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ABSTRACT

In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including
nitrogen metabolite repression, carbon catabolite repression and the nutrient starvation response. Transcriptomic analysis
of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify
differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many
genes, both carbon and nitrogen metabolisms coordinate regulation. To identify mechanisms coordinating nitrogen and
carbon metabolism, we tested the role of AreB, previously identified as a regulator of genes involved in nitrogen
metabolism. Deletion of areB has significant phenotypic effects on the utilization of specific carbon sources, confirming its
role in the regulation of carbon metabolism. AreB was shown to regulate the expression of areA, tamA, creA, xprG and cpcA
regulatory genes suggesting areB has a range of indirect, regulatory effects. Different isoforms of AreB are produced as a
result of differential splicing and use of two promoters which are differentially regulated by carbon and nitrogen
conditions. These isoforms are likely to be functionally distinct and thus contributing to the modulation of AreB activity.
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INTRODUCTION

Fungi can utilize a wide variety of compounds as a source
of carbon and/or nitrogen. Coordinated regulation of carbon
and nitrogen metabolism is crucial for a quick adaptation of
their physiology in response to the quality and concentration
of available nutrients. Generally, these catabolic processes are
under the control of two main global regulatory systems, car-
bon catabolite repression and nitrogen metabolite repression,
in addition to pathway specific induction. These general regu-
latory systems are responsible for a preferential utilization of
the most economical source of carbon or nitrogen available, thus
enabling fungi to optimally utilize a wide variety of compounds
(Wong, Hynes and Davis 2008; Kelly and Katz 2010), (Todd
2016).

In the model filamentous fungus, Aspergillus nidulans, car-
bon catabolite repression is mediated by the transcriptional
repressor CreA (Dowzer and Kelly 1991; Cubero and Scazzoc-
chio 1994), which also participates in the response to carbon
starvation (Katz, Bernardo and Cheetham 2008). Ubiquitina-
tion/deubiquitination processes mediated by CreB, CreC and
CreD are important in this regulation (Lockington and Kelly 2002;
Boase and Kelly 2004), although CreA itself is not ubiquitinated
(Alam and Kelly 2017). Response to nutrient stress, like carbon or
nitrogen starvation, is also meditated by XprG, the p53-like tran-
scription factor (Katz, Gray and Cheetham 2006; Katz et al. 2013).

Nitrogen metabolite repression modulates the expression of
genes participating in uptake and catabolism of various nitro-
gen sources (Arst and Cove 1973). The respective genes are tran-
scribed only when there is limiting glutamine or ammonium in
the environment, with intracellular glutamine levels being a key
signal (Morozov et al. 2001). In A. nidulans, nitrogen metabolite
repression is mediated primarily by the GATA transcriptional
activator, AreA (Kudla et al. 1990; Ravagnani et al. 1997). AreA
mediates chromatin remodeling, increases histone acetylation
and directly stimulates binding of specific transcriptional activa-
tors (Muro-Pastor et al. 1999; Berger et al. 2006; Berger et al. 2008).
AreA activity is modulated by both posttranscriptional and post-
translational mechanisms, in response to nitrogen source and
availability. The stability of the areA transcript reflects intracel-
lular glutamine levels, resulting in instability and low levels of
the transcription factor under conditions of nitrogen sufficiency
(Platt et al. 1996; Morozov et al. 2001). This signaling is mediated
by the RrmA protein, which regulates the rate of areA transcript
deadenylation (Morozov et al. 2000; Morozov et al. 2001; Krol et al.
2013). The activity of AreA is also regulated at the protein level
by a co-repressor, NmrA, and co-activator TamA. In the pres-
ence of ammonium or glutamine NmrA interacts with the zinc
finger and the highly conserved C terminus of AreA, repressing
its activity (Platt et al. 1996; Andrianopoulos et al. 1998; Lamb
et al. 2004; Kotaka et al. 2008). TamA interacts with the same
part of AreA and co-activates the expression of target genes
(Small, Hynes and Davis 1999; Small et al. 2001; Downes et al.
2014). nmrA transcription is partially regulated by the bZIP tran-
scription factor MeaB (Polley and Caddick 1996). MeaB and AreA
coordinately mediate nitrogen metabolite repression, however,
they can also function independently (Wong et al. 2007; Wagner
et al. 2010). It is interestingly to note that for meaB the regula-
tory role of the antisense transcript was demonstrated (Sibthorp
et al. 2013). AreA is evenly distributed in the cell except under
nitrogen starvation, when it accumulates in the nucleus. It exits
the nucleus when nitrogen is added to the growth medium,

or under carbon starvation, and this is mediated by multi-
ple nuclear localization signals (Todd et al. 2005; Hunter et al.
2014).

