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Myeloid-derived suppressor cells
are bound and inhibited by
anti-thymocyte globulin
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Abstract

Myeloid-derived suppressor cells (MDSCs) inhibit T cell responses and are relevant to cancer, autoimmunity and

transplant biology. Anti-thymocyte globulin (ATG) is a commonly used T cell depletion agent, yet the effect of ATG

on MDSCs has not been investigated. MDSCs were generated in Lewis Lung Carcinoma 1 tumor-bearing mice. MDSC

development and function were assessed in vivo and in vitro with and without ATG administration. T cell suppression

assays, RT-PCR, flow cytometry and arginase activity assays were used to assess MDSC phenotype and function. MDSCs

increased dramatically in tumor-bearing mice and the majority of splenic MDSCs were of the polymorphonuclear subset.

MDSCs potently suppressed T cell proliferation. ATG-treated mice developed 50% fewer MDSCs and these MDSCs

were significantly less suppressive of T cell proliferation. In vitro, ATG directly bound 99.6% of MDSCs. CCR7, L-selectin

and LFA-1 were expressed by both T cells and MDSCs, and binding of LFA-1 was inhibited by ATG pre-treatment. Arg-1

and PD-L1 transcript expression were reduced 30–40% and arginase activity decreased in ATG-pretreated MDSCs.

MDSCs were bound and functionally inhibited by ATG. T cells and MDSCs expressed common Ags which were also

targets of ATG. ATG may be helpful in tumor models seeking to suppress MDSCs. Alternatively, ATG may inadvertently

inhibit important T cell regulatory events in autoimmunity and transplantation.
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Introduction

Myeloid-derived suppressor cells (MDSCs) are a het-

erogeneous population of naturally occurring immuno-

suppressive cells.1 Common myeloid precursors

develop into immature myeloid cells (IMCs).2 Under

non-inflammatory conditions, IMCs develop into den-

dritic cells, macrophages and neutrophils. In inflamma-

tory environments, molecules such as G-CSF, IL-2,

TGF-b, CXCL1/2 and S100A8/A9 redirect IMCs to

develop into immunosuppressive MDSCs.3,4 MDSCs

suppress T cell responses through nutrient depletion

(via arginase-1), production of NO and reactive

oxygen species, and through the expansion of

T-regulatory cells.5,6

In mice, MDSCs are defined by the expression of the

cell surface markers Gr-1 and CD11b. Total MDSCs

are further categorized into two main subsets:
monocytic MDSC (M-MDSCs) and polymorphonucle-
ar MDSCs (PMN-MDSCs). M-MDSCs and
PMN-MDSCs are differentiated phenotypically by
the expression of Ly6C (M-MDSCs, CD11bþ

Ly6ChighLy6G�) and Ly6G (PMN-MDSC, CD11bþ

Ly6ClowLy6Gþ). In human cancers, and likely in trans-
plantation, M-MDSCs and PMN-MDSCs have
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different immunosuppressive potentials.1,7 In tumors,
MDSC subset is also associated with location within
the tumor microenvironment.8

Because MDSCs suppress immune responses, they
have garnered the attention of cancer, autoimmunity
and transplant investigators.2,9 MDSCs are also impor-
tant in pregnancy, as they contribute to fetal tolerance
at the maternal–fetal interface.10,11 Cancer patients
with higher MDSC responses have lower overall sur-
vival and cancer progression-free survival.12–14 MDSC
function is aberrant in autoimmune processes such as
inflammatory bowel disease.15 With regard to trans-
plantation, MDSCs develop in humans after kidney
transplantation,7 they suppress alloreactive T cell
responses,16–19 and adoptively transferred MDSCs pro-
long corneal and skin graft survival.16,20 MDSCs also
home to transplanted organs and have been suggested
as a pathway towards immunologic tolerance.2,19,21,22

There are only a few incomplete studies suggesting
that immunosuppressive drugs affect MDSCs, yet the
associated mechanisms are undefined.23,24 We hypoth-
esized that because ATG is a polyclonal Ab which
binds multiple cell types that ATG may also bind to
and/or affect MDSCs. If MDSCs are affected by ATG,
these findings would have implications for cancer,
autoimmunity and transplant care.

