. Identifying 
these mechanisms from omics data, such as gene expression, 
is challenging due to the complex relationships in various 
molecular pathways involving hundreds or thousands of 
actors (eg, genes) and the relatively small number of patients 
in the available data sets.

To limit the curse of dimensionality, the identification of 
non-observed high dimensional omics data structures, which 
provide an insight into the molecular mechanisms, is often per-
formed using latent variable models1 (LVM) for blind source 
separation/deconvolution, including principal component analy-
sis (PCA), independent component analysis (ICA), or factor 
analysis (FA). To identify independent molecular components, 
we based our work on the ICA model, and we use below the cor-
responding terminology, that is, the source and the weight matri-
ces corresponding to the parameters representing the association 

of the components with the genes and the observations, 
respectively.

To interpret the identified structures as molecular mecha-
nisms or pathways, sparse methods may be used to select a sub-
set of the omics variables associated with each component, 
similarly to the graphical factor model proposed by Yoshida 
and West.2 As illustrated by Figure 1, the sparseness structure 
of the source matrix may be considered as a hypergraph matrix. 
The hypergraph approach is a generalization of the graph 
methods considering higher-order interactions of the nodes 
(eg, genes) to model complex relationships,3 which are repre-
sented by different (potentially overlapped) subsets of nodes 
associated to different hyperedges. Each of these latent struc-
tures may represent different molecular mechanisms such as 
pathways, associated to only a subset of the gene expressions. 
Several sparse approaches have been proposed, especially in the 
Bayesian framework, imposing sparseness on the source matrix 
using the spike and slab prior,4,5 Indian Buffet Process,6 
Laplace prior,7 or the horseshoe prior.8
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Although this approach is suitable to give an insight into 
mechanisms common to all individuals, it is known in oncol-
ogy that the tumor may result from different molecular mecha-
nisms (or different alterations/state of the same mechanism) 
across different patients that complicate the development of 
drugs applicable to broad cancer populations. A natural way to 
consider this inter-individual heterogeneity with LVM is to 
impose a second sparseness structure to the weight matrix, 
associating the individuals to the components. Again, the cor-
responding sparseness structure may be considered as a hyper-
graph (Figure 1), and in which this time, each hyperedge 
represents the subset of individuals presenting the correspond-
ing molecular mechanisms (see Figure 1).

As the number of molecular mechanisms is unknown (but 
likely large), and the number of their possible alterations may 
grow rapidly with the number of individuals, one would prefer 
not to fix the dimension of the model but to infer the number 
of components present in the studied population. These 2 
modeling perspectives may be considered simultaneously using 
the beta-Bernoulli process (BBP)9 as a prior on the hypergraph 

matrix of the weight matrix.6,10 The rationale behind this 
approach is to consider a prior on the infinite-dimensional 
model space assigning only a finite number of 1 in the hyper-
graph matrix almost surely (therefore a finite number of sparse 
components) in a finite sample.11 In other words, this approach 
considers that there is an infinite number of molecular altera-
tions, but only a subset is present in our finite sample. This 
approach has the appealing property to allow the model’s com-
plexity to grow with the number of observations under the 
regularization of the BBP hyperparameters.10-12

While previously mentioned works focused on sparse coding 
of the weight matrix or of the source matrix, we propose to impose 
sparseness on the mixture weight matrix and on the source matrix. 
To our knowledge, this is the first study imposing this double 
sparseness in an infinite-dimensional model and proposing an 
optimization procedure to improve the reconstruction of the 
underlying latent structures. However, the interpretation of the 
resulting components remains complex and hazardous because 
they may represent different molecular mechanisms/pathways or 
their different alterations among the patients. Instead of precisely 

Figure 1.  Independent component analysis matrix sparseness structure interpretation as a hypergraph. The source matrix sparseness (top) represents K 

molecular components (hyperedges) associated with different gene (node) combinations that may represent different molecular mechanisms or their 

alterations. The weight matrix sparseness (bottom) defines different profiles defined by individual combinations of these molecular components to 

characterize patient disease heterogeneity.
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characterizing these molecular mechanisms, we propose to iden-
tify “alterations” from a baseline molecular profile. Our choice was 
motivated by the assumption that the differential disease progres-
sion or drug resistance results in a mixture of multiple molecular 
alterations, which could be different between the patients. We 
imposed this baseline constraint by enforcing the first component 
of the weight matrix to be a vector of ones, that is, all individuals 
are associated with this component, representing the molecular 
background of the population (that we named the baseline 
molecular profile). We also consider a noise component (such as 
the noisy ICA13) to capture the specific individual background 
(shared with no other individuals) and measurement error.

