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STUDY QUESTION: What is the optimal follicular tracking strategy for controlled ovarian stimulation (COS) in order to minimise
face-to-face interactions?

SUMMARY ANSWER: As data from follicular tracking scans on Days 5, 6 or 7 of stimulation are the most useful to accurately predict
trigger timing and risk of over-response, scans on these days should be prioritised if streamlined monitoring is necessary.

WHAT IS KNOWN ALREADY: British Fertility Society guidance for centres restarting ART following coronavirus disease
2019 (COVID-19) pandemic-related shutdowns recommends reducing the number of patient visits for monitoring during COS. Current
evidence on optimal monitoring during ovarian stimulation is sparse, and protocols vary significantly. Small studies of simplifying IVF therapy
by minimising monitoring have reported no adverse effects on outcomes, including live birth rate. There are opportunities to learn from
the adaptations necessary during these extraordinary times to improve the efficiency of IVF care in the longer term.

STUDY DESIGN, SIZE, DURATION: A retrospective database analysis of 9294 ultrasound scans performed during monitoring of
2322 IVF cycles undertaken by 1875 women in a single centre was performed. The primary objective was to identify when in the IVF cycle
the data obtained from ultrasound are most predictive of both oocyte maturation trigger timing and an over-response to stimulation.
If a reduced frequency of clinic visits is needed due to COVID-19 precautions, prioritising attendance for monitoring scans on the most
predictive cycle days may be prudent.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The study comprised anonymised retrospective database analysis of IVF/ICSI
cycles at a tertiary referral IVF centre. Machine learning models are used in combining demographic and follicular tracking data to predict
cycle oocyte maturation trigger timing and over-response. The primary outcome was the day or days in cycle from which scan data yield
optimal model prediction performance statistics. The model for predicting trigger day uses patient age, number of follicles at baseline scan
and follicle count by size for the current scan. The model to predict over-response uses age and number of follicles of a given size.

MAIN RESULTS AND THE ROLE OF CHANCE: The earliest cycle day for which our model has high accuracy to predict both trigger
day and risk of over-response is stimulation Day 5. The Day 5 model to predict trigger date has a mean squared error 2.16 § 0.12 and to
predict over-response an area under the receiver operating characteristic curve 0.91 § 0.01.

LIMITATIONS, REASONS FOR CAUTION: This is a retrospective single-centre study and the results may not be generalisable
to centres using different treatment protocols. The results are derived from modelling, and further clinical validation studies will verify the
accuracy of the model.

WIDER IMPLICATIONS OF THE FINDINGS: Follicular tracking starting at Day 5 of stimulation may help to streamline the amount of
monitoring required in COS. Previous small studies have shown that minimal monitoring protocols did not adversely impact outcomes.

VC The Author(s) 2020. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved.
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If IVF can safely be made less onerous on the clinic’s resources and patient’s time, without compromising success, this could help to
reduce burden-related treatment drop-out.
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The authors declare they have no competing interests in relation to this work.
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Introduction
Traditionally, IVF cycles involve patients attending repeat transvaginal
ultrasound monitoring for follicular tracking during controlled ovarian
stimulation (COS). There are two crucial reasons for monitoring
during COS: firstly to facilitate clinical decision-making on the most
appropriate timing to trigger final follicular maturation in order to max-
imise the number of mature oocytes and thus chance of live birth; and
secondly, as part of a continued risk assessment of over-response.
Over-response puts patients at higher risk of ovarian hyperstimulation
syndrome (OHSS), a rare iatrogenic complication of COS (Griesinger
et al., 2016). OHSS was the most common reported complication of
ART in the 2015 European registry data with 2167 cases, an incidence
rate of 0.44% (De Geyter, 2020). In 2015–2016, 98 severe or critical
OHSS cases were reported to the UK, The Human Fertilisation and
Embryology Authority. Adequate monitoring is clearly required for
patients triaged as high risk for this potentially life-threatening condi-
tion. Indeed, the OHSS working group consensus statement recom-
mends ‘frequent vaginal ultrasonography and/or serum oestradiol
measurements’ for those identified to be at higher risk (Humaidan
et al., 2016).

