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Wnt, a family of secreted signal proteins, serves diverse functions in animal
development, stem cell systems, and carcinogenesis. Although Wnt is generally
considered a morphogen, the mechanism by which Wnt ligands disperse is still
debated. Heparan sulfate proteoglycans (HSPGs) are extracellular regulators involved
in Wnt ligand dispersal. Drosophila genetics have revealed that HSPGs participate in
accumulation and transport of Wnt ligands. Based on these findings, a “restricted
diffusion” model, in which Wnt ligands are gradually transferred by repetitive binding
and dissociation to HSPGs, has been proposed. Nonetheless, we recently found that
HSPGs are not uniformly distributed, but are locally clustered on cell surfaces in Xenopus
embryos. HSPGs with N-sulfo-rich HS chains and those with N-acetyl-rich unmodified
HS chains form different clusters. Furthermore, endogenous Wnt8 ligands are discretely
accumulated in a punctate fashion, colocalized with the N-sulfo-rich clusters. Based on
these lines of evidence, here we reconsider the classical view of morphogen spreading
controlled by HSPGs.
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INTRODUCTION

It is generally recognized that functions of secreted signaling proteins, or morphogens, are
affected by heparan sulfate proteoglycans (HSPGs). Some of the greatest contributions to this
view have come from genetic research involving Drosophila (Yan and Lin, 2009). Historically,
genes responsible for segment polarity cuticle phenotypes, which are similar to the phenotypes
of wingless (wg; Drosophila ortholog of Wnt1), and hedgehog mutant embryos, were identified as
genes involved in glycogenesis of heparan sulfate (HS) chains (Binari et al., 1997; Hacker et al.,
1997; Haerry et al., 1997; Lin and Perrimon, 1999). Furthermore, genes encoding core proteins of
HSPGs, such as glypicans (Filmus et al., 2008) and enzymes for glycosaminoglycan (GAG) chains,
such as EXTs (Busse-Wicher et al., 2014), regulate signal transduction and extracellular trafficking
of morphogen proteins. In parallel with genetic research, biochemical studies have shown that HS
chains have high affinity for many kinds of morphogens, including FGF (Esko and Selleck, 2002)
and Wnt (Gao et al., 2016). Based on these studies, interactions between morphogens and HSPGs
have been considered crucial for generation and maintenance of signaling (Sarrazin et al., 2011).

Interestingly, HSPGs show variable GAG chain composition and core protein structure. GAG
chains are especially highly modified by N- and O-sulfation and the extent of these modifications
is variable (Esko and Selleck, 2002). This variation has been recognized for a long time, but it was
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unclear whether modifications of individual HS chains vary
within individual cells. However, our recent studies have revealed
that N-sulfo-rich and N-acetyl-rich HSPGs form different
clusters on individual cells (Mii et al., 2017). This new finding
suggests that distinct clusters of HSPGs regulate Wnt signaling
differently and that distribution of these clusters may govern
dispersal of signaling proteins and may define the signaling range
(distance) of morphogens. In this review, we will first provide a
general understanding of the structural and functional diversity
of HSPGs. Then we will document the clustering of specifically
modified HSPGs and propose a model by which Wnt signaling is
governed via interaction with clusters of HSPGs.

WNT SIGNALING AND INTERCELLULAR
DELIVERY

Wnt ligands activate several distinct cellular signaling pathways,
including the Wnt/β-catenin and Wnt/JNK pathways (Niehrs,
2012). Upon activation of the Wnt/β-catenin pathway, Wnt
ligands promote assembly of signaling complexes called
“signalosomes,” which involve Frizzled (Fz) receptors, Lrp5/6
coreceptors, and cytoplasmic components Dishevelled (Dvl)
and Axin (Bilic et al., 2007; Kikuchi et al., 2009). Formation
of signalosomes results in stabilization of cytosolic β-catenin,
thereby activating Tcf transcription factors and their target genes
(Kikuchi et al., 2009). In contrast, the Wnt/JNK pathway requires
Fz receptors and Dvl, and it activates small GTPases, such as
Rho and Rac, and the protein kinase, JNK (Niehrs, 2012). In
humans and mice, 19 Wnt ligands have been identified, and
some of them, Wnt1, Wnt3a, and Wnt8, preferentially activate
Wnt/β-catenin whereas others, Wnt5a and Wnt11, activate
mainly the Wnt/JNK pathway.

