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Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that

genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, how-

ever, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy

demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we

quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene ex-

pression. We find that changes in mitochondrial content can account for∼50% of the variability observed in protein levels.

This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and

activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both

the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects

transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mi-

tochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which

ultimately affects cellular phenotype.

[Supplemental material is available for this article.]

Cellular heterogeneity can result fromnoise generated during gene
expression and plays an essential role in fundamental processes
such as development, cell differentiation, and cancer (Raj and
van Oudenaarden 2008; Eldar and Elowitz 2010; Balázsi et al.
2011). Gene expression noise may originate from stochasticity in
the biochemical reactions at an individual gene (intrinsic noise)
or from fluctuations in cellular components inducing a global ef-
fect (extrinsic noise) (Elowitz et al. 2002; Maheshri and O’Shea
2007). Extrinsic noise is often a dominant source of variation
both in prokaryotes (Taniguchi et al. 2010) and eukaryotes (Raser
and O’Shea 2004; Newman et al. 2006). Despite this, the origins
of extrinsic fluctuations are mostly unknown, although random
protein partitioning from cell growth and division (Rosenfeld
et al. 2005; Volfson et al. 2006), upstream transcription factors
(Volfson et al. 2006), or cell cycle stage (Zopf et al. 2013) have
been shown to contribute to variability in protein levels. A com-
mon constraint across eukaryotic gene expression is its high ener-
gy cost (with∼75%of the ATP cellular energy budget invested into
mRNA and protein polymerization) (Forster et al. 2003; Wagner
2005; Lane and Martin 2010), where every step, from chromatin
remodeling to transcription elongation, assembly of splicing fac-
tors, and translation, depends on energy (Fig. 1A). Since most of

the energy required in normal cells is supplied by mitochondrial
oxidative phosphorylation (Vander Heiden et al. 2009), variability
in the number and/or functionality of mitochondria is a natural
source of variability in ATP content, and thus a possible global fac-
tor modulating gene expression.

We have previously shown that the number of mitochondria
transmitted to daughter cells atmitosis presents broad fluctuations
(das Neves et al. 2010; Johnston et al. 2012) and identified hetero-
geneity in mitochondrial content as a source of variability in tran-
scription rate (das Neves et al. 2010). We found that RNA Pol II
transcription elongation was variable from cell to cell, mainly
due to the high sensitivity of this activity to the concentration
of ATP, which is directly linked to mitochondrial levels in individ-
ual cells (das Neves et al. 2010). Here we quantify the influence of
mitochondrial heterogeneity on gene expression at a global scale,
covering different steps of the gene expression cycle and genome-
wide changes in transcription.

Results

Mitochondrial variability impacts on protein content

heterogeneity

Since proteins are the ultimate products of gene expression, we
first explore how mitochondrial content affects cellular protein
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content. Traditionally, mitochondrial mass ismeasured by quanti-
fication of the mitochondrial staining with MitoTracker Green
(MG) (das Neves et al. 2010). MG faithfully reflects the mitochon-
drial mass (as compared bymtDNA quantification) (Supplemental
Fig. S1A). A problem associated with MG staining is its incom-
patibility with the immunostaining of intracellular proteins. For
that reason, we use instead a probe compatible with the experi-
mental procedure (CMXRos). AlthoughCMXRos is a potentiomet-
ric probe (and thus a marker of mitochondrial function), in our
conditions it is also a suitable reporter of mitochondrial mass (as
shown by its high correlation with MG and several mitochondrial
proteins) (Supplemental Fig. S1B–F).

To quantify the influence of mitochondrial content on pro-
tein variability, we simultaneously measure mitochondrial and
protein levels using quantitative microscopy in individual HeLa
cells (Fig. 1B; Iborra and Buckle 2008).

Mitochondrial and protein contents showed an appreciable
correlation (see Fig. 1C for an example of the protein HK2, all the
proteins analyzedgavePearsoncorrelation coefficients in the range
0.5–0.8). To calculate howmuchof the total protein variance is due
to covariation with mitochondrial content, we find by linear re-
gression the best-fit line (corresponding to the axis of reporter co-
variation) (Fig. 1C, black line) and then rotate the data points
onto the horizontal axis (Fig. 1C, red circles) to obtain the protein
distribution with the correlation removed. We then calculate the
mitochondrial contribution to variability (MCV) from the spread
of the original and decorrelated distributions as MCV= [1−
(IQRrot/IQR)] × 100,where IQR is the interquartile rangeof theorig-
inal distributionnormalizedby itsmeanvalue (this gives ameasure
of the distribution spread relative to its average value, similar to the
coefficient of variation), and IQRrot is the normalized interquartile
range of the detrended distribution (Fig. 1C, right). This method
provides an intuitive way to separate the mitochondrial contri-
bution from other sources of variability, analogous to the decom-
position of total protein variability in intrinsic and extrinsic
contributions (Elowitz et al. 2002). Other statistical measures of
contribution to variance, such as the fractionof variance explained
by the coefficient of determination, R2, or the F-statistics, yield
very similar estimates (Supplemental Text; Supplemental Fig. S2).

We chose a set of 24 proteins from housekeeping genes to
sample a typical global expression state into normal physiological
conditions (Fig. 1D,E). To distinguish possible biases due to energy
metabolism, we separated the proteins into two groups: proteins
nonrelated to energy metabolism (Fig. 1D) and proteins involved
in energy metabolism (Fig. 1E). In both groups we found that mi-
tochondria accounts for ∼50% of protein variability (Fig. 1D,E,
thick red dashed lines) with a standard deviation of ∼10%.

Becausemitochondrial content varies along the cell cycle (das
Neves et al. 2010), and so does protein, we asked whether the cor-
relation observed betweenmitochondria and protein is a true asso-
ciation or, on the other hand, is due to covariation with cell cycle
stage. We thus simultaneously stained cells with DAPI (a reporter
of cell cycle state), CMXRos, and different protein antibodies.
Causal correlation analysis of these experiments showed that
cell cycle, per se, contributes minimally to protein variability
(Supplemental Text; Supplemental Fig. S3).