In this work, we first assessed the ability of our isgICA to 
reconstruct the weight and the source sparseness structures 
through a simulation study. We compared our approach for the 
identification of the number of components and for the recon-
struction of the matrices to state-of-the-art algorithms. Finally, we 
applied our method to model the gene expression heterogeneity in 
a large gene expression dataset of tumors from breast cancer 
patients included in clinical trials of anthracycline-based chemo-
therapy and illustrate the relevance of this algorithm to blindly 
identify relevant known breast cancer gene expression signatures.

Methods
Infinite sparse graphical independent component 
analysis (isgICA)

Let N  the number of individuals, P  the number of genes and K  
be the number of latent components. The noisy independent 
component analysis aims to decompose a data matrix X∈ ×P N  
into the product of 2 matrices plus residual noise as follows:

 X W E= +ΦΦ ,  	 (1)

where W ∈ ×K N  denotes the weight matrix, ΦΦ∈ ×P K  
denotes the unobserved source matrix, and E∈ ×P N  denotes 
the additive Gaussian noise matrix. As sparseness is a form of 
non-Gaussianity, it imposes a shrinkage prior on Φ (see the 
complete model formulation paragraph for prior details), favor-
ing the component independence and interpretability of the 
components. An alternative approach to introduce sparseness 
may be to consider a binary matrix ΘΘ  representing the sparse-
ness structure of Φ, that is, X W E= +( )ΘΘ ΦΦ , with 



 repre-
senting the elementwise product. This equation corresponds to 
the graphical sparse factor model formulation of Yoshida and 
West,2 which has inspired the name of our approach.

We used this approach to impose sparseness on W , allowing 
allocation of a subset of the K components to each individual. 
Considering the sparse binary matrix Z∈ ×K N , the model is:

X W Z E= ( ) +Φ  . 	 (2)

As the number of unobserved molecular mechanisms is unknown 
but likely high, we consider a nonparametric ICA with an infinite 
number of components (ie, K = ∞). The beta-Bernoulli process 

(BBP) is a suitable nonparametric prior for binary matrix (Z) 
with an infinite number of rows (or columns), providing a finite 
number of non-zero rows almost surely in the case of a finite 
sample. The nonparametric nature of this approach allows the 
model’s complexity to grow with the data (ie, K increases with N), 
which is an appealing property to infer the number of molecular 
components present in the studied population, which should 
increase with the number of individuals.

Baseline profile and isgICA model

We define a baseline profile as a non-sparse latent component, 
that is, a component associated with all individuals; that is, Z  
is defined by as Z =  Z Z*0 ,  where Z0 1 1= …[ , , ]N , and Z*  
is drawn from the beta-Bernoulli process. We called the sparse 
binary components of Z*  the baseline profile alterations. The 
dimension of the corresponding baseline profile isgICA matri-
ces are Z∈ × +K N( )1 , W∈ + ×( )K N1 , and ΦΦ∈ × +P K( ).1

Complete model formulation

We considered conjugate priors for the elements of the model 
matrices, which allow for posterior analytical calculation and 
straightforward inference. The graphical representation of the 
proposed model is illustrated in Figure 2.

The complete model is expressed as:
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where i N j P k K= … = … = …1 1 0, , , , , , , , ,  and k * = …1, ,K. 
These priors apply regularization on the elements of W  and  
Φ using an automatic relevance determination (ARD) prior. 
Because strongly regularized elements are closed, but not equal 
to zero, we use the term pseudo-sparseness to distinguish this 
structure to the stricter sparseness imposed to W  by Z . 
Considering c d= =1 , the combination defines a super-
Gaussian prior over the Φ elements, favoring source sparseness, 
and thus, independence. Considering gamma distribution for 
the priors over τW , it corresponds to the Bayesian ridge prior 
for all the elements of the weight matrix W.
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Consistent estimation of the noise precisions (τ E ), essential to 
determine the optimal number of latent components, is particu-
larly challenging in a high dimensional setting and is a current hot 
research topic for matrix factorization noisy models (probabilistic 
PCA, FA, noisy ICA).14 Our empirical results from a simulation 
study confirmed this theoretical statement, highlighting that the 
model overfits the data, decomposing a part of the noise variance 
as additional irrelevant components (results not shown). To allevi-
ate this issue, we standardized the input genes and fixed the noise 
precisions to τ E =1 , that is, to the variance of the centered and 
scaled gene expressions. This constraint indirectly regularizes the 
weight and source parameters, allowing identification of only 
strong signals, but may lead to false negatives in the hypergraph 
matrix identification (see results section).

