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Abstract

Many animals exhibit behavioral plasticity as they move between habitats seasonally, reside

in fluctuating environments, or respond to human-induced environmental change. We know

that physical environment during early development can have a lasting impact on behavior,

and on the neural mechanisms that shape behavior. In adults, social context can have simi-

lar persistent effects on behavior and the brain. Here, we asked whether physical context

impacts adult social behavior in a novel environment. We placed groups of adult zebrafish

(Danio rerio) in two different physical contexts. After two weeks, we measured group behav-

ior in a novel context, and found that zebrafish with recent experience in a more-complex

physical environment charged each other more often and tended to form tighter shoals than

did fish that had been housed in less-complex environments. These differences were pres-

ent regardless of the novel context in which we assayed behavior, and were not easily

explained by differences in activity level. Our results demonstrate the impact of recent expe-

riences on adult behavior, and highlight the importance of physical as well as social history

in predicting animal behavior in novel situations.

Introduction

Many adult animals move in and out of various physical contexts seasonally or in response to

disturbance, a feature that has become increasingly important with human-induced shifts in

habitat and climate [1, 2, 3]. Experiences with different physical contexts during early develop-

ment can have dramatic and prolonged effects on behavior, shaping underlying neural and

other systems in ways that influence later adult behavior [4, 5]. However, adult behavior is also

plastic and can be influenced by a variety of factors including physical context [6, 7, 8]. Here,

we use experiments with zebrafish to ask whether two weeks of exposure to particular physical

contexts influences how animals respond in a novel situation.

As we have long known from studies of critical periods, experiences during early devel-

opment can have pronounced effects on adult behavior [4, 9]. Recent studies have empha-

sized the importance of early stress and maternal effects mediated by hormonal and
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epigenetic mechanisms. For example, treating zebra finches with stress hormones early in

development can have profound impacts on later social preferences [10]. Similarly, the

amount of parental care received by young animals can impact later stress response [11] and

levels of aggression [12]. More general aspects of the physical context can also be important.

For example, young trout developing in low density conditions showed higher adult survival

than those in high densities [13]. Here, we ask about the importance of experiences during

adulthood.

We know that some types of adult experiences can also have both immediate and long-term

effects on adult behavior [14, 15]. For example, adult zebrafish housed in mixed strain groups

were more aggressive than were those housed in pure-strain groups even one month after the

experience [16]. Similarly, adult male guppies spending five weeks in a male-biased social envi-

ronment showed less mating effort and were more likely to engage in courtship rather than

sneak copulations than were those spending the same amount of time in female-biased con-

texts [17]. Social interactions can have important impacts on brain physiology that may impact

future behavior. For example, female cichlids that observed their male partners win a battle

showed increased gene expression in regions of the brain associated with reproduction,

whereas those who observed their male partners lose a battle showed increased gene expres-

sion in regions associated with anxiety [18]. It is not clear, however, whether physical contexts

can have similarly persistent effects on adult behavior.

Clearly, the physical environment can have an immediate impact on adult behavior. For

example, increasing structural complexity can decrease [19–21] or increase aggression [22].

Drastic contrast between physical environments is not necessary for highlighting this effect;

simply adding bricks [23] or gravel [24] to an animal’s surroundings can be sufficient to

decrease the frequency of aggressive encounters. Similarly, relatively small increases in turbid-

ity can decrease the size of guppy social groups [25], and increasing the amount of available

space can impact near-neighbor distances even when the animals are not crowded [26]. These

sorts of findings have had important implications for management and welfare of captive ani-

mals and may give insight into predictions of the response of animals to human-induced envi-

ronmental change [27]. In addition to influencing aggression, environmental enrichment

generally decreases the frequency of species atypical behavior and repetitive anxiety-like

behavior in a range of animal taxa [28]. Here, we ask whether recent experience in a particular

environment has a persistent impact on social behavior.