Mitochondrial variability affects different steps of the gene

expression cycle

The data from the previous section show that mitochondrial vari-
ability can explain part of the protein noise. To trace back the
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Figure 1. Mitochondrial contribution to protein variability. (A)
Differences in themitochondrial content of isogenic cells can act as a glob-
al factor generating variability in all steps of gene expression (chromatin
remodeling, transcription, and translation) as well as affecting mRNA
and protein stabilities. (B) Mitochondrial content (CMXRos) and protein
levels (the enzyme Hexokinase 2 is shown here) are simultaneously quan-
tified in single cells by fluorescence microscopy. (C) Dependence of HK2
protein levels as a function of mitochondrial content in a population of
clonal cells (blue dots, r2 = 0.62). CMXRos and protein values are normal-
ized by their average levels. We decorrelate protein levels from mitochon-
dria by rotating the distribution around the best-fit line (red dots). The box
plots of both distributions are shown on the right. From the ratio of inter-
quartile ranges (IQR) of the normal and detrended distributions, we can
calculate the mitochondrial contribution to protein variability in the pop-
ulation. (D) Mitochondrial contribution to global variability (MCV) in
protein levels from16 housekeeping genes, none related to energymetab-
olism. (E) MCV in protein content from eight genes involved in energyme-
tabolism. The thick red dashed line is the average contribution of all
proteins. Thin lines are standard deviations. Error bars are standard devia-
tions of three independent biological replicates (with 200–400 cells per
experiment).
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origins of this influence in protein heterogeneity, we analyzed the
effect of mitochondria dosage on different steps of the gene ex-
pression cycle.

The transcription process involves many different steps sub-
jected to control: one is the epigenetic modification of chromatin
(Fig. 1A). Among the possible chromatin modifications, H4K16
acetylation is important because it is linked to transcription activa-
tion (Canals-Hamann et al. 2013). Thismodification shows single-
cell heterogeneity covarying with mitochondrial content; and ap-
plying the same procedure of the previous section, we find an ele-
vated mitochondrial contribution to H4K16 acetylation variation
(Fig. 2A). Other modifications associated with chromatin activa-
tion are histone H3 dimethylated at lysine 36 (H3K36me2) and
histone H3 trimethylated at lysine 4 (H3K4me3)—the first associ-
ated with transcription elongation and the latter to promoter acti-
vation (Henikoff and Shilatifard 2011). Both H3K36me2 and
H3K4me3behave in a similarmanner toH4K16 acetylation, show-
ing variability highly dependent on mitochondrial content (Fig.
2A). However, variability in H4K20me2 and H3K27me3, both
linked to chromatin repression (Gaydos et al. 2014), shows little
dependency on mitochondria (Fig. 2A). This suggests that mito-
chondria have a positive impact on chromatin activation globally.

A second level of gene expression control is the regulation
of the transcription machinery. In order to study the influence
of mitochondria on the transcription apparatus content, we focus
on RNA Pol II and the general transcription initiation complex
TFIID. Both molecules covary with mitochondria (Fig. 2B) in
amounts comparable to protein variability (Fig. 1D). Finally, we
monitor transcriptional activity as a function of mitochondrial
content using both RNA Pol II transcription elongation (reported
by the amount of the immediate transcription precursor BrU)
(Methods) and mRNA accumulation (by staining poly[A] RNA),
showing again an ∼50% contribution (Fig. 2B, red bars).

Finally, we explored the contribution of mitochondrial mass
variability to protein synthesis. Cells were pulsed with CMXRos

and the translation precursor AHA (Methods), which gets incorpo-
rated into nascent polypeptides. Our data show that cells with
highmitochondrial content are alsomore active in protein synthe-
sis (Fig. 3C). This finding was also supported by the high depen-
dency of translation elongation factors (Fig. 3A) and the synthetic
ribosome machinery (Fig. 3B) on mitochondria.

Analysis of RNA Pol II dynamics reveals increased genome-wide

transcriptional activity at high mitochondrial content

Our data indicate thatmitochondrial content correlates with chro-
matin activation andRNAPol II activity. At themolecular level this
can be translated in different phenomena. Regarding chromatin
activation, one possibility is that mitochondrial content has no
impact on the number of genes active and only acts by increasing
the degree of epigenetic modifications in genes that are already ac-
tive; alternatively, cells with high mitochondrial content could
contain a higher number of genes active than cells with lowmito-
chondrial content. With respect to RNA Pol II we have three possi-
bilities: The first one is that cells withmanymitochondria contain
more molecules of RNA Pol II per active gene. The second possibil-
ity is that the number of RNA Pol II molecules per active gene re-
mains constant and only changes the number of genes active.
The third possibility is a combination of both: more genes active
with more RNA Pol II per gene in cells with high mitochondrial
content.

To test these possibilities, we analyze the dynamic properties
of RNA Pol II-GFP in individual cells. The transcription cycle by
RNA Pol II can be understood as follows: Free RNA Pol II molecules
interact with DNA, making a complex that can be abortive (bind-
ing to DNA and not transcribing or transcribing a very short
transcript) or that can proceed into elongation mode after being
modified (Fig. 4A). Once RNA Pol II elongating molecules com-
plete the transcription cycle, they become free and diffuse
throughout the nucleoplasm. This simple model involves several
steps with different kinetic properties (Hieda et al. 2005). To study
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RNA Pol II kinetics, we used a cell line (C23) carrying fluorescent
molecules of RNA Pol II (Sugaya et al. 2000; Kimura et al. 2002).
With these cells, we performed FLIP (fluorescence loss in photo-
bleaching) experiments of the RNA Pol II-GFP (Methods; Supple-
mental Fig. S4).