Most Wnt ligands are modified with palmitoleic acid and
delivered to neighboring cells (Takada et al., 2006). A number
of mechanisms have been proposed to explain Wnt delivery
(Takada et al., 2017). For instance, extracellular vesicles, like
exosomes (Gross et al., 2012), lipoprotein particles (Panakova
et al., 2005), and filopodia-like cellular processes called cytonemes
(Stanganello et al., 2015; Stanganello and Scholpp, 2016) have
been shown to mediate Wnt delivery. In contrast, secreted
Wnt does not appear to exist as a monomer, because no
monomeric form was detected in the culture medium of Wnt3a-
expressing mouse L cells (Takada et al., 2018). Rather, Wnt3a
protein forms heteromeric complexes with partner proteins or
assembles itself into high-molecular-weight complexes, which are
less diffusible and which easily dissociate to form complexes with
Fz receptors (Takada et al., 2018). In embryos, some Wnt-binding
proteins facilitate Wnt delivery. Some secreted Frizzled-related
proteins (sFRP), sFRP2 and Frzb, form heteromeric complexes
with Wnt so as to enhance their delivery in Xenopus embryos
(Mii and Taira, 2009; Takada et al., 2018). Similarly, swim,
a member of the Lipocalin family of extracellular transport
proteins, facilitates Wg diffusion in Drosophila imaginal disks
(Mulligan et al., 2012).

In addition to these delivery systems, HSPGs are also involved
in Wnt delivery. Genetic studies in Drosophila suggest that
HSPGs either enhance signaling by Wnt ligands or delivery of

Wnt ligands to neighboring cells in a context-dependent manner
(Han et al., 2004b; Franch-Marro et al., 2005; Yan and Lin, 2009).
It has been proposed that HSPGs mediate Wnt delivery by
a restricted-diffusion mechanism, in which Wnt ligands are
transported in a “bucket brigade” manner by repeated association
and dissociation with HSPGs on cell membranes (Yan and Lin,
2009). The restricted diffusion model has been adopted to explain
the mechanism of delivery of several secreted signal proteins,
including Wnt. However, results of recent quantitative analyses
do not appear to support this model. For instance, Dpp diffuses
freely in Drosophila wing disks (Zhou et al., 2012). Similarly,
freely diffusing forms of Wnt8 have also been detected in Xenopus
embryos (Mii et al., 2020). These examples imply that the
restricted diffusion model should be carefully reconsidered.

CHARACTERISTICS OF CORE
PROTEINS AND SUGAR CHAINS OF
HSPGS

HSPGs are composed of core proteins with attached heparan
sulfate (HS) GAG chains. Approximately 20 core proteins have
been identified and are classified into several families, based
upon their structures (Sarrazin et al., 2011). Proteins of the two
major families, the glypican and syndecan families, are attached
to cell membranes (Bernfield et al., 1999). Glypican family
proteins, including GPC1-6 in vertebrates and Dally and Dally
like protein (Dlp) in Drosophila, are linked to the membrane
by glycerophosphatidylinositide (GPI)-anchors. These glypicans
can be divided into two subgroups based upon amino acid
sequence homology. GPC1/2/4/6 and Dlp form one group, while
GPC3/5 and Dally form the other (Filmus et al., 2008). Evidence
suggests some functional differences among glypicans, but it
remains to be seen whether such differences result from structural
differences between the subfamilies (Han et al., 2004b; Franch-
Marro et al., 2005; Yan and Lin, 2009). Glypican family proteins
commonly have a cysteine-rich domain at their N-termini and
several HS attachment sites close to the membrane anchoring
site. Interestingly, the structure of this cysteine-rich domain is
similar to that of Fz and it mediates Wnt binding (Topczewski
et al., 2001). On the other hand, syndecan family members
(SDC1-4 in vertebrates and a single syndecan in Drosophila)
are transmembrane proteins. Syndecans bear HS chains at
their N-termini and some SDCs also bear chondroitin sulfate
(Gondelaud and Ricard-Blum, 2019). In addition to these two
types of cell surface HSPGs, secreted HSPGs (perlcan, agrin,
and collagen type XVIII in vertebrates and terribly reduced
optic lobes (trol) in Drosophila), have also been identified.
Secreted HSPGs are mainly found in the extracellular matrix
(Sarrazin et al., 2011).