Parameter inference and hyperparameter tuning

As the posterior computation using MCMC is notoriously slow 
when the number of parameters is high, we used variational 
Bayesian (VB) inference under the mean-field assumption to 
approximate the true posterior distribution.15,16 We derived the 
variational evidence lower bound of the likelihood (ELBO) and 
the variational parameter update equations in Appendix A1.

For a computational purpose, we used the truncated beta 
process for the inference, with a maximum number of compo-
nents noted Kmax .17 For all simulations and data analysis, we 
considered the prior hyperparameter values: Kmax =100 , 
α =1 , c d e f= = = = −1 10 6, .

Due to the lack of a simple analytical form of the conjugacy 
between the prior of the beta distribution and the beta distri-
bution for its moments, we tuned the β  hyperparameter of the 
BBP using Bayesian optimization using the R package 
ParBayesianOptimization18 based on 6 initialization evalua-
tions and 24 epochs (total of 30 evaluations). Considering 
α =1 , we reparametrized β  as µ

β
=

+
1

1
 according to Ferrari 

and Cribari-Neto,19 which have support in the interval [0; 1] 
( µ = 0  corresponding to β = +∞ and µ =1  to β = 0 ), to 
avoid restraining the support of β ∈ +∞[ ; ]0  with an a priori 
maximum value for the range of BO evaluation points.

Standard whitening ICA

We evaluated the ability of our method to reconstruct the matrix 
sparseness structures from simulated data sets in comparison with 
state-of-the-art algorithms. Due to computational issues for our 
larger scenario (time and/or memory), we used the standard 

Figure 2.  Graphical model representation of the infinite sparse independent component analysis. Observed variables are denoted with shaded nodes, 

while unobserved variables are shown as white nodes.
Abbreviations: B, Beta distribution; Ber, Bernoulli distribution; G, Gamma distribution; N, Normal distribution.
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whitening ICA model implemented in the ica20 and the fastICA21 
R packages, and pre-selected the components with eigenvalue 
higher than one. The eigenvalue criteria specifies that only compo-
nents with eigenvalues larger than 1 should be preserved since each 
component should explain the variance of a single variable.

Results
The simulations, the parameter optimization, and the data visu-
alization were performed using R software (version 3.6.0). The 
R codes and data are available on https://github.com/Oncostat/
isgICA .

Synthetic data

Scenarios.  We simulated synthetic datasets from equation (3), 
according to different scenarios (see Table 1) with 
N = { , }100 500  individuals, P = { }500 1000 5000, ,  genes, and 
K = { }10 30,  components. The structure of Z was randomly 
generated to contain approximately 35% of ones. We consid-
ered 4 noise parameters (σ E

2 0 5 1 1 5 2= { . , , . , } ) to assess the 
impact of the signal-to-noise ratio.

For all scenarios, the elements of the source matrix Φ were gener-
ated for each component from Gaussian distributions with variance 
equal to one, and different means (from −3 to 3) to evaluate if the 
model may identify components with specific patterns, such as 
mainly positive or negative values, or both (for means closed to 0). 
Random blocks were generated to assign sparseness structure to this 
matrix presented by the Figure 5). The elements of the weight matrix 
W were drawn from a standard Gaussian distribution (mean = 0, 
variance = 1). We simulated 10 data sets for each scenario.

Performance criteria

As the standard ICA, our model is identifiable up to scaling, 
sign reversion, and column permutation.22 To evaluate the 

model reconstruction, we aligned the estimated components to 
the simulated ones using as a distance the mean of the absolute 
Pearson correlation coefficients of each pair of the column of 
the simulated source matrix ΦΦ  and non-zero estimated col-
umns of ΦΦ . For the component i  of the simulated ΦΦ  and the 
component j  of the estimated ΦΦ ,this distance is estimated by 

cov .,i j

.,j.,i

Φ Φ, .,

,





( )
σ σΦ Φ

, which is invariant to the scaling and sign 

reversion. We used the Hungarian algorithm for an efficient 
re-ordering from this distance, using the HungarianSolver 
function of the RcppHungarian23 R package.

The mean of the absolute Pearson correlation coefficients 
between the simulated Φ and Z°W and the column ordered Φ  
and Z

〈

°W was presented to assess the reconstruction of the 
source and weight matrix respectively.

According to the component ordering defined previously, the 
reconstruction of the sparseness structure of the weight matrix 
(except the baseline profile, ie, Z*) was assessed with the accuracy 
criterion, defined by: Trueones True zeros

N K

+
×

∈  [0, 1].