AreB is the second GATA factor participating in nitrogen
metabolite repression in A. nidulans, containing an N-terminal
GATA type DNA binding domain and C-terminal leucine zipper-
dimerization domain (Tollervey and Arst 1982; Conlon et al.
2001). The areB gene encodes three protein isoforms, all of which
include both the GATA and dimerization domain. These three
AreB variants differ at their N-termini, as a result of differential
splicing and the utilization of two different promoter regions.
The two areB promoters are differentially regulated in response
to nitrogen regime, and this is probably mediated, at least in
part, by GATA factors as GATA elements are present in both
areB promoters (Conlon et al. 2001). Similarly in, F. fujikuroi areB
encodes three protein isoforms. These differ in their subcellular
localization, depending on nitrogen conditions and the longest
AreB isoform was shown to interact with AreA in the nucleus
under nitrogen starvation (Michielse et al. 2014).

Many AreA target genes have been identified and their reg-
ulation characterized (Caddick 1994). Much less is known about
the role of AreB in nitrogen metabolism. fmdS, coding for for-
mamidase (Wong et al. 2009), and the arginine catabolism genes,
agaA and otaA (Dzikowska et al. 2003; Macios et al. 2012), were the
first AreB target genes identified in A. nidulans. In these cases
AreB functions as a repressor, however, the resulting regulation
is different: in the presence of ammonium AreB represses agaA
and otaA expression while the expression of the fmdS gene is
repressed by AreB under nitrogen limiting and nitrogen starva-
tion conditions.

In the presence of ammonium, the expression of arginine
catabolism genes is also negatively regulated by AreA, which
is at variance with most other characterized examples where
AreA functions as the activator under nitrogen derepressing
conditions. With respect to arginine catabolism, the activity of
both AreA and AreB was shown to depend on carbon source:
AreA being necessary for the ammonium repression of agaA and
otaA under carbon repressing conditions while AreB is primarily
responsible under non-repressing, carbon-limiting conditions.
Carbon signaling via AreA and AreB does not depend on the
main carbon catabolite repressor CreA (Macios et al. 2012).

In F. fujikuroi both GATA factors, AreA and AreB, were shown
to function as positive and negative transcriptional regulators,
participating not only in regulating nitrogen metabolism but
also secondary metabolism (Mihlan et al. 2003; Michielse et al.
2014; Pfannmuller et al. 2017). Nitrogen metabolism is also sub-
jected to transcriptional regulation by CpcA, which mediates
cross-pathway control in response to amino acid limitation and
stress (Hoffmann et al. 2001; Busch et al. 2003).

In most cases, carbon and nitrogen regulation are studied
separately. In order to define how both carbon and nitrogen con-
ditions influence the expression profile of A. nidulans genes, we
undertook transcriptomic analysis of the wild type strain grown
under different carbon and nitrogen regimes. We tested the role
of AreB as a potential global transcription factor linking nitrogen
and carbon metabolism and investigated the differential regula-
tion of its isoforms.

MATERIALS AND METHODS

Aspergillus nidulans strains and growth condition

biA1 (wild type), areB� (areB�::Af-pyrG, (pyrG89), argB2, pabaB22,
nkuA�::argB, riboB2) (Macios et al. 2012) and creA1, paba1 (Shroff,



Chudzicka-Ormaniec et al. 3

Lockington and Kelly 1996) strains were employed. Strains were
grown for 10–12 hours in 37◦C in minimal medium, under the
following nitrogen and carbon regimes:

– carbon and nitrogen repression (CR/NR), comprised 1% glucose,
10 mM ammonium tartrate (GNH4)

– carbon and nitrogen derepression (CD/ND), comprised 0.1% fruc-
tose, 10 mM urea (FU)

– carbon repression and nitrogen derepression (CR/ND), com-
prised 1% glucose, 10 mM urea (GU)

– carbon derepression and nitrogen repression (CD/NR), com-
prised 0.1% fructose,10 mM ammonium tartrate (FNH4)

Glucose and fructose were filter sterilised and added to the
medium after autoclaving. Carbon derepression observed on
0.1% fructose results from the low concentration of the sugar.
Growth tests were performed using 5 mM allyl alcohol which
was added to the cooled minimal medium.