The mechanism of action underlying the immuno-
suppressive activity of ATG has been studied extensive-
ly.25,26 ATG depletes T cells in peripheral blood and
lymphoid tissues through complement dependent cyto-
toxicity.27,28 ATG also induces apoptosis, deregulates
proliferation of B cells29–31 and impairs leukocyte/
endothelium interactions through modulation of adhe-
sion and cell-trafficking receptors.32 Despite its wide
range of effects, the impact of ATG on MDSCs is
poorly understood.

Here we sought to determine if ATG binds MDSCs.
We then sought to determine how MDSC-ATG bind-
ing would affect MDSC function. We found that ATG
readily bound MDSCs and that ATG impaired
MDSC function.

Materials and methods

Animals

C57BL/6J and BALB/cJ mice (female, 6–8 wk old)
were purchased from The Jackson Laboratories (Bar
Harbor, ME). All mice were maintained in a specific
pathogen-free animal facility. The Institutional Animal
Care and Use Committees (IACUC) of the University
of Maryland Baltimore approved all animal study pro-
tocols, and experiments were conducted in compliance
with the Guide for the Care and Use of
Laboratory Animals.

Reagents and tumor models

Lewis lung carcinoma (LLC1) cells are highly tumori-
genic33 and stimulate MDSC expansion.34 LLC1 cells
were cultured in RPMI 1640 (Invitrogen Life
Technologies, Carlsbad, CA) supplemented with 10%
FBS (Gibco, Grand Island, NY), 100 U/ml penicillin
and 100 mg/ml streptomycin (Gemini, Sacramento, CA)
at 37�C in 5% CO2. For tumor challenge, 1� 106

LLC1 cells were injected subcutaneously into the
right flank. Tumor growth was monitored twice a
week and all tumors were 1–2 cm diameter within 2–3
wk. Tumor-bearing mice were euthanized 3 wk after
LLC1 inoculation and MDSCs harvested. Mice were
sacrificed if tumors exceeded 2 cm or became ulcerated.
ATG was rabbit-anti-mouse and obtained from Earl
Poptic in the Lerner Research Institute (Cleveland
Clinic Hospital, Cleveland, OH), and injected intraper-
itoneally at 2 mg/kg for 5 d, as is similar in design to
prior studies.35 PBS and rabbit serum were used as
a control.

Abs and flow cytometry

Mouse spleens and lymph nodes were procured and
tissues mashed through 70 mm strainers to generate
single cells, which were suspended in PBS. Red blood
cells were removed using an ACK lysis buffer (Lonza,
Walkersville, MD). Samples were washed in magnetic
activated cell sorting (MACS) buffer (1� PBS supple-
mented with 1% FBS and 2mmol/l EDTA), incubated
with Fc receptor block (CD16/32, clone 2.4G; BD
Bioscience, San Diego, CA) and stained for 30 min at
4�C with the relevant Abs. The following Abs were
used for flow cytometry: Ly6C, Ly6G, CD11b, CD3e,
CD4, CD4, Gr-1, CD8, B220, CD25 FoxP3, CCR7, L-
selectin, LFA-1 and PD-L1 (Supplemental Table 1).
Functional grade purified anti-CD3e (clone 145-2C11)
and anti-CD28 (clone 37.51) for T cell activation were
obtained from BD Pharmingen. Live/dead fixable
aqua-dead stain or DAPI (Invitrogen) were used to
assess viability prior to acquisition on flow cytometer.
Samples were analyzed using the LSRFortessa flow
cytometer (BD Biosciences, San Jose, CA) and
FlowJo software (Tree Star, Ashland, OR).