Analysis of experimental FLIP data revealed at least three pop-
ulations of RNA Pol II molecules (Supplemental Fig. S4B), as previ-
ously described: one freely diffusible, another bound to DNA but
not engaged in productive transcription elongation, and a third
population engaged in transcription (Kimura et al. 2002; Hieda
et al. 2005). This, in combination with the steady-state solution
of the kinetic model in Figure 4A, allows us to obtain values for
the different rate constants (Supplemental Text). Unfortunately,
we could not stain mitochondria in these cells because it affects
fluorescent RNA Pol II-GFP, hampering its analysis. This makes it
impossible to assess in a direct manner the contribution of mito-
chondrial mass to any variability of RNA Pol II-GFP. Instead, we

adopted another strategy based on the fact that differences in mi-
tochondrial content imply differences in ATP levels (das Neves
et al. 2010). To assess that most ATP in our cells is provided by
mitochondria, we grew HeLa cells in the absence of glucose and
presence of galactose, which did not affect ATP concentrations
(Supplemental Fig. S4C). This means that the contribution of gly-
colysis to ATP production is minimal in our cell line. Therefore, we
manipulate ATP levels to mimic differences in mitochondrial con-
tent. ATPwas depleted by incubationwith deoxyglucose plus azide
(DG-A); this treatment reduced ATP levels by ∼95% (Supplemental
Fig. S4C). ATP depletion resulted in moderate decrease in both K1

and K2 (DNA entry and abortive rate constants, respectively) after
30 min of DG-A exposure (Fig. 4B); moreover, the fraction of initi-
ating molecules was not affected (Fig. 4B). These results suggest
that although both constants have been affected by ATP, the ratio
that determines the proportion of initiating polymerase remains
unchanged.

We next studied the effect of DG-A treatment on the fraction
of RNAPol II initiatingmolecules that were able to proceed to elon-
gation (K3/K1). InDG-A treated cells, this is only 2.9% compared to
8.2% in control cells, very similar to the 8.6% reported in Darzacq
et al. (2007). This is probably due to the fact that K3 is mediated by
the activity of the kinases responsible for the phosphorylation of
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and azide). Error bars are SD. For eachdatapoint, at least 50 cellswere used.
(C ) Cartoon of thedifferent kineticmodes of RNAPol II in cellswith low (left)
and high (right) ATP content. The cartoon exemplifies a typical gene with
the promoter (yellow box) and RNA Pol II molecules (green circles), DNA
(blue line), and RNA (red line). In cells with low mitochondrial content
(left), RNA Pol II binds and detaches continuously at the promoter (arrow
thickness illustrates the magnitude of the effect). A fraction of the RNA Pol
II molecules are able to commit into elongation (arrow under the DNA).
Then elongating RNA Pol IImolecules track on theDNA at slow speed (illus-
trated by the arrowheads over RNA Pol II), which determines the speed of
production of RNA (red lines). Once RNA Pol II finish the elongation phase,
it detaches fromDNA and RNA accumulates. At the bottom of the panel we
show thedependencyonATPof the P-TEFb complex (kinase responsible for
conversionof RNAPol II into elongationmode) (hyperbolic kinetics, KM∼30
μM). “Elong” stands for the elongating phase of RNA Pol II transcription cy-
cle. This phase shows a sigmoidal dependencyon ATPwith a S0.5∼900 μM.
Under lowmitochondria (lowATP), the process of transition from initiation
to elongation works near to full speed, but the speed of elongation is
strongly diminished by the low ATP concentration. These two effects result
in the accumulation of RNA Pol II molecules in the body of the gene due to
themismatch between entry and exit of RNA Pol II on the gene. In the right
panel we illustrate the case of a cell with high mitochondrial mass. In these
cells, more genes are active. The dynamic exchange of RNA Pol II molecules
on the promoter is not affected: Although K1 and K2 are lower in cells with
lowmitochondria, the ratio between these constants ismaintained (for this
reasonboth arrows are thicker). The fractionof theRNAPol IImolecules that
are able to commit to elongation (arrow under the DNA) is higher than in
low mitochondria conditions. Then, RNA Pol II molecules elongate at
high speed (thick arrowheads over elongating RNA Pol II). Therefore,
more RNA molecules are produced per unit of time in high mitochondria
conditions. As the speed of elongation is high, the speed of RNA Pol II
detachment is higher than in low mitochondrial content cells (thicker ar-
row). At the bottom of the panel, we explain why the loading of RNA Pol II
on DNA is higher in cells with high mitochondrial content. Under high
ATP conditions, the complex P-TEFb is working at full speed and likewise
the elongation phase of the transcription cycle. As both kinetic processes
are balanced, the entry and exit of RNA Pol II on the gene are also balanced.
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RNA Pol II C-terminal domain (CTD) at Ser2 (Chao et al. 2000).
Estimating the concentration of ATP in the control cells as 1 mM
(Traut 1994), DG-A treated cells must contain a concentration of
ATP ∼30 μM, which is close to the Michaelis-Menten constant
KM of the kinases responsible for phosphorylation of Ser2 on
RNA Pol II, i.e., 36 μM for P-TEFb (Chao et al. 2000); 27 μM for
CTDK I (Fig. 4C; Lee and Greenleaf 1989).

Energy depletion reduced mostly the elongating fraction
of RNA Pol II and the elongation rate constant K4 (Fig. 4B).
Consistently, cells transcribing at a low rate (low K4) have a lower
fraction of RNA Pol II molecules engaged in elongation (Supple-
mental Fig. S4F). The number of molecules of RNA Pol II elongat-
ing depends on the ratio K3/K4. K4 strongly depends on the
concentration of ATP and thus K3, but differentially: One is hyper-
bolic and the other is sigmoidal (Fig. 4C; das Neves et al. 2010).
This implies that at low ATP levels, K3 is near KM, and K4 is far be-
low the half-saturation value. However, under high ATP levels,
both kinetic processes will be working at maximum speed.

The analysis of the number of RNA Pol II-engaged molecules
on active genes (K3/K4) showed an average of 1.2 and 2.2molecules
in the control versus DG-A treated cells, respectively, consistent
with the numbers reported in other studies (Jackson et al. 1998;
Darzacq et al. 2007; Canals-Hamann et al. 2013).

Taken together, our results show that cells with more mito-
chondria containmore copies of RNAPol II activemolecules on av-
erage and a larger proportion of active chromatin but a lower
number of elongating RNA Pol II molecules per gene than cells
with low mitochondrial content. The way to conciliate all these
data is that cells with high mitochondrial content transcribe a
higher number of genes than cells with low mitochondrial mass.