Latent structure reconstruction

We first evaluated the ability of the algorithms to identify 
the number of components (Figure 3 and Table 2). The 
isgICA recovered the exact number of latent components in 
the majority of the simulations, but it underestimated the 
number in the lower dimension scenarios (P = 500), espe-
cially when the number of observations was low with respect 
to the number of component (N = 100, K = 30). This behavior 
was slightly more apparent when the noise variance was 
increased. The number of components selected with the clas-
sical whitening ICA using the eigenvalue method increased 
quickly with the dimension (P/N ratio) to the maximal 

Table 1.  Simulation scenarios. N, P, and σE
2  are the number of individuals, the number of genes and the noise variance respectively.

N = 100 N = 500

K = 10 simulated components

  P = 500
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

  P = 1000
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

  P = 5000
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

K = 30 simulated components

  P = 500
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

  P = 1000
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

  P = 5000
σE

2 0 5 1 1 5 2= { . , , . , } σE
2 0 5 1 1 5 2= { . , , . , }

https://github.com/Oncostat/isgICA
https://github.com/Oncostat/isgICA
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Table 2.  Number of identified components (median [2.5%-97.5%] percentiles) using the eigenvalue method for the standard ICA and by the isgICA. 
N, P, and σE

2  are the number of individuals, the number of genes, and the noise variance respectively.

Model σE
2 N = 100 N = 500

P = 500 P = 1000 P = 5000 P = 500 P = 1000 P = 5000

Eigen-value 
method

10 simulated components

0.5 35 [19, 48] 66 [50, 79] 99 [99, 99] 28 [14, 43] 48 [29, 68] 412 [320, 457]

1.0 54 [33, 66] 92 [82, 99] 99 [99, 99] 42 [20, 62] 82 [54, 106] 496 [470, 499]

1.5 66 [46, 77] 99 [96, 99] 99 [99, 99] 56 [26, 76] 114 [79, 140] 499 [499, 499]

2.0 74 [56, 84] 99 [99, 99] 99 [99, 99] 67 [33, 88] 139 [102, 167] 499 [499, 499]

  30 simulated components

0.5 30 [27, 30] 31 [30, 34] 99 [99, 99] 30 [29, 32] 32 [30, 33] 48 [38, 95]

1.0 31 [28, 32] 38 [32, 49] 99 [99, 99] 30 [29, 34] 32 [30, 38] 196 [167, 243]

1.5 32 [30, 34] 56 [43, 70] 99 [99, 99] 31 [30, 35] 33 [31, 42] 338 [313, 371]

2.0 36 [33, 39] 72 [60, 85] 99 [99, 99] 32 [30, 35] 38 [32, 48] 424 [404, 447]

isgICA 
method

10 simulated components

0.5 10 [8, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10]

1.0 10 [8, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10]

1.5 10 [7, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10]

2.0 9 [6, 10] 10 [9, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10] 10 [10, 10]

  30 simulated components

0.5 11 [8, 14] 16 [13, 17] 20 [19, 22] 25 [20, 26] 29 [27, 30] 30 [29, 30]

1.0 11 [9, 13] 16 [13, 16] 20 [19, 22] 22 [19, 24] 28 [27, 30] 30 [29, 30]

1.5 11 [9, 13] 15 [13, 16] 20 [19, 22] 22 [18, 24] 28 [27, 30] 30 [29, 30]

2.0 11 [9, 13] 15 [13, 16] 20 [18, 22] 20 [16, 23] 28 [27, 30] 30 [29, 30]

number of components allowed by this approach (minimum 
between N-1 and P-1). It also slightly increased when the 
noise variance was raised in our algorithm.

Due to this over-decomposition using the eigenvalue 
method in the majority of the scenarios, the calculation of the 
reconstruction criteria for the ica and fastICA was not possible. 
In this case, we selected the 10 estimated components (or 30, 
according to the scenario) for which the source components 
were the most correlated to the simulated ones. We also per-
formed an oracle sensitivity analysis, fixing a priori the number 
of components to the simulated ones for these 2 approaches, in 
order to have a comparison of their reconstruction to the blind 
reconstruction of the isgICA (see results in Appendix A2, 
Figures A1 and A2)

The isgICA outperformed the ica for the reconstruction 
of the source matrix (Φ) when the number of components 
was estimated using the eigenvalue method (Figure A1). 
This difference was less clear for the fastICA (correlation to 
simulated source matrix equal to .818 [.191, .934] (median 
[2.5%-97.5%] percentiles) for isgICA, .767 [.513,.982] for 

fastICA, and .189 [.0.28,.834] for ica), especially due to the 
lower performance of the isgICA in the scenarios with the 
lowest dimensions (N = 100/P = 500, and N = 500/P = 500). 
The performance of all methods decreased with the increase 
of the noise variance, but the isgICA was less impacted for 
high dimensional scenarios. The oracle fastICA and ica mod-
els presented in the majority of the scenarios a performance 
similar to the isgICA, excepting in the scenarios where the 
isgICA underperformed, that is, in the case of low 
dimension.