Isolation of CD4þ T cells and MDSCs

CD4þ T cells were isolated from the spleen and lymph
nodes of BALB/c mice using the EasySepTM Mouse
CD4þ T Cell Isolation Kit (Stem Cell Technologies,
Vancouver, BC, Canada) according to the manufac-
turer’s instructions (Stem Cell Technologies,
Vancouver, BC, Canada). Purity ranged between 90
and 99%, as determined by flow cytometry. MDSCs
were isolated from spleens of tumor-bearing mice.
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After 20 min of blocking the splenocytes with Fc block-
er, cells were stained with PE-conjugated Gr-1 Ab at
room temperature (25�C). PE-conjugated Gr-1þ

MDSCs were selected by using magnetic nanoparticle
designed to bind with PE fluorochrome including in
The EasySepTM Mouse PE Positive Selection Kit
(Catalog #18554, Stem cells) and applying an
EasySepTM magnet. Gr-1 negative cells suspended in
the tube were poured off and Gr-1þ MDSCs bound
onto the tube were collected. Total MDSC
(Gr-1þCD11bþ), PMN-MDSC (CD11bþLy6Gþ

Ly6Clow) and M-MDSC (CD11bþLy6G-Ly6Chigh)
were isolated by cell sorting using an ARIA II (Becton
Dickinson, San Diego, CA, USA; Supplemental Figure
1). Purity ranged from 98 to 99%.

T Cell suppression assays

CD4þ T cells were labeled with 5 lM carboxyfluores-
cein succinimidyl ester (CFSE, Molecular Probes,
Eugene, Oregon) in 1 ml of PBS for 15 min at 37�C.
The labeling was halted by adding excess of FBS and
the samples were washed twice with RPMI 1640 sup-
plemented with 10% FBS. A total of 1� 105 CFSE-
labeled CD4þT cells were plated in complete media
(RPMI 1640, 10% FBS, 20 units/ml penicillin, 50 mg/
ml streptomycin) supplemented with 2 mmol/l l-gluta-
mine and 0.05 nmol/l 2-mercaptoethanol onto flat-
bottomed 96-well plates (Corning, B.V.) coated with
5 mg/ml anti-CD3 and 2 mg/ml anti-CD28
(eBioscience). MDSCs were added in T cell:MDSC
ratios of 1:0.5, 1:1and 1:2. Cells were cultured for 3 d.
MDSCs were pre-incubated with 10 mg mitomycin C
for 1 h prior to co-culture with T cells.

In-vitro ATG binding assay

For blocking non-specific binding of ATG to Fc recep-
tors, MDSCs were pre-incubated with purified anti-
mouse CD16/32 Ab for 20min. Then, MDSCs
(1� 105 cells) were incubated for 30 min with serial
dilutions of ATG (0.25 mg–100 mg) at 4�C. Purified
normal rabbit serum (‘normal serum’ or ‘NS’) was
used as a control. Following two washes with 1�
PBS, a FITC-conjugated goat-anti-rabbit IgG second-
ary Ab was added to the cells and further incubated for
30 min at 4�C. The cells were fixed with 4% PFA for
10min at 4�C. After washing, cells were harvested and
FITC signal of gated MDSCs was measured by
flow cytometry.

Arginase activity assay

The enzymatic activity of arginase was determined by
measuring the conversion of l-arginine to l-ornithine
and urea using the Arginase Activity Assay Kit

(Sigma Aldrich, St. Louis, MO) in Gr-1þ MDSCs

and Gr-1- (Non-MDSC) cells. The procedures were

performed according to the manufacturers’ protocols.