Mitochondrial content affects genome-wide

transcript abundance

The global trends described in the previous sections show that cells
with more mitochondria possess more biosynthetic capabilities,
suggesting that marked differences in the cellular mitochondrial/
energy contentmay also entail pronounced differences in gene ex-
pression. It is however unclear if these trends will similarly affect
mRNA and protein levels of all genes, or whether there will be a
larger impact on specific genes.

To address this question, we sought to analyze genome-wide
RNA expression in cells with marked differences in mitochondrial
levels. To maximize cell-to-cell differences in mitochondrial con-
tent, we first sorted HeLa cells according to mitochondrial mass
in two populations (Low and High regions in Fig. 5A) with around
fivefold changes in mitochondria. We then sequenced mRNA ex-
tracted from both populations (RNA-seq). We found more than
59,500 mRNA species with at least twofold changes between the
two populations. Relative expression differences between Low
and High populations were validated by qPCR (Supplemental
Fig. S5). The analysis of gene ontology functions for these genes
showed that genes involved in macromolecular homeostasis (syn-
thesis and degradation of RNA and proteins) were overrepresented
(Supplemental Table S1).

Although changes in mRNA levels are expected to have an
impact on protein levels, steady-state transcript abundances only
partially predict protein abundances (Vogel and Marcotte 2012).
Thus, we first determined the correlation betweenmRNA and pro-
tein levels in our system.We chose 24 genes from the RNA-seq data
and used single cell quantitative immunostaining to select cells
on Low and High fractions of the population and determine the

amount of protein product in those fractions. We plotted the ratio
(High level/Low level) of RNA (taken from the RNA-seq experi-
ment) and protein (from single cell microscopy) for each gene
(Fig. 5B). This shows a good correlation (r2 = 0.8, Pearson correla-
tion) between changes in mRNA and protein, validating the data
obtained with RNA-seq. However, the slope was 0.36, which
means that doubling the abundance of a specific mRNA roughly
represents a 36% increase in the corresponding protein. Our esti-
mation is consistent with genome-wide studies in mouse fibro-
blasts (Schwanhäusser et al. 2011).

Since genes involved in transcription/translation processes
appeared as specially affected by mitochondrial content (Supple-
mental Table S1), we analyzed expression differences (as quanti-
fied by logarithmic fold changes) (see Methods) in these gene
families. In Figure 5C, we show the distribution of logarithmic
fold changes (LFCs) for genes labeled as belonging to the “tran-
scription” family (∼1200 genes). Most of the genes show elevated
expression in the High population (positive LFC), with only a few
(around 3%) with inverted expression (negative LFC). Moreover,
taking into account the correlation between mRNA and protein
levels (Fig. 5B), it is expected that genes with FC > 3 in their
mRNA will approximately double the corresponding protein
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es for genes in the “translation” family, separating those coding for ribo-
somal proteins. These genes are specially affected by mitochondrial
content.
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content. We found that ∼50% of the
transcription genes fall above this thresh-
old (Fig. 5C, inset). Genes belonging to
the “translation” family display similar
trends (not shown), with ∼60% of them
above the threshold for protein doubl-
ing. Notably, most of the genes coding
for ribosomal proteins are among those
with larger differential expression be-
tween High and Low populations (Fig.
5D). Because ribosomal synthesis is tight-
ly controlled (Lempiainen and Shore
2009), our data suggest that cells in the
High population have a greater number
of ribosomes than Low cells. We further
tested this possibility by costaining
cells with CMXRos and YOYO-1 (an in-
dicator of the amount of ribosomal
RNA) (Calabuig et al. 2005). As expected,
ribosomal RNA content scaled with
mitochondrial mass (Supplemental Fig.
S6A). In agreement with this evidence,
we found from our RNA-seq data that ex-
pression ofMYC, a regulator of ribosomal
gene transcription initiation (van Rigge-
len et al. 2010), was increased 3.4 times
on High cells.

Interestingly, the variation in mac-
romolecular biosynthesis comes together
with an alteration in degradation. This
was pointed out in the analysis of gene
ontology functions, which highlighted
“protein catabolic process” as being sig-
nificantly altered by mitochondrial con-
tent (Supplemental Table S1). Indeed,
mitochondria affect RNA andprotein sta-
bilities. mRNA stability showed a moder-
ate global dependence on mitochondrial
content (average half-life ∼46 min for
High versus∼65min for Low conditions)
(Supplemental Fig. S7A) and so did pro-
tein stability (average half-life ∼15.8 h
for High versus ∼18.4 h for Low condi-
tions) (Supplemental Fig. S7B).

Variability in alternative splicing

Fold changes in total mRNA expression
from a given gene may not be indicative
of the impact on the gene function, since
alternatively spliced mRNAs may have
different functional implications. Alter-
native splicing is a major source of pro-
teome diversity (Nilsen and Graveley
2010), with important consequences in
processes such as development (Kalsotra
and Cooper 2011) and disease (Cooper
et al. 2009). Moreover, the number and
relative abundance of mRNA isoforms
can be highly variable, suggesting that
much of the alternative splicing (AS)
may be a consequence of noise in the
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Figure 6. Effect of mitochondrial content on alternative splicing. (A) Variability in mRNA isoform ex-
pression is larger than variability in average gene expression. We show the fraction of isoforms up-regu-
lated (FC > 3) or down-regulated (FC < 1/3, red bars) by mitochondrial content compared with the
fraction of genes up- or down-regulated (blue bars). (B) Heat map displaying the levels of expression
in High and Low cells (blue to yellow) and the logarithmic FC (red to green). This panel shows a group
of genes in which alternative mRNA types are inverted in High versus Low cells. (C) Scatter plot of log-
arithmic FCs for pairs of alternatively spliced transcripts with FC > 10(FC < 1/10). The threshold value
of FC (black squares) defines three domains in which AS is drastically altered by mitochondrial content:
(black) both AS forms are overexpressed in mito-high conditions; (blue) both forms are down-regulated;
(red) one form is overexpressed and the other is underexpressed. The inset shows the quantification of the
fraction of dots in each domain. (D) Schematic representation of the two-stepmodel involving pre-mRNA
formation (with transcription rate k) and conversion to alternatively spliced forms with splicing rates α1
and α2. These mature mRNA forms can be degraded with rates δ1 and δ2, respectively. (E) Scatter plot of
logarithmic fold changes for pairs of alternatively spliced forms simulated from the two-step model (see
Supplemental Text for details). The threshold in FC and color code is the same as in B. (F) Changes in ATP
affect alternative splicing. Jurkat cells treated for 12 h with deoxyglucose, which affects the splicing of
PTPRC. Under low ATP conditions, the spliced form of PTPRC lacking exons 4, 5, and 6 is overexpressed.
For both treatments, each line is a biological replicate.
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splicing machinery (Melamud and Moult 2009; Pickrell et al.
2010). Previous studies of cell-to-cell variability in the mRNA iso-
form ratios for two endogenous genes have indeed shown that
this variability can be considerably large and originated by fluctu-
ations in the regulatory splicing machinery (Waks et al. 2011).
High heterogeneity in single-cell alternative splicing has also
been observed in immune cells in response to lipopolysaccharide
stimulation (Shalek et al. 2013).