To compare the growth of areB� and the wild type on differ-
ent carbon sources, conidia of both strains were suspended in
0.25% Phytagel, 0.03% Tween 20 (final concentration 104/ml) and
grown on FF MicroPlateTM (BIOLOG) microtiter plates, compris-
ing 126 selected carbon sources. This is a standard biology plate
used as a fungi identification test panel. Strains were grown at
30◦C in VICTOR3TM Multilabel Counter (Perkin Elmer). Turbidity
was measured at 650 nm after 40 hours. Three independent bio-
logical experiments were performed.

Preparation of RNA-Seq libraries and Illumina HiSeq
2000 sequencing

Total RNA for RNA-Seq was isolated from the wild type strain
using mirVanaTM miRNA Isolation Kit (Ambion) according to the
protocol for total RNA isolation. Ribosomal RNA was depleted
with RiboZero Magnetic kit from Epicentre and, additionally,
Ribo MinusTM Concentrarion Module (Invitrogen). The success
of depletion and sample quality was assessed using an Agilent
2100 Bioanalyzer.

RNA-Seq was performed by the Centre for Genomic Research,
The University of Liverpool. RNA–Seq libraries were prepared
using the Epicentre ScriptSeq v2 RNA-Seq Library Preparation
Kit. 17.5 ng of rRNA-depleted RNA, according to quantification
by Bioanalyzer, was used as input and following 10 cycles of
amplification, libraries were purified using AMPure XP beads.
Each library was quantified using a Qubit fluorimeter and the
size distribution assessed using the Bioanalyzer. Libraries were
pooled in equimolar amounts, based on the Qubit and Bioana-
lyzer data. The quantity and quality of each pool was assessed
by Bioanalyzer and subsequently by qPCR using the Illumina
Library Quantification Kit from Kapa on a Roche Light Cycler
LC480II. The pool of libraries was sequenced on one lane of the
HiSeq 2000 at 2 × 100 bp paired-end sequencing with v3 chem-
istry.

Bioinformatics and statistical analysis

Paired-end reads were aligned to the A. nidulans reference
genome sequence A nidulans FGSC A4 version ‘s09-m04-r07’,
downloaded from the Aspergillus Genome Database (AspGD)
website (http://www.aspergillusgenome.org/). Alignment was
done using Tophat v1.3.2 (Trapnell, Pachter and Salzberg 2009)
with default parameters except for those regarding mapping
across spliced introns, where the minimum (option ‘-i’) and

maximum (option ‘-I’) allowed intron sizes were set to 10 and
4000 nucleotides, respectively.

Mapped reads were filtered to retain only those where
both reads of the pair (R1 and R2) aligned in the correct
relative orientation. These were used to estimate expression
levels for annotated loci by counting fragments (two reads,
R1 and R2, represent one fragment of a transcript) mapped
to each locus. Fragment counting was done using htseq-
count (http://www-huber.embl.de/users/anders/HTSeq/doc/cou
nt.html#count). Alignment data is summarized in Table S1 (Sup-
porting Information).

Fragment counts were used to assess differential gene
expression, after normalization for library size, using the R pack-
age edgeR (Robinson and Oshlack 2010; Robinson, McCarthy and
Smyth 2010). As there was only one sequence library for each
carbon/nitrogen regime (although it consisted of three-pooled
replicates), normalisation was done using a nominal value of 0.3
for the ‘biological coefficient of variation’ (BCV). Gene expression
was regarded as significantly changed if the P-value was < 0.05
and the |FC| > 2.The data discussed in this publication have been
deposited in NCBI’s Gene Expression Omnibus (Edgar, Dom-
rachev and Lash 2002) and are accessible through GEO Series
accession number GSE115021 (https://www.ncbi.nlm.nih.gov/g
eo/query/acc.cgi?acc=GSE115021). Gene Ontology (GO) enrich-
ment analysis was performed using the ‘GO-term-finder’ tool on
the AspGD website and protein function annotation was per-
formed using the AspGD (Cerqueira et al. 2013) and FungiDB
(http://fungidb.org/fungidb/) (Stajich et al. 2012; Basenko et al.
2018) databases. Venn diagrams were prepared using BioVenn
(Hulsen, de Vlieg and Alkema 2008).