Briefly, cells were treated with 5 mg/ml or 50 mg/ml of

ATG, rabbit normal serum (NS), or PBS and incubat-

ed for 24 h in 5% CO2 incubator at 37
�C. Each group

of cells was washed twice with 1� PBS and lysed with

200 ml of lysis buffer-containing 0.4% Triton X-100, 10

mM Tris-HCl (pH 7.5) and 1mM Pepstatin and

Leupeptin protease inhibitor. After centrifugation at

13,000 g for 10min, the supernatant was collected

and placed into 96-well plates. Arginase was activated

by adding l-arginine substrate buffer and incubation

for 2 h at room temperature. l-arginine hydrolysis was

done by incubating the activated lysates with 50 ll of
l-arginine (pH 9.7) at 37�C for 60 min. The reaction

was stopped by the addition of 200 ll urea stop buffer

and urea concentration was measured at 540 nm after

using a spectrophotometer (Thermo Fisher Scientific,

Waltham, MA) followed by incubation at room tem-

perature for 60 min. One unit of arginase is the

amount of enzyme that will convert 1.0 mmole of l-

arginine to ornithine and urea per minute at pH 9.5

and 37�C.

RNA isolation and real-time quantitative RT-PCR

Total RNA isolation was performed using the

RNeasy RNA isolation kit according to the manufac-

turer’s instructions (Qiagen, Waltham, MA). The

quality and integrity of RNA were evaluated via

A260/A280 ratio by using Nanodrop 2000

Spectrometer (ThermoFisher Scientific). Thereafter,

1–3 mg of total RNA were reversed transcribed to

first-strand cDNA using the RevertAid First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific). qRT-

PCR was performed in duplicate using All-in-One

qPCR Mix (GeneCopoeia, Inc., Rockville, MD). An

Eppendorf Mastercycler Realplex PCR system was

used as follows: initial denaturation 95�C for 10min,

followed by 40 cycles of denaturation at 95�C for 10 s,

annealing at 60�C for 20 s and extension at 72�C for

15 s. GAPDH was used as an internal control for

normalization.

Statistical analysis

Where appropriate (MDSC number, spleen mass, con-

tinuous numeric values, etc.), data are presented as

mean value� standard error (SEM). The independent

Student’s t-test was used to compare the difference of

mean between each of two groups. Data were analyzed

using Graph Pad Prism V6.0 (LaJolla, CA,).
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Results

MDSCs are expanded in tumor-bearing mice

Animals injected with LLC1 cells uniformly developed

tumors. Based on prior data suggesting that MDSCs

develop in large numbers by 3 wk,36 animals were
euthanized, and tissues were obtained at this time.

Spleens of tumor-bearing mice were significantly

larger than those of naı̈ve animals (Figure 1a). Spleen

mass and splenocyte number were 4-fold higher (4.09
� 0.65; P< 0.001; Figure 1b) and 10-fold higher

(10.57� 4.4; P< 0.05; Figure 1c), respectively, com-

pared with controls. Total Gr-1þCD11bþ MDSCs

were compared between animals with and without

tumor. Gr-1þCD11bþ MDSCs increased (>7-fold)
to comprise more than 15% of total splenocytes in

tumor-bearing mice v. less than 4% for naı̈ve mice

(Figure 1d). MDSC subsets (PMN-MDSCs and

M-MDSCs) from the spleens of naı̈ve and tumor-

bearing mice were also assessed (Figure 1e and f).

In naı̈ve mice PMN-MDSCs (CD11bþLy6Gþ

Ly6Clow) and M-MDSCs (CD11bþLy6G-Ly6Chigh)
comprised 1.7 and 0.7% of splenocytes, respectively,
and the ratio of PMN-MDSC:M-MDSC was 2:1. In
tumor-bearing mice PMN-MDSCs and M-MDSCs
comprised 20.6 and 2.8% of splenocytes, respectively,
and the ratio between these two populations was
increased to 8:1. Our results thus indicate that LLC1
tumors induced the expansion of Gr-1+CD11b+

MDSCs, and of these MDSCs the majority were of
the PMN-MDSC subtype.