HS chains are linear polysaccharides that contain 20–150
repeating disaccharide units of N-acetylglucosamine (GlcNAc)
and either uronic acid [glucuronic acid (GlcA) or iduronic acid
(IdoA)] (Sarrazin et al., 2011). These chains are synthesized
in the Golgi by sequential actions of glycosyl transferases
and modification enzymes (Esko and Selleck, 2002). HS chain
synthesis is initiated by adding tetrasaccharide linkers to
serine residues in the core proteins. Then, a number of
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disaccharide units are sequentially attached to HS chains by
co-polymerases known as Ext1 and Ext2 [Tout-velu (Ttv) and
Sister of ttv (Sotv) in Drosophila]. Following this polymerization
process, elongated HS chains are extensively modified by
sulfotransferases and an epimerase. For instance, GlcNAc
N-deacetylase/N-sulfotransferase [NDST1-4, or sulfateless (sfl) in
Drosophila] catalyzes GlcNAc N-deacetylation and N-sulfation
(Figure 1A), and C5 epimerase converts GlcA to IdoA. In
addition, 2-O-Sulfotransferase, 6-O-Sulfotransferases, and 3-
O-Sulfotransferases variously catalyze O-sulfation at C2 of
uronic acid, at C6 of N-acetyl- and N-sulfo-glucosamine, and
at C3 of glucosamine, respectively. Notably, these reactions
do not proceed to completion in the Golgi, resulting in
structural diversity of HS chains. Domains rich in N-sulfated
disaccharides and those rich in unmodified disaccharides, that
is, N-acetyl disaccharides, exist on HS chains (NS or NA
domains, respectively, Figure 1B; Gallagher and Walker, 1985;
Maccarana et al., 1996; Bernfield et al., 1999). In the N-sulfated
rich domain, O-sulfation is also frequently detected. Thus,
these modifications appear to occur commonly among adjacent
disaccharides in HS synthesis.

INVOLVEMENT OF GLYPICANS IN WNT
SIGNALING AND DISTRIBUTION

Genetic studies using Drosophila illustrate the importance of
HSPGs in Wnt signaling. For instance, loss-of-function of
glypican, Dally or Dlp, results in reduction of Wg signaling and
extracellular Wg levels in wing disks (Franch-Marro et al., 2005;
Han et al., 2005). Similarly, Wg signaling and the extracellular
distribution of Wg are reduced in cells deficient in genes required
for biosynthesis of HS chains, including sugarless (UDP-glucose
dehydrogenase) (Hacker et al., 1997; Haerry et al., 1997), sfl
(NDST) (Lin and Perrimon, 1999; Baeg et al., 2004), and Ttv
and Sotv (EXTs) (Han et al., 2004a; Takei et al., 2004). Thus,
HSPGs are essential for proper signaling and distribution in
fly development.