RT-qPCR analysis

For RT-qPCR analysis, total RNA was isolated from areB� and the
wild type strains (Schmitt, Brown and Trumpower 1990),using
the FastPrep R©-24 instrument (MP Biomedicals) for mycelium
homogenization. RNA was treated with Turbo DNase (Thermo
Fisher Scientific). RNA quality and concentration were measured
using an RNA Nano chip on Bioanalyzer. cDNA was synthesized
using 2 μg of total RNA using SuperScript R© III Reverse Transcrip-
tase (Invitrogen, Life Technologies) and a mixture of oligo-dT
and random hexamer primers. Real-time RT-PCR was performed
using the LightCycler R© 480 II System (Roche Diagnostics) with
specific primers for creA, tamA, areA, meaB, cpcA, xprG; or areBα,
areBβ, areBγ transcripts (Table S2, Supporting Information) and
LightCycler R©480 SYBR Green I Master mix (Roche Laboratories).
Three biological replicates were analyzed for both strains with
three technical replicates for each. Efficiency (E) and specificity
of each pair of primers were tested in RT-qPCR reactions using
6-point standard curves of 5-fold diluted cDNA of the control
strain. E-value for all primer pairs used was in the range of 1.89–
2.00. Cp values were calculated using LightCycler R©480 Software
1.5 (Roche Diagnostics), based on the Second Derivative Maxi-
mum Method. Cp values were normalized using 18S rRNA as an
endogenous control. Expression levels were compared between
the wild type and areB� strains.

RESULTS AND DISCUSSION

Carbon- and nitrogen-regulated genes in the wild type
strain

To identify genes regulated in response to different carbon and
nitrogen regimes, we conducted global transcriptomic analysis

http://www.aspergillusgenome.org/
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html#count
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
http://fungidb.org/fungidb/
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of the wild type strain grown under four conditions, combin-
ing nitrogen metabolite repression (ammonium as N source) or
derepression (urea as N source) with carbon catabolite repres-
sion (glucose as C source) or derepression (fructose as C source).
This analysis showed that the expression of 3491, out of 10 987
annotated A. nidulans genes are differentially regulated by car-
bon (fructose v glucose) and/or nitrogen (urea v ammonium)
source, under at least one of the four growth conditions tested
(Table S3A-D, Supporting Information). We identified genes
regulated by ammonium under different carbon conditions
and/or regulated by glucose under different nitrogen conditions
(Fig. 1A). 53% (1842) of the differentially regulated genes iden-
tified in the wild type responded specifically to changes in the
carbon source while 39% (1357) responded to both carbon and
nitrogen source. Genes regulated only by nitrogen source repre-
sent merely 8% (292) of all differentially regulated genes.

We classified all differentially regulated genes into 34 groups
defined by their expression profile, i.e. up or down regulation
under specific conditions (Fig. 1B). 16 of these groups have at
least 10 genes. Table S4 (Supporting Information) comprises a
full list of genes in each group.

For several previously characterized genes, these expression
profiles correlate well with published data. For example, ureA
(Abreu et al. 2010), mepA (Monahan et al. 2002), agtA (Apostolaki
et al. 2009), otaA (Dzikowska et al. 1999) were all repressed by
ammonium; alcR, alcA (Fillinger et al. 1995), acuG (Hynes et al.
2007), xlnD (Tamayo et al. 2008) and creA (Strauss et al. 1999)
were all subject to carbon catabolite repression and amdS was
repressed by both ammonium and glucose (Hynes 1994).

To assess the interdependence of the nitrogen and car-
bon regulatory mechanisms, we compared the groups of genes
repressed or derepressed by ammonium and under the two car-
bon regimes (Fig. 2A), and similarly those repressed or dere-
pressed by glucose under the two nitrogen regimes (Fig. 2B).
Results show that for the vast majority of genes, both pos-
itive and negative effects of ammonium depend on the car-
bon regime, with the majority only being observed under car-
bon derepressing conditions (fructose). Similarly, although to a
lesser degree, the effects of glucose depend on nitrogen regime
and were observable mainly under nitrogen derepressing condi-
tions (urea).