MDSCs suppress T cell proliferation in vitro

T cell suppression is a defining feature of MDSCs.37

CD4þ T cells isolated from peripheral lymph nodes
and spleen of BALB/c and were stimulated with anti-
mouse CD3/CD28 and co-cultured with or without
MDSCs from tumor-bearing BALB/c or C57BL/6J.
MDSCs, in a dose-dependent fashion, potently sup-
pressed Ab-induced T cell proliferation (Figure 2).
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Figure 1. MDSCs are significantly expanded in spleen of tumor-bearing C57Bl/6 mice. One million (1� 106 cells) of Lewis lung
carcinoma LLC1 cells were inoculated in the flank of C57Bl/6 female mice. Three wk after tumor inoculation, all the mice were
burdened with tumor. (a–c) Spleens from naı̈ve or tumor-bearing mice were harvested and mass and total number of splenocyte were
measured. Splenocytes were subjected to immunophenotyping by flow cytometry. (d, i and ii). Representative gating strategy for
identification of total MDSCs, M-MDSC and PMN-MDSC. (f) The frequency of total MDSCs (GR-1þCD11bþ) (d) and M-MDSCs
(CD11bþLy6G-Ly6Chigh)/PMN-MDSCs (CD11bþLy6Gþ Ly6Clow). M- and PMN-MDSCs were subsequently identified based on
the expression of CD11b, Ly6C and Ly6G, respectively (n¼ 5). *: P< 0.05 for statistically significant differences between naı̈ve
and tumor-bearing mice.
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MDSC expansion and function are inhibited by ATG

in vivo

We next assessed the effect of ATG on MDSCs, T cell

subsets and B cells in treated and un-treated tumor-

bearing animals. Splenocytes from tumor-bearing ani-

mals were stained with variety of cell surface markers

including anti-CD11b, anti-Gr-1, anti-CD4, anti-CD8,

anti-CD25 and anti-B220 to assess phenotype with

and without ATG treatment (Figure 3a). Tumor size

and spleen size were not affected by ATG treatment

(data not shown). The total splenic cell number was

also unaffected by ATG treatment when compared

with PBS-treated controls (Figure 3b). ATG led to

a> 50% decrease in Gr-1þCD11bþ MDSCs among

splenocytes (Figure 3c; P< 0.05, n¼ 6), and this was

associated with a concomitant decrease in MDSC

absolute number (Supplemental Figure 2). Consistent

with the known effects of ATG, T cell populations

were also decreased by ATG treatment when com-

pared to PBS-treated mice (n¼ 6; Figure 3c–f). We

did not detect a statistically significant reduction in

B cell numbers in ATG treated mice (Figure 3g). To

determine the effects of ATG on MDSC function,

MDSCs isolated from ATG-treated animals were co-

cultured with anti-mouse CD3/CD28 stimulated T

cells. In contrast to PBS-treated animals shown in

Figure 4a, MDSCs isolated from ATG-treated mice

failed to suppress T cell proliferation (Figure 4b), sug-

gesting that ATG suppressed MDSCs’ suppres-

sive mechanisms.

ATG directly binds and inhibits MDSC in vitro

We next assessed whether the observed effects of ATG

on MDSCs were the result of direct ATG–MDSC

binding. MDSCs from tumor-bearing mice were isolat-

ed and incubated with serial dilutions of ATG

(0.25–100 mg/ml) or normal rabbit serum. Cells were

then washed and stained with FITC-conjugated anti-

rabbit IgG (Figure 5a). ATG bound to MDSCs in a

dose-dependent fashion (Figure 5b). Weak binding was

observed at an ATG dose of 1 mg/ml, however, binding

increased to 8% at a dose of 2 mg/ml. More than 59%

of MDSCs were bound at 4 mg/ml of ATG. Saturation

(> 99%) occurred at 8 mg/ml (Figure 5b and c). To

assess and avoid non-specific binding of ATG to Fc

receptors (FcR) on MDSCs, FcR blocker was used to

pretreat MDSCs in advance of incubation with ATG.