We use zebrafish, an important model organism for genetic, developmental, and behav-

ioral research [29], as our study organism. For example, emerging research takes advantage

of translucent larvae for optogenetics [30] and exploits the regenerative ability of adults to

uncover the switch between quiescent and proliferative phenotypes paramount in under-

standing cardiomyocyte development [31]. Recent behavioral research has identified key

genes associated with behavior [32], and has begun exploring sophisticated questions such as

the mechanisms underlying numerical abilities [33] and the effects of chronic stress on social

behavior [34, 35].

In this study, we ask whether a recent, short-term experience in an enriched physical con-

text can have a persistent impact on adult social behavior. We placed zebrafish in less complex

(an empty aquarium) or more complex (with plastic plants and pots) physical contexts for two

weeks and then tested their social behavior in two novel contexts differing in complexity. In

addition, we measured activity levels to determine whether observed differences in social

behavior can be easily explained by changes in overall activity. By testing zebrafish in two assay

contexts (less and more complex), we compared the effects of recent experience with the

impact of current context in determining social behavior.

Recent experience and novelty impact social behavior
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Materials and methods

Subjects

We used adult zebrafish (> 6 months) of the wild-type, outbred, SH strain bred by Aquatica

Biotech (Florida USA). This strain has been used in several previous studies of zebrafish behav-

ior [16, 26, 36, 37]. Before the start of our experiment, we maintained the fish in large groups

(20–30 individuals in 38 L aquaria) for about 14 days. We then created groups of 6 fish by com-

bining fish mostly from the same colony tanks to maximize familiarity. During the experiment,

we housed these groups of six fish in separate 20.8 L (5.5 gallon) aquaria, and standard condi-

tions: 28˚ C, 14:10 hour light/dark cycle, and ad libitum Tetramin flake food (daily, at roughly

the same mid-late morning time whether the fish were in experience treatments or in assay

tests). This study was approved by Indiana University’s Institutional Animal Care and Use

Committee as part of protocol number 15–017.

Recent experience in more or less complex environments

To begin the experiment, we placed groups of adult zebrafish into either more- or less- com-

plex physical environments, leaving them to interact with each other and with their environ-

ments during 14–17 days. In the wild, zebrafish in still-water populations form groups of 4–22

individuals (average shoal diameters ranging from 11–27 cm) in waters that range from 0 to

50% vegetation cover [38]. Thus, in the current study, we formed groups of 6 zebrafish (3

males and 3 females), placing 16 of these groups into less-complex physical environments,

each consisting of a 20.8L aquarium containing only a small submersible filter. In addition, we

formed 14 groups and placed them in more-complex physical environments, with half of a

11-cm clay pot and three sections of plastic plants (All Living Things Turtle Grass) in addition

to the small submersible filter. Together, the pots and small plants occupied less than 15% of

the horizontal area of each aquarium, and the small filters produced weak flows that did not

differ across the two treatment conditions. We then allowed each group of fish to interact with

each other and with their environments during 14–17 days.

Behavioral assays

After two weeks of experience in more- or less-complex contexts, we measured the behavior of

each group in two novel testing arenas over four consecutive days. Each testing arena was a

20.8 L aquarium, which we made novel by adding a white gravel substrate and submersible fil-

ter, and by lowering the water level to 11 cm. The submersible filters again produced a weak

flow that was the same as in the two-week experience treatment. The white background and

lower water level facilitated automatic video-tracking in two dimensions (see below). Since

adult zebrafish prefer dark over light environments [39], this testing context may have been

both novel and mildly stressful. We used two testing arenas to compare behavior in novel ver-

sions of more and less complex environments. For the less-complex testing context, we assayed

fish behavior in the white testing arena containing only the submersible filter and white gravel

substrate. For a more-complex novel context, we also tested fish in the same testing arena to

which we had added four pieces of curved white plastic (cut PVC tubes) that (like the plastic

plants above) provided an element of physical complexity. Because behavior is often highly

variable, we measured each group a total of four times: twice in each of the two novel contexts.