However, frequent monitoring visits are time-consuming, costly and
can be disruptive to patients’ daily routines, adding to both the practi-
cal and psychological burden of IVF. In a survey across four European
countries, 21–36% of patients reported that difficulty fitting fertility
treatments into their life and the need for repeated time off work are
barriers to seeking treatment (Domar et al., 2012). Frequent monitor-
ing is also a time-intensive use of clinic staff resources. The timing and
frequency of follicular monitoring in COS are traditionally based on
the clinical culture and individual preference and, in reality, the evi-
dence for best practice is sparse. A 2014 systematic review of ultra-
sound for monitoring COS concluded that more studies evaluating the
optimal procedure for monitoring COS are needed, with a require-
ment for these to have live birth as the primary outcome and to be
adequately powered (Kwan et al., 2014). Aiming to reduce the burden
of attending for repeated scans, some clinics have trialled home sonog-
raphy as an alternative, but this technique has not been widely
adopted (Gerris et al., 2014, 2016). Simplification of IVF therapy by
minimal monitoring has been reported to have no adverse effects on
treatment outcome and the incidence of OHSS, although these studies
were small and often used patient selection criteria and fixed-dose
protocols (Abdalla et al., 1989; Tan, 1994; Wikland et al., 1994; Roest
et al., 1995; Hurst et al., 2002).

The coronavirus disease 2019 (COVID-19) pandemic requires fertil-
ity centres to maximise the safety of both patients and staff during fer-
tility treatment. This involves not only risk assessment and testing but
also minimisation of in-person clinic visits where possible to reduce
encounters and thus reduce the chance of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) viral transmission. The British
Fertility Society guidance recommends reducing the number of patient
visits for monitoring during COS, particularly in those with a normal
ovarian reserve. However, the optimal follicular tracking strategy for
COS in order to minimise face-to-face interactions is unknown. The
aim of this study is to inform centres contemplating monitoring proto-
col adjustment to minimise face-to-face interactions in the era of social
distancing, whilst SARS-CoV-2 remains prevalent in their community.
We use machine learning methods to predict the usefulness of each
day of COS monitoring in assessing the timing of final follicular trigger
and the risk of over-response. This evaluation aims to help streamline
IVF scan schedules, whilst retaining the accurate predictive power
needed for optimal, safe and personalised care.

Materials and methods
Fully anonymised retrospective electronic data (IDEASTM, Mellowood
Medical, Toronto, Canada) on IVF and ICSI cycles were extracted
from a tertiary IVF centre in the South of England, UK from 1 January
2011 to 30 November 2019. Fertility preservation, egg freezing and al-
truistic egg donation cycles were excluded.

The usual practice for this centre includes a baseline transvaginal ul-
trasound scan on menstrual cycle Days 2–4, with COS commencing
subsequent to the baseline scan. Follicle tracking scans are com-
menced after 3–5 days of stimulation and continued every other week-
day until the maturation trigger is administered. GnRH antagonist was
initiated on a fixed-day protocol at Day 5 of stimulation. Transvaginal
oocyte collection is scheduled 36 h following the trigger administration
and performed under sedation.

Detailed patient data, including demographics, cycle characteristics,
antral follicle count (AFC), diagnosis, anti-Müllerian hormone (AMH,
where available) and all follicle measurements taken during follicular
tracking, medications and dosages used for stimulation, the type of oo-
cyte maturation trigger and time/date of trigger administration, out-
come data (number of eggs collected, number of embryos frozen, live
birth from fresh cycle, cumulative live birth from embryos created from
this cycle) for each stimulation cycle, were extracted from the database.
Descriptive statistics were analysed for all variables in dataset.