In vertebrates, HSPGs may modulate various extracellular
signaling proteins, but several lines of evidence confirm their
involvement in Wnt signaling. For instance, in zebrafish and
Xenopus, disruption of gpc4/knypek function causes defects
in convergent extension movement, which is modulated by
Wnt/JNK signaling, during gastrulation (Topczewski et al.,
2001; Ohkawara et al., 2003). Mouse embryos lacking Gpc3
show reduced Wnt/JNK signaling (Song et al., 2005). Cell
culture studies indicate that glypicans appear to modulate
β-catenin-dependent and -independent pathways in vertebrate
cells, depending on different membrane microdomains (Sakane
et al., 2012). In addition to glypicans, other HSPG core proteins,
syndecan and perlecan, are involved in Wnt signaling, but will
not be considered here.

One of the important issues regarding Wnt binding is
whether HSPG core proteins or GAG chains are required. Since
Gpc3 lacking GAG chains can bind to several Wnt ligands
and can positively regulate canonical Wnt signaling (Capurro
et al., 2005), glypican core protein appears sufficient for Wnt
binding. In contrast, involvement of GAG chains for interaction

with Wnt has also been reported. Wnt8 accumulation upon
overexpression of Gpc4 or Gpc5 appears to be HS chain-
dependent, because 1GAG mutants of these glypicans do not
accumulate Wnt8 (Mii et al., 2017). Furthermore, Drosophila
mutants with impaired HS chains suggest essential roles for HS
chains in Wg binding and regulation (Lin and Perrimon, 1999;
Baeg et al., 2004; Takei et al., 2004). Thus, in addition to core
protein, HS chains appear to be required for Wnt signaling
in vivo.

HS CLUSTERS AND WNT SIGNALING

Assembly of HSPGs With Similarly
Modified HS Chains
For better understanding of HSPG-mediated Wnt signaling
and dispersal, it is important to understand the spatial
distribution of HSPGs in tissues or cells. Given the variability
in core proteins and HS chain composition, it is important
to examine the expression pattern of each core protein
and fine localization patterns of HS chain modifications.
Using two monoclonal antibodies, HepSS-1 (Kure and Yoshie,
1986; van den Born et al., 2005) and NAH46 (Suzuki
et al., 2008), which recognize HS chains of N-sulfated
(GlcA-GlcNS)n and unmodified N-acetylated (GlcA-GlcNAc)n
structures, respectively, distributions of differently modified
HS chains were examined in Xenopus embryos at gastrula
stage. At this stage, Wnt8 is expressed in the ventral and
lateral marginal zone and participates in ventral mesodermal
patterning. Immunostaining with either of these two antibodies
showed that HSPGs that react with these antibodies are not
uniformly distributed on cell surfaces. Instead, they aggregate
locally to form discrete clusters (Figures 1C,D). Increased or
decreased expression of NDST1, which catalyzes N-sulfation of
HS disaccharides, showed that HepSS-1 and NAH46 clusters
actually represent N-sulfo- or N-acetyl-rich clusters, respectively.
These results suggest that HSPGs with N-sulfo-rich or N-acetyl-
rich HS chains form discrete clusters, designated “HS clusters” on
the cell surface (Mii et al., 2017).