After placing each group in its assay aquarium, we waited for a 24-h acclimation period and

then video-recorded group behavior from above for 6 min with a Logitech c920 HD Pro Web-

cam. We then immediately removed or added the cut plastic PVC to create the second assay

context, waited a second 24-h acclimation period, and filmed a second 6-min trial. We then

Recent experience and novelty impact social behavior
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repeated the entire process, until we had recorded each group during a total of four 6-min tri-

als. We tested 16 groups (chosen at random) first in the PVC assay followed by the "No PVC"

assay, whereas the remaining 14 groups received the two assays in reverse order. Because adult

zebrafish tend to be more active in the early morning, we conducted all trials between 8:00 am

and 12:00 pm EST.

Behavior tracking and scoring

We minimized observer bias by using EthoVision XT10 [40] to determine the x and y coordi-

nates of each of the 6 fish in a two-dimensional space every 0.06 s (1000 moments per min).

We then scored behavior during these behavioral assays in terms of Group Diameter, Charge
Rate, and Activity. Following Suriyampola et al. [41], we defined charges as the number of epi-

sodes of fast movement (> 20 cm/s) of any one fish towards another (distance > 0.3 cm), and

then scored Charge Rate as the number of charges by any fish in the group during one minute.

Way et al. [42] characterized many different kinds of zebrafish behavior that could be consid-

ered aggressive including bites, chases, lateral displays, charges, and darts. Our estimates of

Charge Rate are related to the “charges” described by Way et al. [42], differing in that we

counted each episode occurring in 1000 moments / min as a separate charge, such that the

total sum of charges scored using EthoVision was substantially larger than what a human

observer would have scored, reflecting also the duration of each episode. We also counted only

those episodes in which the charging fish traveled more than a minimum distance (0.3 cm).

Charges are a likely measure of aggression, since they are usually produced by more domi-

nant individuals, and the recipient of a charge generally flees. However, zebrafish behavior

may also depend on the cohesion of the social group, with fish that are more tightly associated

with each other in physical space interacting with each other more often than those that are

spread further apart. We thus also estimated Group Diameter at each tracked moment by using

the rgeos [43] function in R [44] to estimate the maximum distance between any two fish in

the group at each point in time. Finally, zebrafish are in near-constant motion, such that

increased Charges may be a simple consequence of increased activity. To test this possibility,

we also estimated Activity as the average distance moved (cm) from one moment to the next,

summing for all six fish in each group.

Statistical analyses

For each behavioral measure (Group Diameter, Charge Rate, and Activity), we used two-way

ANOVA models to test for the effects of recent experience (more- or less–complex contexts),

including also factors indicating novel assay type (PVC or No PVC) and the interaction

between experience and assay type. We use repeated-measures rather than standard ANOVA

in order to take into account that each group was tested four times (twice in each assay type).

Second, we calculated Pearson product-moment correlation coefficients to assess the simi-

larity between behavioral measures of each group in the same assay type on different days of

the experiment. Note that degrees of freedom vary somewhat between analyses because we

excluded some trials in which the video quality was inadequate for accurate tracking. We con-

ducted all calculations using the base commands of the R statistical package [44], including

residual analyses to confirm the usual ANOVA assumptions of homoscedasticity and

normality.

Results

Zebrafish with recent experience in a more-complex environment shoaled more closely

together, forming shoals that were 1–2 cm smaller in diameter than did fish with recent

Recent experience and novelty impact social behavior
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experience in a less-complex environment (Fig 1a). This effect was stronger in the more-com-

plex PVC assay (Fig 1a two bars on the right) than in the less-complex, No-PVC assay (Fig 1a

two bars on the left), leading to a significant interaction between recent experience and assay

type in our two-way, repeated measures ANOVA (F1,28 = 4.9, P = 0.04). Main effects of recent

experience (F1,28 = 1.9, P = 0.17), assay type (F1,28 = 0.1, P = 0.79) and within-group effects

(P> 0.6) were not statistically significant. Zebrafish groups with more cohesive shoals (shorter

Group Diameter) charged more often, leading to a negative correlation between these two vari-

ables (r = -0.3, df = 83, P = 0.005; Fig 1b). More generally, none of the groups of fish that were

widely dispersed charged each other often (Fig 1b), suggesting that proximity may be an

important prerequisite to frequent charges.