Outcomes
The primary outcome was the machine-learnt model’s performance in
predicting the day of trigger administration for predictions performed
on each day of an IVF cycle and a separate model’s performance in
predicting if the patient had over-responded and hence was at higher
risk of OHSS. High response was defined as per the ESHRE ovarian
stimulation guideline as >18 follicles �11 mm in size on day of oocyte
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maturation trigger and/or 18 oocytes collected (ESHRE, 2020).
This definition was used as it has been shown to be associated with a
significant risk increase in OHSS (Griesinger et al., 2016).

Machine learning methods
To predict the day of trigger administration, we used Random Forest
Regressors, as implemented in the sci-kit learn Python library
(Pedregosa et al., 2011). These regressors are ensembles of decision
tree regressors, which perform a set of (if-then-else) decisions to pre-
dict a trigger day for a given instance. For an unseen instance, the pre-
dicted trigger day is equal to the mean trigger day of all training
instances assigned to the relevant leaf of the tree. Decision rules are
learnt by the model (as opposed to being explicitly programmed) by
selecting decisions that minimise the mean squared error (MSE) be-
tween the predicted trigger day and the actual trigger day for all
instances involved in a given decision during model training. The final
Random Forest Regressor is the mean of the predicted trigger day as
predicted by 100 individual decision tree regressors, where variance is
introduced between these individual regressors by bootstrapping the
training data. To evaluate the performance of our models, we used
5-fold cross-validation at the treatment cycle level. In this validation
scheme, the data are randomly portioned into five equal size subsets.
The model is trained on four of the subsets and evaluated on the fifth
(out-of-fold) subset, this is performed over the five possible permuta-
tions of the subsets, yielding five estimates of the models’ generalisa-
tion performance. The metric used for evaluating the models’
generalisation performance is the MSE between the predicted trigger
day and the observed trigger day. Ultimately, for each model, we re-
port the mean MSE across the five subsets and the associated standard
error. Hyperparameter tuning was not performed to ensure we did
not overfit the validation set, and reasonable model parameters were
used (i.e. no restriction on tree depth). Models were constructed for
each cycle day using the results of individual ultrasound scans per-
formed on the given day and combined with demographic data.
Missing values (<1% of patients age was not recorded in the database)
were imputed using mean imputation within respective cross-validation
folds.

For comparison, we created a baseline trigger administration day
predictor, which predicts, for a given cycle day, the mean trigger day
for all cycles in the training set which had a scan on the given cycle
day.

To construct models to predict the risk of OHSS, we used the
same validation procedure but framed the problem as a binary classifi-
cation problem (with the target described in ‘Outcomes’). For predic-
tive models, we used Random Forest Classifiers, an ensemble of 100
decision tree classifiers where the outcome is now the probability that
the instance belongs to a given class (patient at risk of OHSS or not),
which is determined by the class fraction in the relevant leaf of the
tree. The metric used for evaluating the model performance is the
area under the receiver operating characteristic curve (AUROC).

Ethical approval
Ethical approval for this study was obtained from the University
of Southampton ERGO II and NHS REC (IRAS Project ID: 275218).
A data protection impact assessment was completed and approved
by the University of Southampton DPIA panel on 23 January 2020.

Results
We collected data from follicular charts of 2322 cycles of 1875
women undergoing stimulation prior to oocyte retrieval for IVF, ICSI
or oocyte donation. A total of 9294 individual scans are included in
study. The mean age of patients included in the study was 33.57 years
(range 20–44 years). In total, 1505 patients had one cycle of COS
within the dataset, 301 had two cycles and 55 had three cycles. After
exclusion of oocyte donors and fertility preservation cycles, data from
2128 cycles from 1731 patients were complete and suitable for analy-
sis. Table I presents the age, treatment and outcome data for the ana-
lysed cycles. The live birth rate per cycle started was 31.53%.