Heterogeneity in mitochondrial content will likely have an
impact on AS through different processes, either directly as a mod-
ulator of energy supply (required for themajority of steps, from the
molecular assembly of the spliceosomal complex to intron remov-
al) or indirectly through its influence on other gene expression or
regulatory processes that are coupled to AS (Braunschweig et al.
2013): For instance, RNA Pol II elongation is known to play a role
in AS regulation (Kornblihtt 2007). Therefore, we analyzed the
changes in abundance of all mRNA forms between the High and
Low populations. The first observation is that global variability in
mRNA isoforms is much larger than variability in the joint expres-
sion levels of genes. The proportion of genes differentially ex-
pressed (those with FC differences between subpopulations larger
than three) is∼50%,whereas the proportionof individual isoforms
increases up to 80% (Fig. 6A). Notably, there is an appreciable frac-
tion of isoforms (∼13%) that are muchmore abundant in the Low
population (Fig. 6A, “Down” red bar). This suggests thatmitochon-
dria modulates the outcome of AS in a complex way, since the
amount of manymRNA forms is not just proportional to the tran-
scriptional activity (RNA Pol II and poly[A]) (Supplemental Fig.
S6B,C). This is vividly illustrated in Figure 6B, where we show the
expression levels and fold changes of all the isoforms for a few rep-
resentative genes. These genes show “inversions” of isoform levels
(some isoforms are more abundant in the High population and
others in the Low population, seen as intermingled red and green
colors in the FC column) (Fig. 6B).

Tomake an amenable analysis of the variability in AS,we con-
structed a differential expression map of AS by randomly selecting
isoform pairs within all genes and plotting the relative abundance
of those pairs with larger FCs (Fig. 6C) (we show all isoforms with
FC > 10 [<1/10]). The three regions in thismap correspond to three
different situations of altered AS due to mitochondrial content: In
the upper right quadrant (black circles), both isoforms showed
much larger levels in the High population (UP case). In the bottom
left quadrant (blue symbols), the two isoforms were much more
abundant in the Low cells (DOWNcase). In the bottom right quad-
rant (red symbols), the abundance of both isoforms was inverted
(one isoform much more expressed in High and the other in
Low, INV situation). These inversions, that qualitatively change
the pattern of AS, represented a considerable fraction of all differ-
entially expressed genes (inset of Fig. 6C).

How can AS be altered in such a way by mitochondria?
Probably this is not the result of a single factor, since through
modulation of ATP content, mitochondria can affect almost every
individual step in mature mRNA formation. To test whether the
observed variability in isoforms could be explained by noise in
the splicing machinery/alternative site choice (Melamud and
Moult 2009; Pickrell et al. 2010) or could be attributed to changes
in the transcription processes coupled to splicing, such as RNA Pol
II elongation speed (Eperon et al. 1988; de la Mata et al. 2003), we
simulated our RNA-seq data with a simple kinetic model (Fig. 6D).
In this model, we summarize in two steps (pre-mRNA production
with rate k and conversion to isoforms 1 and 2 with rates α1 and
α2, respectively) each alternative splicing event. Each isoform

abundance can be obtained from the steady-state levels as
M∗

1 = N1k/d1, M∗
2 = (1− N1)k/d2, where N1 = a1/(a1 + a2) is the

fraction of pre-mRNA converted to isoformM1. We generated val-
ues of transcription rate k and degradation rates (δ1, δ2) sampling
from distributions of mRNA synthesis rates and half-lives
(Supplemental Fig. S8) obtained in a recent genome-wide study
(Schwanhäusser et al. 2011) and included gene-specific and global
variability through changes in the different parameters (details
are provided in Supplemental Text). Extrinsic variability due to
differences in mitochondrial content is taken into account in
the transcription and degradation rates according to our ex-
perimental measures of RNA Pol II elongation and mRNA decay
(Supplemental Figs. S6B, S7A; Supplemental Text). Allowing var-
iations of model parameters independently or in groups (Sup-
plemental Text; Supplemental Fig. S9), we found that the
experimental pattern could be reproduced within this condensed
two-step model (Fig. 6E), only when allowing for both high
gene-specific noise in transcription and AS splicing rates, and glob-
al noise induced by mitochondrial variability. On one hand, we
find that inversions in the relative abundance of alternatively
spliced isoforms (Fig. 6C,E, red circles) were associated with drastic
gene-specific changes in AS conversion rates (Supplemental Fig.
S9C). On the other hand, UP and DOWN regions (black and
blue circles, respectively) were caused by large differences in pre-
mRNA production rate between the Low and High conditions
(Supplemental Fig. S9B). Extrinsic variability in transcription elon-
gation and mRNA decay alone failed to account for the largest dif-
ferences in isoform levels between Low and High populations
(Supplemental Fig. S9A).