For all the scenarios, the isgICA outperformed the other 
methods for the reconstruction of the weight sparse matrices 
Z°W (mean absolute Pearson correlations equal to .968 [.225, 
.999] (median [2.5%-97.5%] percentiles) for isgICA, .453 
[.194, .972] for the fastICA, .515 [.199, .983] for the ica), except 
for the scenarios with N = 100/500, P = 500 and K = 30. This 
result was explained by the over-decomposition using the 
eigenvalue method. Considering the oracle fastICA and ica 
models, the reconstruction performances were similar for all 
methods.
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The isgICA results are summarized in the Figure 4. The 
ability of the isgICA to reconstruct the sparseness structure of 
the weight matrix (Z) was accurate in the majority of the sce-
narios (accuracy >.8), but decreased when the number of 
parameters increased (ie, increasing P or K) to reach the simu-
lated 35% of ones in the non-zeros components, corresponding 
to the accuracy of all-ones Z matrices. However, the good 
reconstruction of the weight sparse matrix (Z°W) in the high 
dimension scenarios indicates that this decrease of the accuracy 
for the strict sparseness is counterbalanced by the pseudo-
sparseness induced by the ARD prior on W.

To illustrate the reconstruction ability of the isgICA, the 
Figure 5 shows the reconstruction of the sparse weight matrix 
(Z°W) and the source matrix (Φ) for N = 500, P = 5000, K = 10 
and σ E

2 0 5= . . In this example, our approach was able to identify 
the correct number of non-zero components and reconstruct the 
accuracy of the weight sparseness matrix of .982, the sparse 

weight matrix with a mean absolute correlation of .999 and the 
source matrix with a mean absolute correlation of .873. As illus-
trated in the second row of the Figure 5, the ICA-based algo-
rithm suffers from the standard ICA identifiability issues for the 
source matrix: the sign of the elements of some components may 
be reversed regarding the simulated one, and they may present 
higher values (scaling and sign identifiability issues). However, 
the ranking of the simulated and estimated values was highly cor-
related, allowing interpretation of the higher values of the source 
matrix as the most contributing genes to the components.

It can be noted that the ica method did not converge for 
2.9% (14/480) simulations of the high dimension scenario 
(N = 500, P = 5000, K = 10) due to the large number of compo-
nents identified using the eigenvalue method. Therefore, the 
result of this method is slightly overoptimistic and should be 
interpreted accordingly (including for the context of a real 
application).

Figure 5.  Visual representation of the reconstruction of the weight sparseness structure (Z, top row, accuracy of .982) sparse weight structure (W°Z, 

middle row, correlation of .999) and sources(Ф, bottom row, correlation of .873) from a diagonal structure and with N = 500, P = 5000, K = 10 and σE
2 0 5= . .
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Figure 6.  Hypergraph matrix of the individual heterogeneity (weight 

sparseness structure) extracted from the breast cancer dataset using the 

infinite sparse graphical independent component analysis with baseline 

profile. The model identified 22 components (including the baseline profile).

The gain of precision for the (blind) matrix reconstruction and 
convergence rate for the isgICA relatively to the other methods 
came at the cost of a larger computational time relatively to the 
eigenvalue method (few minutes to several hours), that increases 
quickly with the dimension (Appendix A2, Figure A3).

Application: Early breast cancer data

We applied our method to publicly available gene expression data 
obtained from tumor biopsies in 614 breast cancer patients that 
were included in clinical trials of anthracycline-based chemother-
apy,24,25 available in the biospear  R package.26 The expression 
data of 22 277 probes (Affymetrix array) was preprocessed via fro-
zen robust multiarray27 and cross-platform normalization.28 
Probes were filtered if the interquartile range ⩽1. The remaining 
1689 probes were standardized and then filtered with the package 
jetset29 to retain a single probe by gene, resulting in a final dataset 
including the expression of 1063 genes. As in Belhechmi et al,30 
we mapped to probes to 3 molecular signatures with a prognostic 
effect in early breast cancer (Immune System, Proliferation, and 
Stroma invasion31) and one without (SRC activation signature31), 
all the other probes were categorized as “Others”.

Figure 6 presents the hypergraph matrix of the individual 
heterogeneity. The model identified 22 non-zero components 
(including the baseline profile).