Distinct Roles of HS Clusters in Wnt
Signaling and Dispersal
These two types of clusters show different specificities for secreted
signal proteins. First, Wnt ligands are specifically colocalized
with N-sulfo-rich clusters. In Xenopus embryos, endogenous,
as well as overexpressed Wnt8 ligands, are also distributed
in a punctate pattern on cell surfaces. Most of these dots
overlap with N-sulfo-rich clusters (Figure 1E). This interaction
between Wnt8 and N-sulfo-rich HSs is dependent on N-sulfation,
because overexpression of ndst1 increases N-sulfation levels
and Wnt8 accumulation, and vice versa. Thus, N-sulfo-rich
HS clusters serve as major scaffolds where Wnt8 ligands are
trapped in Xenopus embryos (Mii et al., 2017). On the other
hand, N-acetyl-rich HS clusters serve as scaffolds for Frzb (Leyns
et al., 1997; Wang et al., 1997), a member of the secreted
Frizzled-related protein (sFRP) family (Bovolenta et al., 2008;
Mii and Taira, 2011).
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FIGURE 1 | Models explaining the diversity of HS chain modification of HSPGs. (A) N-sulfation of GlcA-GlcNAc units of HS chains by NDST. HS chains are
synthesized by sequential actions of glycosyl transferases and modification enzymes. After polymerization of disaccharide units, elongated HS chains are extensively
modified by sulfotransferases, including GlcNAc N-deacetylase/N-sulfotransferase (NDST), which catalyzes N-sulfation of GlcA-GlcNAc units of HS chains. (B) NA
and NS domain model. Analysis of the oligosaccharides of HS chains obtained by digestion under conditions in which N-sulfated GlcA-GlcNAc units are selectively
attacked, showed that various heparan sulfate samples all contained regions of consecutive N-sulfated GlcA-GlcNAc units, as well as contiguous N-acetylated ones
(Gallagher and Walker, 1985; Maccarana et al., 1996; Bernfield et al., 1999). These findings suggest that modifications occur in clusters of variable length (N-sulfated
or NS domains), which are interspersed among unmodified domains (N-acetylated or NA domains). It has been proposed that these two domains coexist on single
HS chains. (C) N-acetyl-rich and N-sulfo-rich HS cluster model. Recently, Mii et al. found that N-sulfo-rich and N-acetyl-rich HSPGs are clustered independently on
cell membranes of Xenopus embryos and on cultured cells (Mii et al., 2017). This new finding strongly suggests that NS and NA domains do not exist randomly on
individual HS chains. Rather, the extent of N-sulfation appears to vary between HSPG clusters. Although N-sulfo-rich and N-acetyl-rich clusters rarely overlap on the
cell surface, it cannot be excluded that HS chains in N-sulfo-rich and N-acetyl-rich HS clusters may contain some NA and NS domains, respectively.
(D) N-acetyl-rich and N-sulfo-rich HS clusters in a Xenopus embryo. Double color immunostaining with direct-labeled NAH46 (anti-N-acetyl subunits) and HepSS-1
(anti-N-sulfo subunits) antibodies shows clustered distributions of HS chains recognized by these antibodies (Mii et al., 2017). Notably, NAH46 and HepSS-1 staining
do not largely overlap, but rather show distinct distributions. (E) Endogenous Wnt8 colocalized with N-sulfo rich HS clusters. Double color immunostaining with
anti-Wnt8 and HepSS-1 antibodies shows that Wnt8 staining mostly overlaps with HepSS-1 staining. Colocalization is indicated with closed (cell boundary) and
open (inside cells) arrowheads. Scale bars, 20µm.
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Wnt ligands trigger formation of signalosomes (Bilic et al.,
2007), which are subsequently internalized by caveolin-mediated
endocytosis (Yamamoto et al., 2006; Kikuchi et al., 2009). In
signalosomes, Fz receptors, LRP5/6 coreceptors, and cytoplasmic
components, including Dvl and Axin, are assembled to facilitate
phosphorylation of LRP5/6, which is essential for activation
of canonical Wnt signaling (Bilic et al., 2007; Kikuchi et al.,
2009). Notably, N-sulfo-rich HS clusters, but not N-acetyl-rich
HS clusters, are frequently internalized (Mii et al., 2017). In the
presence of Wnt8, phosphorylated LRP6 is preferentially detected
at N-sulfo-rich HS clusters, but NDST1 knockdown reduces LRP6
phosphorylation and also Wnt/β-catenin signaling. Consistent
with these results, NDST1 knockdown inhibits secondary axis
formation caused by ventral injection of wnt8 mRNA in Xenopus
embryos. It was also shown that Wnt3a and signalosome
components are localized with N-sulfo-rich HS in HeLa cells.
These results suggest that N-sulfo-rich HS clusters are required
for Wnt/β-catenin signaling and signalosome formation in
Xenopus embryos and cultured cells. Because N-sulfo-rich HS
clusters form independently of Wnt ligand, it seems probable
that N-sulfo-rich HS clusters serve as pre-existing scaffolds to
assemble signalosomes (Mii et al., 2017).