It is difficult to ascertain whether the large gene-specific
changes required to reproduce the variability in the experimental
data can be attributed only to mitochondrial differences. One pos-
sible way in which mitochondria can drastically influence tran-
scription rate and modify the outcome of alternative splicing is
by changing the choice of promoter. We then investigated the
use of alternative promoters for all expressed genes in the Low
and High populations in our RNA-seq data. We found (Supple-
mental Fig. S10A) that alternative promoter choice accounts for
∼70% of the differentially expressed splicing variants. Further-
more, changes in alternative promoter usage or transcription elon-
gation may also have an influence on isoform conversion rates
through coupling between transcriptional events and AS (Braun-
schweig et al. 2013). This finding is not surprising given the fact
that mitochondria affects the expression of epigenetic markers as-
sociated with activation of promoters H3K4me3 (Fig. 2) and the
number of active genes. Mitochondria can also have an impact
on the rate of isoform conversion by affecting the genes involved
in the production of the splicingmachinery. Analyzing the expres-
sion of these genes in the two populations, we find that ∼47% of
these genes are up-regulated (FC > 3) in the High population
(Supplemental Fig. S10B).

These results hint of the possibility that mitochondrial levels
can be modulating, directly or indirectly, many layers of AS regu-
lation. To test whether this could be mediated by differences in
ATP, we studied how changing the concentration of ATP affects
the splicing of PTPRC (also known as CD45), a paradigmatic
gene where AS is well known (Lynch 2004). We analyzed the
spliced variants produced by this gene in control cells and cells in-
cubated overnight with deoxyglucose (reducing ATP levels to 55%
of those in control cells). We found that ATP depletion resulted
in the increase of the PTPRC splice form lacking exons 4, 5, and
6 (Fig. 6F).
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Discussion

No two cells in a clonal population are identical. This nongenetic
variability may play important roles at the functional level (Brock
et al. 2009; Spencer et al. 2009; Altschuler and Wu 2010; Snijder
and Pelkmans 2011), and recent years have seen a considerable ef-
fort to trace back and understand its origins. Noise during gene
expression (the random outcome of gene products due to unpre-
dictable processes) is a fundamental source of cell-to-cell variabili-
ty and may come from the inherently probabilistic and discrete
nature of biochemical reactions (intrinsic noise) or from upstream
influences (extrinsic noise). We have a fairly good idea of the
mechanisms responsible for intrinsic noise, due to approaches
combining theoretical insights and single molecule techniques
(Raj and van Oudenaarden 2009; Sanchez and Golding 2013).
On the other hand, it is difficult to ascertain which upstream pro-
cesses have a larger impact on gene expression variability: Extrinsic
noise is probably the combination of several factors, reflecting
both stochastic and deterministic influences (Snijder and Pelk-
mans 2011). We reasoned that, gene expression being a process
with high energy demands, cell-to-cell variability in mitochondri-
al content could be a fundamental source of global heterogeneity
in gene expression.

Wehave shownhere that natural variability inmitochondrial
contentmay account for roughly half the variability in protein lev-
els, and this is likely due to the energetic modulation of many dif-
ferent layers of the biosynthetic activity, affecting gene expression
outcome.

The first layer of gene regulation is chromatin modification.
We find that mitochondria influence epigenetic chromatin modi-
fications, notably those activating transcription.

It is not surprising to associate histone acetylation and meth-
ylation to mitochondrial content, since they modulate the con-
centration of precursors for these reactions (Supplemental Fig.
S11). For instance, mitochondrial abundance highly correlates
with levels of Pyruvate Dehydrogenase (PDP1) (Supplemental
Fig. S1E), which is essential for the production of acetyl-CoA (a pre-
cursor of histone acetylation driving histone hyper-acetylation
(Gut andVerdin 2013)). Likewise, histonemethylation is catalyzed
by histone methyl transferases and the substrate S-adenosyl-L-me-
thionine (SAM), whose production depends on ATP. Moreover,
H3K36me2 and H3K4me3 (Fig. 2) are demethylated by the action
of lysine specific demethylases (KDM2A/B), which are activated by
2-oxoglutarate, whose concentration depends onADP/ATP among
others (Salminen et al. 2014).

Another layer of gene expression affected by mitochondrial
heterogeneity is the regulation of the transcriptional machinery
(general transcription factors and RNA Pol II). Mitochondria in-
fluence both the content of RNA Pol II and its function. The
impact, however, is not the same for all the steps of the transcrip-
tion cycle because there may be many biochemical reactions for
which ATP is not a limiting factor. We investigated this by in
vivo monitoring the transcriptional dynamics of RNA Pol II, sim-
ilar to previous studies (Darzacq et al. 2007). A simple kinetic mod-
el of the polymerase transcriptional cycle allows extracting the
relevant rates using time-dependent FLIP experiments, and we
compared these rates in normal and ATP-depleted cells. Our anal-
ysis showed that ATP mostly influences transcription elonga-
tion rates and the fraction of polymerases per gene committed
to elongation, which is consistent with previous measurements
of the ATP dependence of the elongation rate (das Neves et al.
2010).

The final step of gene expression is translation, which
strongly depends on mitochondrial content. This is expected
because translation is the most energy demanding process in the
cell (Lane and Martin 2010). Mitochondrial levels affect both the
content of translation machinery and its activity, particularly ri-
bosome biosynthesis. This is confirmed both by the strong co-
variation in individual cells of mitochondria and ribosome
metabolism proteins and by our RNA-seq data highlighting the
large influence of mitochondria on genes coding for ribosomal
proteins.

Consistentwith that, ATPmodulation by retrograde signaling
experiments resulted in a large effect on translation apparatus gene
expression (Chae et al. 2013; Guha et al. 2014). However, retro-
grade signaling experiments, although informative, do not reflect
the physiological role of the natural variation of mitochondrial
content on gene expression regulation.Mitochondrial DNA deple-
tion causes, among others, increased reactive oxygen species (ROS)
production and perturbation of cytosolic Ca2+, which both signal
to the cell nucleus (Chae et al. 2013; Guha et al. 2014), affecting
processes like alternative splicing (Vivarelli et al. 2013). We have
analyzed the contribution of ROS to RNA Pol II transcription
and ATP production, and we have seen that both processes are
very sensitive to ROS (Supplemental Fig. S12). Therefore, it is diffi-
cult to distinguish the genuine effects of ROS from those of ATP in
gene expression.

Another main finding of this study is the influence of mito-
chondrial content on AS. AS regulation is a complex process
involving many different steps. For instance, several histone mod-
ifications are known to regulate AS and have been shown to be as-
sociated with changes in relative isoform abundance (Luco et al.
2011; Podlaha et al. 2014). This has led to the proposal of twomod-
els of epigenetic regulation of splicing: the kinetic model and the
chromatin-adaptor model.