To investigate the molecular relevance of these results, we 
overcame the problems of sign and scale reversion by ranking the 
absolute source element values amongst each component to iden-
tify the most contributive genes to each identified molecular 
alterations. Figure 7 shows the distribution of the absolute values 
of the source matrix elements of each component according to 
the different breast cancer signatures. The proliferation-based 
signature, immune-system signature, and stroma-related signa-
ture seemed to be related to the components 2/5, 4/7/8/15, and 3, 
respectively. The SRC, which was picked as a “negative control” 
signature in Belhechmi et al,30 was not straightforward to map to 
a particular molecular component.

Discussion
In this paper, we proposed a novel approach to characterize 
inter-patient heterogeneous molecular mechanisms. To our 
knowledge, this is the first approach that assumes that the 
molecular profile of each patient is a mixture of different 
molecular components, which can be shared with the other 
patients. We modeled these components as alterations from a 
baseline molecular component shared by all individuals, repre-
senting the mechanisms common to all patients, while the 
noise captures the individual molecular background. Assuming 
that each molecular component represents alterations of a 
molecular pathway or a group of related pathways, this approach 
may help us to understand molecular mechanisms and identify 
potential targets for drug development.

We illustrated the concept using a gene expression data-
set of breast cancer tumor samples from patients included 
in clinical trials of anthracycline-based chemotherapy. The 

correspondence of the identified molecular profiles with known 
molecular pathways that play a prognostic role in early breast 
cancer (proliferation, immune system, and stroma pathway) 
suggests that our approach may help characterize the molecular 
context of particular subpopulations.

In the simulation study, our method was capable of blindly 
identifying the true number of components and their (sparse-
ness) structures, up to scaling and sign reversion, which are well-
known identifiability issues in standard ICA. To alleviate these 
issues, we proposed to use the absolute values of the source ele-
ments to identify the most contributive genes to each compo-
nent for molecular interpretation. Comparing to 2 other popular 
ICA algorithms (fastICA and ica), our model better recon-
structed blindly the number of components and the weight and 
source matrices, and had a similar performance when we a priori 
fixed the true number of components in these 2 algorithms.

Our algorithm was able to provide a better reconstruction per-
formance of the weight sparse matrix (Z°W) than these 2 algo-
rithms, even when the number of components was fixed a priori to 
the true number in the simulations. Our algorithm was also less 
sensitive to the increase of the dimension and the random noise 
variance. However, its lower performance in the lowest dimension 
scenarios suggests that the regularization may be too strong. Due 
to the well-known underestimation of the noise variance in high 
dimensional sparse models,32 we fixed it to 1 (ie, the variance of 
the classically standardized X if all component elements are equal 
to 0) to avoid the over-decomposition of the variance that results 
in an excess of components (not shown). This choice has an impact 
on the estimates because the noise variance is theoretically lower 
than 1 if the variance of X is explained by some components. That 
induces a too low signal-to-noise ratio resulting in posterior means 
of the component elements close to zero32 (ie, over-regulariza-
tion), and therefore in an underestimation of the number of 
components. By contrast, the increase of the dimension decreases 
the influence of the noise variance, resulting in increasing of the 
posterior mean of the parameters that escape to the “spike” regu-
larization pattern (Z) in the higher dimension scenarios (as 



Rincourt et al	 11

Figure 7.  Distribution of the absolute value of the source matrix elements associated with the probes of genes associated with 3 molecular signatures 

with a prognostic effect in early breast cancer (GGI, Immune2, and Stroma2) and one without (SRC activation signature). All the other genes were 

categorized as “Others”. A proliferation-related signature, immune-related signature, and stroma-related signature seemed to be related to components 

2/5, 4/7/8/15, and 3, respectively. The SRC was not related to one specific component.
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reflected by the all-ones Z matrix posterior). However, the isgICA 
presents good performances in these settings as these parameters 
were regularized by the “slab” pattern (ARD prior), resulting in the 
observed pseudo-sparseness. In further research, the use of inde-
pendent priors could be explored to alleviate the underestimation 
of the noise variance. But this approach based on non-conjugate 
priors requires complex algorithms for inference which could 
increase the computational time for a high dimensional data set.

As illustrated by our benchmark, the performance of our 
algorithm came at the cost of an important computational time 
that could be a practical limitation. A first next step will be to 
re-implement the current algorithm with GPU computation to 
scale-up to large datasets.