FcR blockade did not affect capacity of ATG to bind

MDSCs, indicating that ATG binding was specific. We

then investigated if ATG binding would affect MDSC

function in vitro. Indeed, we found that ATG treated

MDSCs were less suppressive of T cell proliferation

(Figure 6a and b, P< 0.001). At a T cell:MDSC ratio

of 1:2, ATG-treated MDSCs were 3� less suppressive

of T cell responses when compared with normal rabbit-

serum-treated MDSCs (Figure 6c). Consistent with

previous data, PMN-MDSCs and M-MDSCs were

both suppressive of T cell proliferation, and both sub-

sets were inhibited by ATG.37 Notably, PMN-MDSCs

appeared to be suppressed by ATG to a greater degree

than were M-MDSCs (Figure 6d, P< 0.0001).
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Figure 2. MDSCs are suppressive of T cell proliferation. CD4 T cells from BALB/c were labeled with CFSE dye (5 lM) and were
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P< 0.05, **, P< 0.01, ns: not statistically significant.
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Together, these data suggest that ATG treatment,
in vitro, inhibited MDSC function.

MDSCs and T cells express common Ags that are
bound by ATG

As ATG is polyclonal, it is possible that MDSC deple-
tion resulted from ATG binding of T cell Ags also
expressed on MDSCs. To determine if T cells and
MDSCs expressed common Ags which might act as
ATG targets, we sought to determine if T cells and
MDSCs expressed common Ags which, based on the
literature, were also known targets of ATG (CCR7,
L-selectin and LFA-1). In our hands, we observed
that both T cells and MDSCs expressed CCR7,
L-selectin and LFA-1 (Figure 7a). We next sought to

determine if ATG pretreatment would block binding of
our selected Abs, suggesting (albeit indirectly) that our
selected Ags were also ATG targets. T cells and
MDSCs were pretreated with ATG. Thereafter, we
again stained for CCR7, L-selectin and LFA-1, using
their respective Abs. ATG pre-treatment led to
decreased LFA-1 binding, suggesting that LFA-1 was
bound by ATG (Figure 7b).

ATG suppresses Arg1 and PD-L1 transcript
expression and arginase-1 activity

MDSC-mediated T cell suppression in cancers and in
transplantation occurs, among other mechanisms,
through the actions of arginase-1, iNOS and PD-L1.
The expression of each of these molecules was
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measured with and without ATG treatment. Real-time

PCR analysis showed that, after ATG treatment, tran-

scriptional expression of Arg-1 was decreased approx-

imately 30% and PD-L1 approximately 40%.

Expression of iNOS was unchanged (Figure 7c).

Because Arg-1 expression by PCR was decreased

after ATG treatment, we next sought to determine if

there was a coincident decrease in arginase activity with

ATG treatment. Arginase activity was measured in

ATG-treated and control MDSCs by lysing MDSCs

and collecting the supernatant. As anticipated,5 we

observed that MDSCs had greater arginase activity

than did non-MDSC splenocytes, consistent with

their suppressive phenotype. ATG treatment was asso-

ciated with a dose-dependent decrease in MDSC argi-

nase production (Figure 7d). These data suggest that,

outside of ATG mediated depletion, ATG also affects

MDSC function.

Discussion

ATG is a commonly used polyclonal T-cell depleting

antibody.27,32 Little is known about the effects of ATG

on MDSCs.2 In testing how ATG might affect

MDSCs, we observed that ATG binds to MDSCs

directly. ATG binding to MDSC led to MDSC deple-

tion and suppression of MDSC function. ATG, at least

partly, affected MDSCs’ ability to produce arginase.

These effects on MDSCs may have important implica-

tions for cancer, autoimmunity and transplant biology.

FewMDSCs were produced in naı̈ve mice and tumor
inoculation dramatically induced MDSC expansion.