According to the kinetic model proposed by Kornblihtt and
colleagues (Luco et al. 2011), the chromatin structure affects
RNA polymerase elongation rate, which influences the competi-
tion between weak and strong splice sites for the recruitment of
splicing factors (Luco et al. 2011). On the other hand, in the chro-
matin-adaptormodel, histonemodifications along the gene deter-
mine the binding of an adaptor protein that recruits specific
splicing factors. Our results show that mitochondrial content af-
fects epigenetic markers involved in transcription activity like
H3K36me3, associated with transcription elongation (Fig. 2),
and also RNA Pol II elongation per se (das Neves et al. 2010).
Thus, the effect of mitochondria on transcription elongation
could be enough to explain the changes in AS proposed by the ki-
netic model, although we cannot exclude the possibility that the
impact of mitochondrial content on AS is the combination of
both models.

Another way to control AS is by specific splicing factors that
bind to RNA and help to resolve exon–exon junction choice.
Recently, a new role for these factors on RNA Pol II elongation
has emerged. For instance, the splicing factor SF1 interacts with
the positive elongation complex P-TEFb, which phosphorylates
the Ser2 residues of the CTD to increase Pol II processivity. It has
been proposed that the assembly of splicing complexes on nascent
RNAmay facilitate Pol II elongation across a gene (Fong and Zhou
2001). Further evidence for the role of splicing factors in RNA Pol II
elongation has been reported in experiments in which the SRSF2
factor was depleted and resulted in RNA Pol II pausing, possibly
as a consequence of defective recruitment of the P-TEFb complex,
reducing Ser2 CTD phosphorylation (Lin et al. 2008). This
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combined evidence suggests that AS ismostly controlled through a
kinetic mechanism. Then, mitochondria might influence AS
through its direct impact on RNA Pol II kinetics.

AS drives proteome diversity, and it is estimated that up to
94% of genes are alternatively spliced in humans (Pan et al.
2008). Moreover, AS is more widespread in multicellular than uni-
cellular eukaryote (Kornblihtt et al. 2013), suggesting a possible
role defining cellular identity. For instance, AS is known to regulate
cell lineage choice (Xu et al. 2006; Gabut et al. 2011; Folmes et al.
2012; Liu et al. 2012; Han et al. 2013). Mitochondria have been
also involved in cell differentiation (Folmes et al. 2012; Romero-
Moya et al. 2013). These facts make it tempting to think that mito-
chondria might influence cell differentiation through AS.

If mitochondrial content/function modulates AS, both are
likely to be associated in pathological situations. AS impacts on
cancer biology through its effect on genes affecting cell cycle con-
trol, signal transduction pathways, apoptosis, angiogenesis, inva-
sion and motility, and metastasis (Venables 2006). Cancer could
be the paradigm in which mitochondria dysfunction and AS are
linked (Hanahan andWeinberg 2011): For instance, mitochondri-
al DNA copy number reduction has been associated with breast
cancer (Tseng et al. 2006) and shown to modulate the expression
of the epithelial splicing regulatory protein (ESRP1) within this
context.

Methods

Cell culture, immunocytochemistry, and mitochondrial

content analysis

Cells were culture immunolabeled, imaged, and signal analyzed as
described in Iborra and Buckle (2008). Mitochondrial mass was
measured as the integrated signal of CMXRos (Molecular Probes)
incorporated by individual cells. For experiments using Galactose
instead of glucose, cells were adapted for 2 wk to grow in DMEM
deprived of glucose (Invitrogen) supplemented with 10mM galac-
tose, 2 mM glutamine 25 mMHEPES, 10% FBS, 1 mM sodium py-
ruvate, and penicillin-streptomycin.

Transcription and translation activities

Transcriptional activity was monitored in CMXRos stained cells
(∼200–500 cells) by BrU incorporation after 30 min as described
in das Neves et al. (2010). Controls were performed by incubation
for 1 h with 100 µM DRB or for 1 h with 1 µg/mL actinomycin D
prior to BrU incubation, abolishing BrU incorporation completely
(data not shown).

Translational activity in CMXRos-incorporated cells was
monitored after 30 min of incorporation of the methionine
analogous L-homopropargylglycine (AHA) and the Click-iT HPG
Alexa Fluor 488 Protein Synthesis Assay Kit, followingmanufactur-
er guidelines. Controls were performed by incubation for 30 min
with 1 mM Cycloheximide, which abolished AHA incorporation
into nascent proteins (data not shown).

FLIP analysis

Briefly, in FLIP experiments a nuclear area is continuously photo-
bleached (Supplemental Fig. S4A), and the fluorescence intensity
is a measure of the amount of RNA Pol II-GFPmolecules in the un-
bleached area. The decay in fluorescence is then due to the free
RNA Pol II-GFP molecules entering the bleached area. Different
dynamic regimes in the fluorescence decay thus indicate the
presence of different dissociation kinetics (Hieda et al. 2005).

The simple kinetic model shown in Figure 4 can be used to esti-
mate the reaction rate constants. Further details are provided in
Supplemental Text and Supplemental Figure S4.

ATP determination

ATP concentration was determined using the ATP Biolumines-
cenceAssayKitHS II (Roche), followingmanufacturer instructions.

Cell sorting

Trypsinized HeLa cells were stained with MitoTracker Green FM
dye (Molecular Probes) for 15 min in DMEM, following manufac-
turer guidelines. Then, cells were sorted on a fluorescence-activat-
ed cell sorter (MoFlo; DakoCytomation) to purify populations of
cells with different mitochondrial content as described in das
Neves et al. (2010).

Poly(A) RNA FISH and RNA extraction

HeLa cells were sorted as described in das Neves et al. (2010). We
used RNA-FISHmethods described in Brown et al. (2008) to detect
poly(A) using Cy5-d(T)30 from Sigma-Aldrich. Total RNA from
sorted cells was extracted using RNeasyMini Kit fromQiagen using
manufacturer guidelines.