We showed that this approach is able to identify blindly 
components deviating from a baseline profile. Future research 
will focus on improvements for their identifiability and inter-
pretability, including the integration of additional external 
information. We expect that some mixture weight compo-
nents can reconstruct observed individual variables not con-
sidered by the model. It could be possible to extend this model, 
fixing the elements of some weight components to the values 
of observed individual variables, which may be relevant to 
explain the gene expressions (eg, gender, age, tumor stage). 
Beyond the adjustment for known characteristics, this exten-
sion could be used to perform differential analysis adjusted for 
unobserved individual characteristics. Moreover, while the 
bulk sequencing data results of a mixture of several elements 
(not only tumor cells, but also healthy tissue33 or tumor micro-
environment cells34), other sources of data such as reference 
molecular profiles could be used to improve the identifiability 
and interpretability of the components. Another interesting 
way to integrate external information is to consider the patient 
characteristics as explanatory variable of the sparseness struc-
ture of the source matrix to model different states of the graph, 
as suggested by Wang et al.35

The joint modeling of our isgICA and a clinical outcome, 
such as patient survival, could be of particular interest for preci-
sion medicine, favoring the identification of independent 
molecular profiles more specific to the patient prognostic. This 
extension will support the estimation of component/treatment 
interaction in the survival model to highlight pathways related 
to treatment response for the precision medicine context.

Finally, as proposed in the wide literature of omics data decon-
volution methods, our approach may also be extended to other 
non-Gaussian omics data, such as count (raw RNAseq, proteom-
ics) or binary (mutations) data using different link functions.

Conclusion
We developed an isgICA model with a baseline profile to char-
acterize blindly the individual heterogeneity from this baseline 
profile in a high-dimensional setting. This approach illustrates 
a novel concept for the identification of composite molecular 
profiles which could be key to understanding the different 
mechanisms of disease and identify potential targets to develop 
new treatments.

Author Contributions
SLR developed the model, and takes responsibility for the R 
programs and the accuracy of the data analysis. SLR drafted 
the manuscript; DD and SM contributed to a critical revision 
of the manuscript for important intellectual content, super-
vised the study equally, and gave final approval. All of the 
authors read and approved the final manuscript.

Data Availability
The breast cancer gene expression dataset is publicly available in 
the biospear R package. All code and associated data for the infi-
nite sparse graphical independent component analysis with base-
line profile is available on https://github.com/Oncostat/isgICA.

ORCID iD
Sarah-Laure Rincourt  https://orcid.org/0000-0003-0367 
-3254

References
	 1.	 Cunningham JP, Ghahramani Z. Linear dimensionality reduction: survey, 

insights, and generalizations. J Mach Learn Res. 2015;16:2859-2900.
	 2.	 Yoshida R, West M. Bayesian learning in sparse graphical factor models via vari-

ational mean-field annealing. J Mach Learn Res. 2010;11:1771-1798.
	 3.	 Feng S, Heath E, Jefferson B, et al. Hypergraph models of biological networks to iden-

tify genes critical to pathogenic viral response. BMC Bioinformatics. 2021;22:287.
	 4.	 West M, Nevins JR, Marks JR, Spang R, Zuzan H. Bayesian factor regression 

models in the “large p, small n” paradigm. In: Bernardo JM, Bayarri MJ, Berger 
JO, Dawid AP, Heckerman D, Smith AFM, West M. eds. Bayesian Statistics. 
Vol. 7. Oxford University Press; 2003:723-732.

	 5.	 Knowles D, Ghahramani Z. Nonparametric Bayesian sparse factor models with 
application to gene expression modeling. Ann Appl Stat. 2011;5:1534-1552.

	 6.	 Griffiths TL, Ghahramani Z. Infinite latent feature models and the Indian buf-
fet process. In: Proceedings of the 18th International Conference on Neural Informa-
tion Processing Systems. NIPS-05. MIT Press; 2005:475-482.

	 7.	 Kabán A. On Bayesian classification with Laplace priors. Pattern Recognit Lett. 
2007;28:1271-1282.

	 8.	 Carvalho CM, Polson NG, Scott JG. Handling sparsity via the horseshoe.  
J Mach Learn Res. 2009;5:73-80.

	 9.	 Hjort NL. Nonparametric Bayes estimators based on beta processes in models 
for life history data. Ann Stat. 1990;18:1259-1294.

	10.	 Paisley J, Carin L. Nonparametric factor analysis with beta process priors. In: 
Proceedings of the 26th Annual International Conference on Machine Learning - 
ICML ‘09, Montreal, Quebec, Canada, Association for Computing Machinery; 
2009; 777–784. doi:10.1145/1553374.1553474

	11.	 Hjort NL, Holmes C, Müller P, Walker SG, eds. Bayesian Nonparametrics. Cam-
bridge University Press; 2010.

	12.	 Gershman SJ, Blei DM. A tutorial on Bayesian nonparametric models. J Math 
Psychol. 2012;56:1-12.

	13.	 Hyvarinen A. Gaussian moments for noisy independent component analysis. 
IEEE Signal Process Lett. 1999;6:145-147.

	14.	 Bouveyron C, Latouche P, Mattei P. Exact dimensionality selection for Bayesian 
PCA. Scand J Stat. 2020;47:196-211.

	15.	 Beal MJ. Variational Algorithms for Approximate Bayesian Inference. 2003. https://
cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf

	16.	 Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for stat-
isticians. J Am Stat Assoc. 2017;112:859-877.