Different inflammatory milieus (i.e. type of cancer,
trauma, etc.) yield different numbers and ratios of

PMN-MDSCs and M-MDSCs v. total MDSCs.36 For
example, when cancer types were compared, sarcoma-

bearing mice generated the fewest number of MDSCs,
whereas colon cancers led to much higher levels.36

Differences in MDSC expansion are likely due to differ-
ences in the inflammatory stimuli which exist between

tumor types.1 M-MDSCs are potently immunosuppres-
sive and are found in greater number within, rather than

external to, tumors.1,8 PMN-MDSCs are thought to be
less immunosuppressive than M-MDSCs, and can be

identified peripherally.8 In our hands, a 15-fold increase

in MDSC expansion in tumor-bearing mice was
observed. The vast majority of the MDSCs present

among splenocytes were PMN-MDSCs and the ratio
of PMN:M-MDSC increased 4-fold in tumor-bearing

mice, consistent with the literature which suggests that
approximately 70% of MDSCs outside the tumor are

PMN-MDSCs.1,6 Furthermore, in vitro, the suppressive
activity of PMN-MDSCs appeared to be disproportion-

ately affected by ATG treatment when compared with
M-MDSCs.

In patients with cancer, MDSCs are directed against
the host’s own T cells. Thus, there is no MHC disparity

between the T cell and the MDSC. However, in
transplantation, MDSCs or T cells may be from

donor (e.g. transplanted leukocytes, or ‘passenger
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leukocytes’) or from the recipient.38,39 Further,
MDSCs develop in human kidney transplant recipients
after transplantation.7 We found that MDSCs efficient-
ly suppressed autologous and MHC disparate T cell
proliferation.16 These data are important for the pre-
sent study, because they suggest that ATG may detri-
mentally suppress potentially helpful MDSC-mediated
T cell regulation after transplantation.

ATG is a polyclonal Ab purified from rabbits immu-
nized with donor T cells.27,29 Thus, cells that express
Ags common to T cells may also be bound by ATG.
ATG is known to bind multiple immune cell subsets
including B cells, natural killer cells, monocytes and
dendritic cells.27,30,31 We hypothesized that MDSCs
may also be bound by ATG. Indeed, our ATG binding
assay showed that MDSCs were bound by ATG in a
dose-dependent manner. We reasoned that
ATG–MDSC binding likely resulted from the expres-
sion by MDSCs of Ags also expressed by T cells. To
test this hypothesis, we reviewed the literature and
identified CCR7, L-selectin and LFA-1 as targets of

ATG on T cells.40–43 In our hands, we observed that
each Ag was expressed on both T cells and MDSCs. To
determine which of these shared Ags were also bound
by ATG, we pretreated T cells and MDSCs with ATG
and observed a decrease in LFA-1 binding. CCR7 and
L-selectin were not affected by ATG pre-treatment.
This is interesting, because all three of the antigens
are known targets of ATG on T cells.40–43 It is possible
that in contrast to LFA-1, ATG bound to antigenic
epitopes on CCR7 and L-selectin that were distinct
from the antigenic targets of the Abs used to detect
these molecules. These epitope differences may explain
why ATG pre-treatment did not affect subsequent
CCR7 and L-selectin binding. It is very likely that
many other antigens are expressed by both T cells and
MDSCs. A review of the literature suggests that CCR2,
CD66b, TGF-b, IFN-cR and IL-4R may also be
expressed by both cell types and therefore recognized
by ATG.37,44

Many studies have shown that ATG induces cell
death by complement-dependent cytotoxcity.45–48
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Further, ATG’s complement dependent cytotoxicity is

dose-dependent.49 Beyond T cells, Cumpelic et al. dem-

onstrated ATG also binds and depletes platelets in a

complement dependent manner.48 Ayuk et al. sug-

gested that ATG also causes caspase-dependent cell

death, but that this was complement-independent.27,50

To this end, we have reasoned that MDSC depletion by

ATG treatment is, at least in part, complement depen-

dent. Beyond MDSC depletion, T cell-MDSC interac-

tions may have been indirectly affected by ATG. For

example, IL-10 is known to maintain MDSCs in cancer

models.51 Thus, ATG-mediated depletion of IL-10 pro-

ducing T cells may have negatively affected MDSC

populations. A deeper investigation of these effects

was beyond the scope of this report.
T cell suppression by MDSCs is a primary and defin-

ing feature of this cell type. MDSC mediated immuno-

suppression occurs through several mechanisms.