Data presenting information on typical scan frequencies are pre-
sented in Fig. 1A and B. In Fig. 1A, we present the proportion of treat-
ment cycles that had a scan on a given day. Most patients have
baseline scans immediately prior to stimulation start, and scans are
then performed on stimulation Days 3, 4 or 5. Scans then occur with
a high frequency between cycle Days 5 and 10. Figure 1B displays a
histogram of the total number of scans each patient received in a sin-
gle treatment cycle. The median number of scans for each patient was
four (interquartile range 3–5). A follicular growth chart for a patient
with HCG trigger injection administered on cycle Day 14 (stimulation
Day 11) is displayed in Fig. 1C, a typical visualisation used by clinical
staff to help forecast the trigger administration day and a representa-
tion of the key data used by our predictive models.

Figure 2 displays a histogram of trigger administration day for each
cycle in the dataset. In this dataset, the trigger injection was adminis-
tered on mean day of stimulation of 8.92 § 1.82.

In Fig. 3, we display our machine-learnt models’ performance for
predicting the day of trigger administration for each scan day. The de-
veloped models use patient age, AFC and follicle count by size for the
current scan to predict the day trigger will be administered. The trigger
prediction models primarily use the number of follicles of each size to
make their prediction of trigger timing, essentially learning the follicle
growth rate and clinical decisions to trigger. Models using data from
any baseline scan are not highly predictive of the trigger administration
day (the mean MSE of models using data only from baseline scans is
4.42 § 0.57) and do not perform significantly better than simply as-
suming each patient triggers on the mean day of trigger administration
of historical cycles (dashed line in Fig. 3). However, models built using
data from scans performed later in the cycle become much more pre-
dictive and significantly outperform the baseline trigger day prediction
(compare dashed and solid lines in Fig. 3 for stimulation Days 4 and
beyond). From Day 5 of stimulation, there is very low standard devia-
tion of model performance across the validation folds.

This is further supported by looking at the model’s predictions in
detail, as shown in Fig. 4 for several representative days. For follicular
data obtained from baseline scans (with little discernible follicle
growth), the model cannot reliably stratify patients into their eventual
trigger administration day and does not perform better than simply as-
suming each person will trigger on the historical mean of trigger admin-
istration day (Fig. 4A). By Day 3 (Fig. 4B), the model can predict with
reasonable confidence a patient’s triggering time, such that it can reli-
ably assign patients into groups, segregated by the expected immi-
nence of trigger administration. At Day 5, the model is strongly
predictive of the day of trigger administration (data points follow the
grey line, representing a perfect predictor, in Fig. 4C much more

Streamlining number of scans during ovarian stimulation 3
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..closely). The predictive ability of this model suggests that cycle
Days 5–9 are most useful in predicting trigger timing and earlier
scans hold significantly less benefit in forecasting the trigger administra-
tion day.

The performance of our model trained to predict patients who
over-respond to treatment is displayed in Fig. 5, where we plot the

AUROC (evaluated on the out-of-fold samples) for each model
trained using scan data collected from the respective scan day. For
baseline scans, the model can predict over-response with moderate
accuracy (mean AUROC 0.77 § 0.01), showing that reasonable pre-
dictions of over-response can be made using the number of follicles
present at the baseline scan and patient age. As the treatment cycle

............................................................................................................................................................................................................................

Table I Demographic, treatment and outcome data for analysed cycles (n¼ 2128).

Variable Mean (SD) Median Interquartile range

Age (years) 33.57 (4.39) 34 31–37

AFC 13.77 (8.24) 12 8–18

Starting dose (Units) 250.6 (78.23) 225 200–300

Leading follicle size at pre-trigger scan (mm) 20.06 (2.28) 20 18–21

Oocyte number 10.81 (6.78) 9.5 6–15

M2 oocyte number 8.68 (6.44) 7 4–12

Number fertilised 6.36 (4.62) 5 3–9

Variable % of Total

GnRH antagonist cycles 88.8 – –

Folitropin alfa (Gonal FVR ) used for stimulation) 81.1 – –

MenopurVR used for stimulation 18.9 – –

Live birth rate 31.53 – –

AFC, antral follicle count; M2, metaphase II.