As described above, Wnt8 associates with N-sulfo-rich
HS clusters in Xenopus embryos. However, when Frzb is
overexpressed, Wnt8 association with N-sulfo-rich HS clusters
decreases, and Wnt8 then associates with N-acetyl-rich clusters
via Frzb (Mii et al., 2017). Given that Wnt8 forms a heteromeric
complex with Frzb (Leyns et al., 1997; Wang et al., 1997), Wnt8
that forms these heteromeric complexes probably associates with
N-acetyl-rich clusters. In contrast, other forms of Wnt8, such
as Wnt8 in extracellular vesicles or in homomeric complexes
(Takada et al., 2018), as indicated above, may associate with
N-sulfo-rich clusters. In Xenopus embryos, ectopically expressed
Wnt8 shows only a short distribution range, but this range can be
expanded if Frzb, which shows a much longer one, is coexpressed
with Wnt8 (Mii and Taira, 2009). Thus, in this context, it seems
probable that N-acetyl-rich HS clusters serve as scaffolds that
enable more long-range delivery of Wnt8/Frzb complexes.

We recently found that some Wnt8 diffuses freely, but that
the majority of it is bound to cell surface scaffolds, probably
HSPG clusters (Mii et al., 2020). Interestingly, Wnt8 molecules
bound to scaffolds seem to be released occasionally, but diffusing
away rather than being trapped on the adjacent cell surface.
Thus, in contrast to predictions by the restricted diffusion
model (Figure 2A), “bucket-brigade”-type transfer of Wnt8 was
not detectable on cell surfaces (Mii et al., 2020). Given that
scaffolds are scattered on cell membranes, Wnt8 molecules,
probably associating with Frzb, are likely to be delivered over long
distances by jumping between the scaffolds, probably provided
by N-acetyl-rich clusters (Figure 2B; Mii and Taira, 2009;
Mii et al., 2017).

Specificity of Glypicans for Distinct HS
Clusters
Evidence suggests that glypicans are the major core proteins of
these HS clusters. PI-PLC treatment and cholesterol removal

with methyl-β-cyclodextran reduced HS clusters, suggesting that
GPI-anchored proteins, most probably glypicans, are involved
in clustering. Among glypicans, Gpc4 and Gpc5 are highly
expressed in Xenopus gastrulae. We demonstrated that Gpc5,
an ortholog of Drosophila Dally, bears mainly N-sulfo-rich HS,
whereas Gpc4, an ortholog of Dlp, bears both N-sulfo-rich and
N-acetyl-rich HS (Mii et al., 2017). Thus, although glypican core
proteins provide a molecular basis for clustering, composition of
core proteins appears to differ between the two cluster types. On
the other hand, it is still uncertain whether other core proteins,
such as syndecans, are involved in formation of HS clusters.

Interestingly, Dally and Dlp appear to modulate Wg signaling
and distribution differently in Drosophila wing disk (Franch-
Marro et al., 2005; Han et al., 2005). Dally enhances Wg
signaling through DFz2 receptors and internalization of receptor
complexes. On the other hand, Dlp exhibits biphasic activity
in Wg signaling and distribution. While Dlp acts as a positive
regulator in regions distal from Wg-producing cells, it also acts
as a negative regulator proximally. This biphasic behavior can
be explained if Dlp delivers captured Wg to Fz receptors on the
same cell or passes it to neighboring cells, depending on the
cellular context. In view of phylogenetic relationships of these
Drosophila glypicans to Gpc5 and Gpc4, as shown above, we
propose that the specificity of the two glypican subfamilies in
Wnt signaling and distribution is consistent among invertebrates
and vertebrates.