	17.	 Paisley J, Jordan MI. A constructive definition of the beta process. Published 
online April 3, 2016. Accessed June 25, 2021. http://arxiv.org/abs/1604.00685

	18.	 Samuel W. ParBayesianOptimization: Parallel Bayesian Optimization of hyper-
parameters. Published online 2020. https://cran.r-project.org/web/packages/
ParBayesianOptimization/index.html

	19.	 Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions.  
J Appl Stat. 2004;31:799-815.

	20.	 Helwig NE. ica: Independent Component Analysis. Published online 2018. 
https://CRAN.R-project.org/package=ica

	21.	 Marchini JL, Heaton C, Ripley BD. fastICA: FastICA algorithms to perform 
ICA and projection pursuit. Published online 2019. https://CRAN.R-project.
org/package=fastICA

	22.	 Sokol A, H. Maathuis M, Falkeborg B. Quantifying identifiability in indepen-
dent component analysis. Electron J Stat. 2014;8:1438-1459.

https://github.com/Oncostat/isgICA
https://orcid.org/0000-0003-0367-3254
https://orcid.org/0000-0003-0367-3254
https://cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf
https://cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf
http://arxiv.org/abs/1604.00685
https://cran.r-project.org/web/packages/ParBayesianOptimization/index.html

https://cran.r-project.org/web/packages/ParBayesianOptimization/index.html

https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA


Rincourt et al	 13

	23.	 Kuhn HW. The Hungarian method for the assignment problem. Nav Res Logist 
Q. 1955;2:83-97.

	24.	 Desmedt C, Di Leo A, de Azambuja E, et al. Multifactorial approach to predict-
ing resistance to anthracyclines. J Clin Oncol. 2011;29:1578-1586.

	25.	 Hatzis C, Pusztai L, Valero V, et al. A genomic predictor of response and sur-
vival following taxane-anthracycline chemotherapy for invasive breast cancer. 
JAMA. 2011;305:1873-1881.

	26.	 Ternès N, Rotolo F, Michiels S. biospear: an R package for biomarker selection 
in penalized Cox regression. Bioinformatics. 2018;34:112-113.

	27.	 McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis 
(fRMA). Biostatistics. 2010;11:242-253.

	28.	 Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB. Merging two  
gene-expression studies via cross-platform normalization. Bioinformatics. 2008; 
24:1154-1160.

	29.	 Li Q , Birkbak NJ, Gyorffy B, Szallasi Z, Eklund AC. Jetset: selecting the optimal 
microarray probe set to represent a gene. BMC Bioinformatics. 2011;12:474.

	30.	 Belhechmi S, Bin R, Rotolo F, Michiels S. Accounting for grouped predictor 
variables or pathways in high-dimensional penalized Cox regression models. 
BMC Bioinformatics. 2020;21:277.

	31.	 Ignatiadis M, Singhal SK, Desmedt C, et al. Gene modules and response to neo-
adjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol. 
2012;30:1996-2004.

	32.	 Moran GE, Ročková V, George EI. Variance prior forms for high-dimensional 
Bayesian variable selection. Published online January 9, 2018. Accessed April 29, 
2022. http://arxiv.org/abs/1801.03019

	33.	 Petralia F, Wang L, Peng J, Yan A, Zhu J, Wang P. A new method for construct-
ing tumor specific gene co-expression networks based on samples with tumor 
purity heterogeneity. Bioinformatics. 2018;34:i528-i536.

	34.	 Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infil-
trating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243-259.

	35.	 Wang Z, Baladandayuthapani V, Kaseb AO, et al. Bayesian edge regression in 
undirected graphical models to characterize interpatient heterogeneity in cancer. 
J Am Stat Assoc. 2022;0:1-14.

	36.	 Chen B, Chen M, Paisley J, et al. Bayesian inference of the number of factors in 
gene-expression analysis: application to human virus challenge studies. BMC 
Bioinformatics. 2010;11:552.

Appendix
A1. Variational equations
Inspired by Chen et al,36 we used coordinate ascent algo-
rithm to minimize the evidence lower bound with a mean 
field approximation. The update equations of the varia-
tional parameters are described below, where 
i N j P k Kmax= … = … = …1 1 0, , , , , , , ,  and k * = …1, ,Kmax .
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