Zebrafish groups with experience in more-complex environments also charged more often

(150 ± 21.4 charges / min) than did those with experience in less-complex tanks (103 ± 11.2

charges / min), regardless of the novel assay type (Fig 2). However, Charge Rates were quite

variable, especially when measured in the empty assay, so the main effect of recent experience

on Charge Rate was only marginally significant (F1,28 = 3.5, P = 0.07) in our repeated-measures

ANOVA. Assay type also had a marginally-significant impact on Charge Rate (Fig 2), albeit in

the opposite direction, with zebrafish charging more often when tested in empty arenas than

when tested in arenas with cut PVC pipe (within group effect: F1,51 = 3.5, P = 0.07). All other

main, interaction and within-group effects were not statistically significant (P> 0.3).

As expected, Charge Rate was tightly linked to Activity, as measured by distance moved (Fig

3a, r = 0.9, df = 83, P<< 0.01). Nevertheless, differences in Activity explained little, if any, of

the effects of recent experience on social behavior. Zebrafish with experience in a more-com-

plex physical environment were not significantly more active than were fish with experience

in a less-complex physical environment (F1,28 = 0.8, P = 0.38; Fig 3b). Activity was better

Fig 1. (a) Zebrafish groups with recent experience in a more-complex environment (black bars) also shoaled more closely together than did fish with recent

experience in a less-complex environment (gray bars). This pattern was weaker in one novel assay context (No PVC) than in the other, yielding a significant

interaction effect (F1,28 = 4.9, P< 0.04). Error bars represent ± 1 standard error. (b) Zebrafish in tighter shoals (with smaller group diameters) charged more

frequently, such that there was a moderate negative relationship between Group Diameter and Charge Rate.

https://doi.org/10.1371/journal.pone.0204994.g001
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predicted by assay type. Zebrafish were less active when assayed in a novel arena with cut PVC

pipe than when they were assayed in an empty arena, leading to a significant, within-group,

effect of assay type (F1,51 = 6.0, P = 0.02). All other main, interaction and within-group effects

were not statistically significant (P> 0.2).

All three of our behavioral measures were moderately repeatable (r = 0.4, df = 28, P = 0.02

to 0.04). Zebrafish groups that charged often, were highly active, or had small group diameters

in one assay type, behaved similarly in the same assay type two days later.

Discussion

Our results suggest that social behavior in new contexts can depend on recent experiences,

and that the impact of physical environment on adult social behavior can persist even as ani-

mals move into new habitats. After housing in more-complex physical environments, zebrafish

shoaled more tightly together, suggesting that the primary persistent effect is a shift in spacing

Fig 2. Zebrafish with recent experience in a more-complex environment (black bars) charged each other marginally

more often than did fish with recent experience in a less-complex environment (gray bars). Assay type had the opposite

effect: fish tested in arenas with complex physical structure (PVC: two bars on the right) charged less often than did fish

tested in empty arenas (two bars on the left). Error bars represent ± 1 standard error.

https://doi.org/10.1371/journal.pone.0204994.g002
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patterns. We also found that zebrafish that had been housed for two weeks in a more-complex

physical environment charged marginally more often in a novel arena than did those that had

been maintained in less-complex contexts. The effect depended to some extent on the immedi-

ate context in which social behavior was measured, but was not well explained by differences

in activity level.

Our results that shoal cohesion is an important mechanism mediating the impact of physical

environment on social behavior also highlight the role of spacing patterns. Animals can reach

very high densities with closely-packed spacing patterns, for example, in urban habitats, where

the density increases are associated also with shifts in social and anti-predator behavior [2].