Mechanisms by Which Discrete HS
Clusters Are Formed
It remains to be determined how these two distinct types of
clusters are generated. To answer this question, understanding
the regulation of HS modifications in the ER and/or the Golgi
seems to hold the key. Interestingly, it has been suggested that
NDST1 is associated with Ext1 or Ext2 in the Golgi, forming
an HS biosynthesis complex called a GAGosome (Esko and
Selleck, 2002). The stoichiometry and composition of these
enzymes in GAGosomes may affect modifications of HS chains,
such as N-sulfation (Presto et al., 2008). Given that some
types of GAGosomes are localized in particular regions in
the Golgi, this spatial heterogeneity may generate differential
N-sulfation even within a single cell. Consistent with this
idea, sulfateless, Drosophila NDST localizes in a specific sub-
compartment of the Golgi apparatus (Yano et al., 2005). On the
other hand, biosynthesis and transport of 3′-phosphoadenyl 5′-
phosphosulfate (PAPS), a sulfuryl group donor, are required for
proper sulfation reactions (Kurima et al., 1998; Esko and Selleck,
2002; Kamiyama et al., 2003). If local abundance or absence
of PAPS exists in Golgi, this could be a mechanism generating
distinct modifications of HS clusters.

PERSPECTIVES

In this review, we proposed that novel types of HSPGs, N-sulfo-
and N-acetyl-rich HS clusters, provide insight into regulation of
secreted signaling proteins, such as Wnt. HS clusters enable cells
to regulate Wnt8 and its binding protein, Frzb, in a controlled

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2020 | Volume 8 | Article 631

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00631 July 12, 2020 Time: 17:54 # 6

Mii and Takada HSPG Clustering in Wnt Signaling

FIGURE 2 | Models to control Wnt signaling and dispersal by HSPGs. (A) Restricted diffusion model. Based on genetic studies in Drosophila, it has been proposed
that HSPGs mediate Wnt delivery by a restricted-diffusion mechanism, in which Wnt ligands are transported in a “bucket brigade” manner by repeated association
and dissociation with HSPGs on cell membranes (Yan and Lin, 2009). (B) Model to explain Wnt signaling and delivery by clustering of HSPGs. Wnt8 preferentially
binds to N-sulfo-rich HS clusters and Frzb binds to N-acetyl-rich clusters (upper; Mii et al., 2017). Accumulation of Wnt8 on N-sulfo-rich HS clusters leads to
signalosome formation and internalization of Wnt8, which may contribute to degradation of Wnt8. When Frzb is abundant (lower), Wnt8-Frzb complexes bind to
N-acetyl-rich HS clusters, which may reduce degradation of Wnt8 (Mii et al., 2017). Given that these two clusters are not distributed uniformly on the cell surface, it
seems unlikely that Wnt ligands are transported in a “bucket brigade” manner between these clusters. Since N-sulfo-rich HS clusters are frequently internalized, this
cluster appears to shorten the distribution range of Wnt8 (Mii and Taira, 2009). On the other hand, N-acetyl-rich HS clusters tend to remain on the cell surface,
resulting in long-range distributions of Frzb as well as Wnt8-Frzb complexes (Mii and Taira, 2009). One possible model is that the balance of Wnt interactions
between N-sulfo-rich HS clusters and N-acetyl-rich HS clusters may regulate Wnt signaling range in tissues.
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manner. Although organization of HSPGs is difficult to analyze
by biochemical methods, we assume that various types of HS
clusters could be involved in many aspects of embryogenesis and
homeostasis. Hypothetical HS clusters with various modifications
could serve as specific platforms on cell surfaces for various
secreted proteins, as exemplified by combinations of Wnt8-N-
sulfo-rich HS clusters and Frzb-N-acetyl-rich HS clusters (Mii
et al., 2017). Future studies will focus on the generality of this
finding, especially in other biological systems and with other
modifications of HS chains. Given that HSPGs modulate Wnt
signaling in various diseases (Capurro et al., 2005; Zittermann
et al., 2010; Lund et al., 2020), HS modification and clustering
could influence disease progression.
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