Figure 1. Ultrasound scan frequency during treatment cycles. (A) Proportion of cycles (vertical axis) having a scan on each given day of
the cycle (horizontal axis, most scans occur between Days 4 and 9 from stimulation start). n¼ 2128 cycles. (B) Histogram of the total number of
scans for a given cycle. (C) Follicle growth chart for a single patient in the study, with HCG trigger injection administered on cycle Day 14 (11 days
from stimulation start). A small horizontal jitter has been added to the data points to improve the visualisation.

4 Robertson et al.
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progresses, over-response can be predicted with increasing accuracy
as the follicles grow and the model can begin to predict over-response
with high precision and recall (AUROC exceeding 0.90) beyond stimu-
lation Day 5.

Discussion
The principle findings of this study are that follicular tracking data
obtained from stimulation Days 5–9 can accurately predict both the
timing of ovulation trigger and the chance of over-response during
COS. Generally, the patient’s age and ovarian reserve (AMH and/or
AFC) are used to triage their risk of over- and under-response to
COS. This study demonstrates that additional predictive power is
gained from follicular tracking data, particularly when the scan is per-
formed on Days 5–9 compared to earlier scans. This is useful to assist
with decision-making regarding use of a GnRH agonist trigger and
counselling regarding use of a freeze all embryo approach.

Our results suggest that it may be possible to reduce the number of
COS monitoring visits without compromising predictive power to
identify the timing of egg collection or increasing the risk of over-
response by starting follicular tracking from stimulation Day 5. Our
model suggests that follicular tracking early in stimulation offers little in-
sight into cycle progress. However, three patients in this dataset
(0.16%) had the trigger administered prior to stimulation Day 5 and
would experience delayed trigger with this proposed tracking ap-
proach. The mean leading follicle size at the last scan pre-trigger for
these three patients was 17.6 mm and it is possible that a delay of
1 day is of little clinical significance to their cycle outcome.

Many clinicians perform a baseline scan early in the cycle to assess
AFC, check endometrial thickness and assess for the presence of ovar-
ian cysts or endometrial polyps that could warrant postponement or
cycle cancellation: there is a lack of evidence for benefit of the latter,
particularly as most patients have had a detailed assessment, often in-
cluding 3D-ultrasound scan, as part of their pre-IVF work-up. Delaying
stimulation start for a thick endometrium at baseline scan is not justi-
fied by robust evidence and ESHRE guidelines recommend measuring
one endometrial thickness at the time of trigger scan only (ESHRE,
2020). Sensibly streamlining COS follicular tracking protocols would
reduce the number of patient contacts per cycle, potentially increasing
safety for patients and clinic staff.

Strengths and weaknesses
Not every patient has a scan on each day, and this has the effect of
the models test set for each scan day being different. The impact of
this is mitigated by using cross-validation, which we use to evaluate the
model performance on unseen data and provide an estimate of the
CIs of the performance metrics. Ideally, a prospective study would be
performed where a daily scan is performed to further validate this
work.

The trigger day targeted by these models is the timing used for each
individual patient, as decided by daily clinical multidisciplinary review of
follicular growth charts. This may not have been the optimal timing to
maximise cycle outcome. Confounders will include physician tenden-
cies/bias, avoidance of weekend scans and oocyte retrieval, and the
fact that each patient’s treatment was individually tailored. In addition,
this study was performed within a single centre operating within its
standard operating protocols. Results may not be generalisable to
other centres that, for example, significantly base decision-making on
blood monitoring during stimulation, use flexible start GnRH protocols
or have a higher rate of within-cycle stimulation dosage changes. AMH
results were not available for a significant proportion of patients in this

Figure 2. Histogram of day of trigger administration for
each cycle in the database, with Day 0 being the date that
stimulation started. The mean day of trigger administration was
after 8.92 § 1.82 days of stimulation. n¼ 2128 cycles.