High density and the consequently increased competition between conspecifics can have nega-

tive impacts on foraging, development and reproduction [52, 53]. Tight spacing can also lead

to direct behavioral interference as in bats that forage less efficiently when other bats come

too close [54]. Even relatively subtle changes in spacing may lead to detectable shifts in social

behavior [26]. Here, we found that the increased interactions between fish that had experienced

more complex physical contexts was associated with forming tighter shoals, perhaps the persis-

tent consequence of clustering more closely together in between elements of the complex habi-

tat. Note that shoal diameters in our study fell well within the range of those observed in the

wild [38]. It is not clear whether the lack of increased clustering or aggression in our PVC assay

is due primarily to the specific type of habitat complexity or to the novelty of that new habitat.

Predation risk [55], developmental context [56], evolutionary-genetic background [57], famil-

iarity [58, 59], and chemical properties of the habitat [60] are also important features that can

modulate the impact of habitat structure on shoal cohesion. Future work should be aimed at

exploring the mechanisms by which previous habitat experience influences social behavior.

Fig 3. (a) The relationship between Charge Rate and Activity. (b) Zebrafish groups with recent experience in a more-complex environment (black bars) were not

consistently more active than were those with recent experience in a less-complex environment (gray bars). Instead, fish groups tested in a novel PVC context (two

bars on the right) were less active than were fish groups tested in a novel empty arena (two bars on the left) (F1,51 = 6.0, P< 0.02). Error bars represent ± 1 standard

error.

https://doi.org/10.1371/journal.pone.0204994.g003
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Studies have disagreed on the impact of a complex physical environment on aggression.

Some have found that increased vegetation is associated with increased aggression [22, 45],

perhaps because the vegetation provides simple landmarks that help some individuals to

monopolize an area [46, 47]. Others have found decreased aggression in complex, vegetated,

habitats [19, 48], perhaps because these studies have measured aggression after allowing domi-

nance-subordinate relationships to stabilize [49, 50] or because of differences in perceived pre-

dation risk [51]. Here, we add the finding that the impact of environmental complexity on

behavior may depend on the specific type of complexity and the context in which behavior is

tested. We found fewer charges in arenas that were made more complex by adding cut PVC-

pipe, despite finding increased charges after a two-week experience in a more-complex envi-

ronment that included plastic vegetation and a refuge. In this case, the novelty of the testing

context may be a more important factor than complexity in terms of changing the ways in

which fish interact with their environments. In another recent study, we found that the impact

of physical complexity also changes over time as animals become more familiar with their

physical and social contexts [61]. More detailed analyses of the temporal and social mecha-

nisms are needed to identify exactly what features of the environment facilitate or impede

aggression.

Although physical and social environments may have their greatest effects early in develop-

ment, the brain is plastic throughout the lifetime of the organism [62, 63, 64], and persistent

changes in behavior may be the result of shifts in the adult brain. Recent studies have shown

that experiences in particular social contexts can impact adult [18, 65] as well as developing

[11, 66] brains. For example, male guppies housed with a conspecific female have larger brains

than those kept with another male [67], and locusts living in gregarious groups have larger

brains than do solitary locusts [68]. Physical context also has an immediate impact on adult

behavior, and early experience in particular physical contexts (“enrichment”) can alter brain

development [69]. For example, young fish housed in simpler or empty physical contexts have

smaller brains [70], decreased brain mRNA expression and spatial learning as adults compared

to fish developing in complex environments [56, 71]. Although examples of adult brain growth

in fish are rampant, there is also evidence of adult neurogenesis in mammals and in birds [72–

74]. Furthermore, some examples in rats and mice are due to the effects of recent experience

in more complex, “enriched” physical environments [75, 76]. Our results suggest that similar

shifts may occur in adult zebrafish, and that future studies of gene expression in zebrafish

brains may yield important insights into contextual, seasonal, and other forms of adult

plasticity.

We have shown that there are recent experience effects on social behavior. Our results

emphasize the impact of recent experiences on adult social behavior in novel habitats, and

highlight the importance of physical environment in creating changes in behavior.
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