Functional enrichment analysis was performed for all genes
differentially expressed under the four carbon/nitrogen condi-
tions tested. For genes affected by ammonium, the analysis
indicated an over representation of genes involved in nitro-
gen and/or carbon metabolism, amino acids and nucleotides
metabolism, ribosome biogenesis and metal ion homeostasis
(Fig. S1 and Table S5A–B, Supporting Information). Genes partic-
ipating in carbon and/or nitrogen metabolism, organic acids and
carbohydrate metabolism, ribosome assembly, RNA metabolism
and translation are over-represented among glucose regulated
genes (Fig. S2 and Table S5C–D, Supporting Information).

AreB is involved in both nitrogen and carbon regulation

Transcriptomic analysis of the wild type strain showed that
nitrogen regulation of several A. nidulans genes depends on car-
bon conditions. As the previously published results suggest that
AreB might be involved in the regulation of not only nitrogen but
also carbon metabolism (Macios et al. 2012), we utilized growth
profiling using the Biolog FF MicroPlate to determine if deletion
of areB changes the ability of the fungus to utilize different car-
bon sources. As shown in Fig. 3 and Fig. S3 (Supporting Informa-
tion), the growth of the areB� strain was significantly different

Figure 1. Nitrogen and carbon regulated genes in A. nidulans wild type strain.
A. Effect of ammonium or glucose on the wild type strain transcriptome under

carbon or nitrogen repressing/derepressing conditions, respectively. Expression
of genes under two different carbon/nitrogen conditions was compared. Num-
ber of up or down regulated genes is shown. CR—carbon repression; CD—carbon
derepression; NR—nitrogen repression; ND—nitrogen derepression. For detailed

lists of differentially expressed genes see Table S3A–D (Supporting Information).
B. Expression profile codes for groups of genes regulated by nitrogen and/or car-
bon source in the wild type strain. Expressions decreased (↓), increased (↑) or not
changed (−) in the presence of ammonium or glucose, respectively. GU vs. GNH4–

effect of ammonium under carbon repressing conditions (glucose as a carbon
source); FU vs. FNH4–effect of ammonium under carbon derepressing conditions
(fructose as a carbon source); FU vs. GU—effect of glucose under nitrogen dere-
pressing conditions (urea as a nitrogen source); FNH4 vs. GNH4–effect of glucose

under nitrogen repressing conditions (ammonium as a nitrogen source). Num-
ber of genes in each group is shown. For detailed lists of genes in each group see
Table S4 (Supporting Information).
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Figure 2. Effect of ammonium and glucose in the wild type strain grown under different carbon or nitrogen conditions, respectively. (A), Number of genes induced

or repressed by ammonium under carbon derepressing (yellow), repressing (pink) or independently on carbon conditions (orange). (B), Number of genes induced or
repressed by glucose under nitrogen derepressing (yellow), repressing (pink) or independently on nitrogen conditions (orange)

Figure 3. Deletion of areB� influences the growth on several carbon sources. Growth of areB� and the wild type strain on glucose, fructose and some other selected

carbon sources. Amino acids (in green); tricarboxylic acids from TCA (Krebs) cycle (in blue); compounds utilised by areB� as a carbon source better than by the wild
type (in red). For detailed lists of carbon sources utilised less effectively by areB� see Fig. S3 (Supporting Information).
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from wild type on several carbon sources tested. The mutant
strain grew more poorly than wild type on 63 carbon sources
tested, with only three exceptions of better growth. The reduced
growth of the mutant on several amino acids suggests that AreB
might regulate their catabolism, as shown previously for argi-
nine (Macios et al. 2012). Among compounds for which deletion
of areB most dramatically impaired growth are four tricarboxylic
acids from the TCA cycle: α-ketoglutaric, succinic, fumaric and
malic acid. Reduced efficiency of the TCA cycle might explain
the previously described phenotype of slower growth of areB�

(Wong et al. 2009; Macios et al. 2012). These data confirm that
AreB plays an important role in carbon metabolism. It is worth
noting that in the plant pathogen, F. fujikuroi, analysis of areB
deletion mutant also showed that AreB is involved in regulation
of not only nitrogen, but also carbon and secondary metabolism
(Pfannmuller et al. 2017).