Primary processing of Illumina RNA-seq reads

One lane per sample was used in a 50-bp paired-end run on an
IlluminaGenomeAnalyzer IIx. RNA-seq readswere obtained using
Bustard (Illumina Pipeline, version 1.3) and quality-filtered using
the standard Illumina process. The number of sequences obtained
was 24,688,385 sequences for the low mitochondria sample and
29,809,072 sequences for the high mitochondria sample.

Mapping of RNA-seq reads and transcript assembly

Obtained reads from the two samples were aligned to the NCBI H.
sapiens reference genome (build GRCh37) using TopHat v1.1.4
(Trapnell et al. 2009, 2010) with default parameters, which in-
corporates the Bowtie v0.12.7 algorithm for the alignment
(Langmead et al. 2009). The aligned read files fromTopHatwere as-
sembled into transcripts with Cufflinks v0.9.3 (Trapnell et al.
2009) using the Ensembl GRCh37.60 gene annotations file as ref-
erence (Flicek et al. 2012). Cufflinks estimated the relative abun-
dance of each transcript using the normalized RNA-seq fragment
counts. The unit of measurement is fragments per kilobase of
exon per million (FPKM) fragments mapped.

Functional analysis

mRNAs with an expression difference of twofold or higher were
split into two lists: mRNAs overrepresented in the mito-high sam-
ple or in the mito-low sample. These lists of mRNAs were supplied
to the FatiGO scan tool (Babelomics4 suite) (Medina et al. 2010) to
study the functional enrichment profile and to Gene Ontology
(GO). GO terms with a high score were grouped by related func-
tions, and the genes associated with them were split using in-
house perl scripts. Gene expression values were log10 transformed,
and fold change was calculated as mentioned below.

RNA-seq post-assembly analysis

We first checked the average mRNA content per cell in the two
populations by poly(A) mRNA FISH. This showed an mRNA ratio
(Low/High) of 0.34. In order to properly calculate relative differ-
ences in expression, the mRNA/gene expression levels calculated
by Cufflinks were corrected in the Low sample by a 0.34 factor.
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mRNA/genes with expression values lower than 0.1 FPKM in both
samples were filtered out. Fold changewas calculated as the natural
logarithm of the ratio High FPKM/Low FPKM. To avoid logical er-
rors and to reduce the significance of low expressionmRNA genes,
we introduced a cutoff of 0.8 FPKM to calculate fold changes for
mRNA isoforms/genes expressed below this value. We checked
that using other cutoff values (0.1–2) did not alter the statistical
differences in variability between the Low and High populations.

For visualization of the differential expression map (Fig. 6C),
we calculated fold changes with a cutoff of 0.1 FPKM for all iso-
formswith lower values (we applied the same cutoff value to calcu-
late FCs from model simulations). We found 6491 genes and
16,306 isoforms with FC > 10 (FC < 0.1) between Low and High
conditions. After removing geneswith only one RNA form,we ran-
domly sampled pairs of isoforms to construct scatter plots as in
Figure 6C. The error bars in the inset are standard deviations ob-
tained with 100 independent scatter plots (genes with more
than two isoforms above threshold were resampled).

Protein expression quantification

Cells were sorted, seeded on coverslips, fixed, immunostained, and
the intensity quantified as described in Iborra and Buckle (2008).

In Figures 1, 2, and 3, the protein antibodies used wereMTOR
(2983), PFKP(12746), FASN(3180), HK2(2867), LDHA(2012),
PRPS6(4858) (Cell Signaling); SF3B4(AB66659), HNRNPU
(AB20666), NFE2L2(AB31163), EPRS(AB31531), RRS(AB31537),
HK4me3(AB8580) (Abcam); HNRNPA0(SC-16509), EP300(SC-
584), TBP(SC-56794), GTF2F(SC-235), PKM2(SC-365684), UBTF
(SC-13125), RNA Pol II(RPB1)(SC-9001) (Santa Cruz Biotechnolo-
gies); CLU(HPA000572), SRSF2(HPA049905), MCL1(HPA00 8455),
TUBB(T8328), G6PD(HPA000834), PDIA2(HPA051692), GAPDH
(G9545), PTBP1(WH0005725M1) (Sigma-Aldrich); GLUT1
(AB1340) (Chemicon); BrU(MD5010) (Caltag); H4K20me2
(39173), H3K36me2(39255), H4K16(39929), H3K27me3(61017)
(Active Motifs); and PABP (kindly provided by Dr. Amelia Nieto).

For Figure 5B, the 24 antibodies used for protein quantifica-
tion were HK2(2867), HDAC1(5356), LDHA(2012), RPS6(2217),
EIF4B(13088), VDAC(4866), PFKP(12746) (Cell Signaling); G6PD
(HPA000834), MCL1(HPA008455), TOMM22(HPA003037), CLU
(HPA000572), PTBP1(WH0005725M1) (Sigma-Aldrich); NPM1
(SC-6013), NCL(SC-8031), UBTF(SC-13125), PKM2(SC-365684),
GTF2F(SC-235), BCL2(SC-492) (Santa Cruz Biotechnology);
NFE2L2(AB31163), SF3B4(AB66659), IMMT(AB110329) (Abcam);
GLUT1(AB1340) (Chemicon); EIF5(611976), EIF6(611120) (BD).

Global mRNA and protein half-lives

For RNA half-life calculation, cells were pulsed with 1 mM BrU for
1 h, then transferred to media without BrU and supplemented
with 1 mM U and chased at different times. Then, Br-RNAwas de-
tected as above.

For protein half-life calculation, cells were labeled with AHA
for 1 h in order to be incorporated into nascent proteins, and
then cells were transferred tomediawithout AHAand supplement-
edwith 1mM leucine and chased at different times. Then, proteins
that incorporated AHA were detected following manufacturer
guidelines.

PTPRC alternative splicing

Jurkat cells grown in RPMI were treated for 12 h with 25 mM
deoxyglucose which reduced the concentration of ATP to 55% of
control values measured as previously described (das Neves et al.
2010). After RNA extraction, PTPRC alternative splicing variants

were analyzed as described in a previous study (ten Dam et al.
2000).

Data access

RNA sequencing data from this study have been submitted to the
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/)
under accession numbers ERS327027 (High mitochondrial condi-
tion) and ERS327026 (Low mitochondrial condition).
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