Among these, nutrient starvation via arginase-152

reduces the local level of l-arginine important for T

cell proliferation. MDSCs also generate NO through

inducible NO synthase (iNOS).53 MDSCs can expand

the T regulatory cell population, at least in part, through

the expression of PD-L1.54,55 MDSCs derived from

ATG-treated tumor-bearing mice down-regulated Arg-

1 and PD-L1, perhaps explaining MDSC loss of func-

tion. The reduction in Arg-1 mRNA expression was

associated with a decrease in arginase activity.

However, arginase reduction was only partial (c.15%

absolute reduction), suggesting (perhaps) that even

small decreases in arginase production translate to sub-

stantial losses of MDSC function. Perhaps more likely,

the observed loss of MDSC function was multifactorial,

resulting from a combination ofMDSC depletion, steric

hindrance of regulatory proteins via ATG, in addition

to ATG-mediated suppression of Arg-1 and PD-L1.
Other immunosuppressive agents also affect

MDSCs. Glucocorticoid antagonism suppresses the
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MDSC response to inflammation.56 Cyclosporine may
enhance the suppressive nature of MDSCs secondary
to iNOS up-regulation, however the effect of tacroli-
mus, a calcineurin inhibitor, is poorly understood.23

mTOR inhibitors such as rapamycin have been
shown to suppress MDSC function, though they are
also known to paradoxically upregulate iNOS and
Arg1.57,58 Monoclonal Abs such as Alemtuzumab,
Basliximab and Rituximab are poorly understood.
Beyond induction agents, there are no focused studies
of chronic immunosuppressive agents such as tacroli-
mus, belatacept, or mycophenolate moffeteil and their
effects on MDSCs in the transplant setting.23

T cell depletion in blood and peripheral lymphoid
tissues is the primary immunomodulatory effect of
ATG, particularly in transplantation.27,59 However,
accumulating evidence suggests that, beyond T cell
depletion, ATG may also stimulate T regulatory cells
(Treg).60–62 Indeed, Lopez et al. tested the ability of
ATG to induce the generation of Tregs and found
that ATG expanded CD4þCD25þ T cells and up-
regulated expression of CTLA-4 and Foxp3 in the
expanded cells.63 In an in-vitro model assessing the
impact of ATG, Buszko et al. recently showed that
Foxp3þ Tregs can be expanded with ATG treatment
as well, however, ATG mediated Foxp3þ expansion
was transient and ATG mediated effects appeared to
decline 10 d after ATG treatment.64 These data suggest
that ATG has immunomodulatory effects that go
beyond T cell depletion. Thus, Foxp3þ Tregs generated
as a result of ATG may have a protective role in delay-
ing transplant rejection. Boenisch et al. suggested that
ATG reprograms CD4þ T cells to become Tregs, and
this transition was STAT3-dependent.65 Additional evi-
dence suggests that ATG preferentially depletes conven-
tional T (Tconv) cells, but that it spares Tregs. Taken
together, ATG can affect Tregs as well as MDSCs.43

Because T cell proliferation in this study was enhanced
by ATG administration, it is possible that ATG had a
greater effect on MDSCs than on Tregs, however this
important topic requires additional investigation.

MDSCs are potently immunosuppressive and are
associated with metastases and poor survival in
cancer patients.12,14 MDSCs suppress T cell responses
at the maternal–fetal interface66 and they display aber-
rant function in autoimmune settings.15 Further,
MDSCs develop after organ transplants and may pro-
long graft survival.7 In this regard, it may be worth
studying in detail the effects of ATG in models of
transplantation, specifically examining its effects on
MDSCs and how these might alter transplant out-
comes. Beyond transplantation, ATG may have also
a role in targeting MDSCs in cancer treatment. Since
the mechanisms underlying ATG-induced functional
modulation are understudied, further investigations of

its effects on MDSC biology are needed to better
understand its role in cancer, embryology, autoimmu-
nity and in transplantation.
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