Deletion of areB affects the expression of several
downstream regulators

To assess the potential role of AreB in the coordination of car-
bon and nitrogen metabolism we performed the transcriptional
analysis of genes coding for key carbon/nitrogen regulators:
areA, tamA, meaB, creA, xprG and cpcA (Fig. 4B). qPCR analysis
was performed using total RNA from mycelia of the areB� and
wild type strains grown under the four carbon/nitrogen regimes
used for the transcriptomic analysis. With only one exception,
meaB, deletion of areB results in significant changes in transcript
levels (Fig. 4A). These effects depend on carbon/nitrogen condi-
tions and are specific for each gene analyzed. Decreased level
of expression in areB� strain was observed for areA (about 0.5
fold under all conditions tested except carbon repressing and
nitrogen derepressing conditions), tamA (till 3-fold under carbon
and nitrogen derepressing conditions), creA (about 2-fold under
carbon derepressing conditions) and xprG (about 2-fold under
carbon repressing conditions), suggesting a positive regulatory
function for AreB. For cpcA its function is negative as deletion
of areB results in increased level of expression (till 3-fold under
carbon and nitrogen repressing conditions). Potential GATA fac-
tor binding sites were found in promoter regions of all these five
genes (Fig. 4B), suggesting that AreB might directly regulate their
transcription.

A strong decrease in tamA transcript level in the areB� strain
grown under nitrogen repressing conditions was also shown in
F. fujikuroi (Pfannmuller et al. 2017), suggesting that AreB might
also regulate AreA activity indirectly by modulating the level of
its co-activator, TamA. However, it is worth noting, that in a few
cases TamA was shown to activate gene expression as a DNA-
binding activator (Downes et al. 2014).The activity of xprG might
be regulated by AreB both directly and indirectly, as xprG was
proposed to be regulated by CreA (Katz, Bernardo and Cheetham
2008).

Deletion of areB results also in increased sensitivity to allyl
alcohol, similarly as in the case of the creA1 mutant (Fig. 4C),
what is consistent with decreased level of creA transcription
in areB� (Fig. 4A). This creA mutation relieves the catabolite
repression of several genes, including alcA, which codes for
catabolic alcohol dehydrogenase converting allyl alcohol to a
toxic acrolein (Bailey and Arst 1975; Shroff, Lockington and Kelly
1996). This growth effect doesn’t depend on nitrogen source but
is not observable under carbon derepressing conditions (on fruc-
tose) where derepression of alcA results in similar sensitivity
also of the wild type.

All these data suggest an important, global regulatory func-
tion for AreB which appears to act both positively and negatively.
A significant proportion of the regulatory effects are likely to be
indirect, as AreB plays a significant role in regulating key wide
domain transcriptional factors.

Analysis of areB transcripts

areB encodes three different protein isoforms which differ at
their N-terminus. This results from alternative splicing, the
presence of two different promoter regions and three start
codons (Fig. 5A) (Conlon et al. 2001). Such variation in a tran-
script sequence of a specific gene is rather rare in A. nidulans
(Sibthorp et al. 2013). The longest transcript, areBγ , is synthe-
sized after three introns are removed and it can potentially pro-
duce two different proteins (AreBγ and/or AreBβ) depending on
which start codon is used. Translation from the first AUG would
produce AreBβ (320 aa), whereas translation from a highly con-
served, non-canonical GUG start codon would result in AreBγ

(436 aa), with a unique 116 amino-acid extension at the N ter-
minus. The areBβ transcript is obtained when only two introns
are removed. Retention of the first intron disrupts the ORF of
the AreBγ isoform. Consequently, areBβ mRNA can produce only
the AreBβ protein. areBα is the shortest areB transcript result-
ing from the selection of an alternative downstream promoter,
located within the second intron of the longer transcripts. This
transcript includes an alternative AUG start codon which would
produce AreBα (312 aa), the shortest version of the protein with
a unique 14 amino-acids at the N-terminus.

RT-qPCR analysis was performed to analyze proportions
of the three areB transcripts under the four carbon/nitrogen
regimes used for the transcriptomic analysis. We compared lev-
els of these three transcripts under specific conditions (Fig. 5B)
and the levels of each specific transcript under different condi-
tions (Fig. 5C). Under all conditions tested the areBγ mRNA is
synthesized at the highest level (Fig. 5B). This transcript has a
capacity to code for two AreB isoforms, differing at the N ter-
minus that creates an additional possibility of regulation at the
level of translational initiation via selection of the standard AUG
or the non-canonical GUG start codon.