Figure 3. Model performance when predicting trigger day
versus a heuristic predictor that assumes all patients are
triggered on the mean day of trigger administration.
Vertical axis is the mean squared error (MSE) between predicted
trigger day and actual trigger day. Solid black line and points display
performance for the machine-learnt regressor, and dashed black line
and points display the performance if we assume all patients are trig-
gered on the mean day. Any day with <100 scans in the database
was removed. Error bars represent the SD of the model perfor-
mance across the validation folds, which yield an estimate of the CI
of the models’ performance. n¼ 2128 cycles.

Streamlining number of scans during ovarian stimulation 5
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..database and were not included in our modelling. AFC was available
and included in the modelling, with feature importance analysis
showing that our models associate a lower AFC with a slightly later
trigger day, but that this is not a very useful predictor. Further ex-
ploring the value of AMH and AFC as predictors of both trigger tim-
ing and over-response (requiring agonist trigger) would be of value
in future data.

We emphasise that non-inferiority of reduced follicular tracking
frequency cannot be surmised from these retrospective findings. It is
possible that implementation of a streamlined stimulation monitor-
ing approach utilising this model could have either beneficial or det-
rimental effects on IVF success rates. This is a retrospective single-
centre study and our models would benefit from further validation
by testing their generalisation to external data (i.e. collected at dif-
ferent centres). To this end, our models could be readily applied to
fully anonymised data that are easily extractable (following ethical
approval) from the IDEAs database of other centres in order to test
the present findings. The benefit of these machine learning models
is that they can be easily retrained once further data are available

and individual centres could retrain on their own data to increase
utility. As in all clinical research, it is best practice that randomised
trials of any streamlined protocols should be carried out in compari-
son to routine care, with core outcome sets reported, a primary
outcome of healthy live birth and key secondary outcomes including
the number of cases of OHSS and validated measures of patient’s
psychological well-being.

With a larger dataset, including detailed information on scan findings,
oocyte numbers, number of metaphase II oocytes and live birth rates,
this machine learning approach could possibly lead to optimisation of
trigger timing, thereby reducing the impact of variation and bias in
decision-making and potentially improving outcomes. However, this is
a difficult predictive task, as there is already low variation in trigger tim-
ing and many other variables influence cycle outcomes, so this model-
ling would require a large and detailed dataset. Clinical decisions, such
as individual trigger timing and choice, are complex and we envisage
that machine learning models will be most useful if they are integrated
into the electronic workflow of the clinic and best used as an aid to
expert clinicians decision-making, rather than as a replacement.

Figure 4. Evaluation of model performance for respective scan days. Each panel represents a single scan day (see panel titles) and each
data point is an individual patient’s predicted (vertical axis) and actual (horizontal axis) trigger day. Data points are translucent, so darker shades rep-
resent a higher density of points. The solid grey line shows the performance of a perfect predictor and the red-dashed line the mean trigger day for
patients scanned on the respective day. n¼ 2128 cycles

6 Robertson et al.
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Conclusion
The finding of good predictive power for both trigger timing and over-
response risk from single scans on Days 5, 6 or 7 of stimulation agrees
with previous small studies suggesting that reducing follicular tracking
scan frequency may be justifiable. In the wake of the current COVID-
19 pandemic, if there is a significant need to reduce patient contact
per cycle in order to facilitate safe access to care, a priority for
patients attending follicular tracking scans after Day 5 of stimulation
should be considered.

Our current models require further testing in external validation
studies. Nonetheless, we anticipate, with ongoing development,
that the model will prove a useful aid both for clinics scheduling their
upcoming procedures and for clinicians making crucial decisions on
timing of the ovulation trigger. We anticipate that testing to compare
model predictions with expert physician estimates of trigger timing
will be a key step to evaluate model performance prior to clinical
implementation.
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