Only under carbon and nitrogen derepressing conditions
(F/U), was the level of areBγ and areBα mRNA comparable
(Fig. 5B). Moreover, under these conditions, the expression level
of areBγ transcript is lowest, while areBα transcript levels were
similar under all the conditions tested (Fig. 5C). This shows that
the differential expression of the three AreB isoforms is reg-
ulated by carbon and nitrogen regimes. It is possible that the
function of these proteins will differ due to the variation at the
N-terminus, as was suggested for AreB isoforms in F. fujikuroi
(Michielse et al. 2014). Consequently, this variation may have
a direct role in the observed differences in AreB functionality
under different growth regimes.

CONCLUSIONS

Transcriptome analysis of the wild type strain showed that car-
bon metabolism predominates as the most important regulatory
signal but for a large proportion of genes both carbon and nitro-
gen metabolism coordinates regulation. The nitrogen regime
affects the expression of far more genes under carbon derepress-
ing conditions. Genes affected by nitrogen metabolite repression
independently of the carbon regime, are relatively rare. Simi-
larly, the effect of carbon was more prevalent under nitrogen
derepressing conditions.
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Figure 4. Deletion of areB influences the expression of the wide-domain regulatory genes areA, tamA, creA, xprG and cpcA. (A), Quantitative transcriptional analysis of
areA, tamA, creA, xprG and cpcA in areB deletion strain. Relative expression in areB� mutant in comparison with the control wild type strain was calculated by RT-qPCR

analysis. ∗—P-value < 0.1; ∗∗—P-value < 0.05; FC—fold change areB�/wt. (B), Number of GATA sites in potential promoter regions of areA, tamA, creA, xprG and cpcA.
GATA pair was defined as two sites at a distance of less than 30 bp. Potential promoter region was defined as 1 kb upstream of ATG for tamA, creA and xprG or 1.5 kb
for areA and cpcA that comprise much longer 5’ UTR. C. Deletion of areB decreases the expression of the CreA, the carbon catabolite repressor. Sensitivity of the wild

type, areB� and creA1 strains was tested on minimal medium with 10 mM sodium nitrate and 1% glucose (MM) or with other carbon/nitrogen sources, as described in
Materials and Methods.
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Figure 5. Transcriptional analysis of the areB gene under different carbon and nitrogen regimes. (A), Structure of areB gene and its three transcripts (based on Conlon et

al. 2001). Differential RT-qPCR analysis of areB transcripts was performed using primers specific for each mRNA. Introns are marked in red. Amplified fragments, specific

for α, β or γ areB mRNA are marked with blue arrows. Left primer for areBγ mRNA amplification is complementary to exon—exon junction in the spliced transcript. (B),
Comparison of expression levels of three areB transcripts in the wild type strain grown under specific carbon/nitrogen repressing and/or derepressing conditions. The
level of areBβ mRNA was arbitrarily set to 1. ∗- P-value < 0.1; ∗∗- P-value < 0.05. (C), Comparison of expression levels of each specific areB transcript, in the wild type

strain grown under different carbon/nitrogen repressing and/or derepressing conditions. The level of each mRNA under nitrogen and carbon de-repressing conditions
(FU) was arbitrarily set to 1. ∗- P-value < 0.1; ∗∗- P-value < 0.05. NS—difference not significant.
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AreB is the wide-domain regulator in A. nidulans, involved
in mediating a regulatory response to changes in both nitrogen
and carbon conditions. Although originally considered as a gene
involved in regulation of nitrogen metabolism, we have shown
that the deletion of areB has significant phenotypic effects on
carbon utilisation, consistent with a broader role.

AreB positively regulates key regulatory genes mediating
nitrogen metabolite repression (areA, tamA), carbon catabolite
repression (creA), response to nutrient starvation (xprG) and
negatively—cpcA, the main regulator of amino acid biosynthe-
sis. Consequently, the regulatory effect of AreB on the transcrip-
tion is likely to be extended by a range of indirect effects medi-
ated by these wide-domain regulators which, in turn, regulate
the expression of several pathway specific transcription factor.

We confirmed that the three transcripts encoded by areB
are differentially regulated in response to carbon and nitrogen
regime. We propose that three AreB isoforms differ in their spe-
cific functions or activity, contributing to modulation of AreB
activity. These results underline the complex interplay between
carbon and nitrogen regulation and the potential for the differ-
ential use of transcription factors under different regimes.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSLE online.
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