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Abstract: To improve on the poor strength and flame retardancy of a chitosan (CS)-based func-
tional film, cellulose nanofiber (CNF) was taken as the reinforced material and both ammonium
polyphosphate (APP) and branched polyethyleneimine (BPEI) as the flame-retardant additives in
the CS matrix to prepare the CS/CNF/APP/BPEI composite film by simple drying. The resulting
composite film showed good mechanical strength, with a tensile strength reaching 71.84 Mpa due
to the high flexibility of CNF and the combination of CS, CNF and BPEI through strong hydrogen
bonding interactions. The flame retardant-performance of the composite film greatly enhanced the
limit oxygen index (LOI), up to 32.7% from 27.6% for the pure film, and the PHRR intensity decreased
to 28.87 W/g from 39.38% in the micro-scale combustion calorimetry (MCC) test due to the ability of
BPEI to stimulate the decomposition of APP, releasing non-flammable gases such as CO2, N2, NH3,
etc., and forming a protective phosphating layer to block the entry of O2. Based on the good flame
retardancy, mechanical strength and transparency, the CS/CNF/APP/BPEI composite film has a
great potential for future applications.

Keywords: chitosan; cellulose nanofiber; flame retardant; film; mechanical strength

1. Introduction

Thin film materials are used in all areas of life. However, they are mainly made of
synthetic polymers such as polyethylene [1], polypropylene [2], polyvinylchloride [3],
polycarbonate [4], etc., These synthetic polymers are difficult to degrade and would lead
to a burden on the environment. Therefore, there is much interest in the development of
functional films using natural degradable polymers.

Chitosan (CS), as a deacetylated chitin, is an abundant and renewable natural polymer.
CS has excellent film-forming properties, environmental sustainability, and selective perme-
ability to oxygen and carbon dioxide in the air, showing its good prospects in the thin film
field [5–7]. For example, after a CS film is attached onto the surface of carton, the storage
life of mango can be improved [8]. CS is often compounded with other inorganic materials
to prepare composite CS-based functional films, such as CS-SiO2 [9], CS-TiO2 [10], etc. [11].
However, the introduction of these inorganic particles blocks the formation of hydro-
gen bonds among CS molecules around them and reduce their mechanical properties.
Consequently, there is a lot of research focusing on improving their mechanical strength.
For example, the mechanical strength of the CS film can be enhanced by the addition of
tetraethoxysilane/vinyltriethoxysilane [12]. Carbon nanotubes are often used to improve
the mechanical properties of the CS-based films, but the transparency becomes poor [13].
The reinforcement materials referred to above have poor environmental performance, and
even affect the film’s transparency. Cellulose nanofiber (CNF), a renewable green material,
is mainly stripped from wood, cotton, straw, etc., and widely used for the enhancement of
film materials due to its high strength, good biocompatibility and environmentally friendly
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performance [14–16]. For example, CNF was added to a hemicellulose film rich in xylan
and greatly improved the mechanical properties [17]. Additionally, a poly (vinyl alcohol)
(PVA) film with the addition of CNF also showed good mechanical strength [18].

Fire hazard prevention has always been a focus of social attention and the research
and development of flame-retardant materials are sought after by scholars, with more
and more attention being paid to the flame-retardant performance of biomass films [19].
CS itself has a certain flame-retardant performance due to the presence of both C and N
elements, but it is difficult for CS to achieve a high-efficiency and stable flame-retardant
effect without combination with other flame-retardant materials [20]. In addition, when CS
was composited with a combustible material in our preliminary burning test, flame was
observed to break out during the burning process, bringing a certain fire risk in practical
application. To enhance the flame-retardant grade and stability of the CS-based films, some
flame retardants, such as chlorine flame retardants, bromine flame retardants, phosphorus
flame retardants, inorganic flame retardants, etc., were added to the CS matrix [21]. Among
them, the organophosphorus flame retardants have a good development prospect due
to their advantages of low smoke production, non-toxicity, and low halogen content [22].
In particular, APP and BPEI are a common combination in organophosphorus flame
retardants. Through the thermal decomposition process, APP as the acid can generate
stable polyphosphoric acid and cut off the supply of oxygen; BPEI as a foaming agent
and carbon source can release nonflammable gas and produce a loose carbon protective
layer. For example, a flame retardant cotton fabric was prepared by spraying the coating
solution containing APP and BPEI onto the cotton fabric [23]. Analogously, BPEI, APP and
fluorodecyl polyhedral polysiloxane were deposited on the surface of the cotton fabric by
simple layer-by-layer self-assembly; the resulting cotton showed excellent flame retardant
properties, superhydrophobicity and self-healing properties [24]. Our research group also
achieved a good flame retardant effect on the cotton fabrics through the introduction of
both APP and BPEI [25].

The mechanical strength of CS-based films is often reduced by the addition of some
functional particles and the flame retardant performance also still need to be improved.
In this study, in order to produce a CS-based film with good mechanical strength and
flame retardancy, CNF was used as the reinforcement material to improve the mechanical
properties of CS films; both APP and BPEI were used to enhance the flame retardant
performance of CS-based films. The resulting CS/CNF/APP/BPEI composite film was
prepared by simple drying. In view of the excellent properties and simple preparation
process, the resulting composite film has good prospects for potential application.

2. Materials and Methods
2.1. Materials

Chitosan (CS, Deacetylation degree of ~95%, viscosity of 100–200 MPa.S) and Glacial
acetic acid (AR, 99.5%) were purchased from Macklin Biochemical Technology Co., LTD,
Shanghai, China. Cellulose nanofiber (CNF, solid content of 1.03%, purity of ~99%) was
purchased from Tianjin Woodelf Biotechnology Co. Ltd., Tianjin, China. Both branched
poly (ethylenimine) (BPEI, average Mw of ~800 by LS, average Mn of ~600 by GPC) and
ammonium polyphosphate (APP, n > 1000) were purchased from Sigma (Shanghai, China).

2.2. Preparation of Flame Retardant CS-Based Composite Film

First, CS of 1.5 g was added to glacial acetic acid solution (1 wt%) of 100 mL in a beaker,
followed by stirring until the CS completely dissolved (as described in the report [26,27]).
The CNF aqueous suspension (modulated to 0.8 wt%) of 0.2 g was added to the above CS
solution and dispersed by ultrasonic treatment at 500 w for 5 min to obtain the CS/CNF
aqueous suspension. Subsequently, BPEI of 0.1 g was put into a beaker with deionized
water of 50 mL and stirred until completely dissolved. Then, APP powder of 0.1 g was
added to the BPEI solution and stirred until the APP powder was uniformly dispersed
to obtain the APP/BPEI aqueous suspension, followed by dropping 5 mL of APP/BEPI
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mixture into CS/CNF solution. Next, both CS/CNF and APP/BPEI aqueous suspensions
were mixed by stirring at 800 rap/min for 1 h to form a uniform CS/CNF/BPEI/APP
mixture. Finally, a certain amount of the CS/CNF/APP/BPEI mixture was dropped into a
Petri dish with a diameter of 6 cm, and then dried in a vacuum drying oven of 30 ◦C until
the water was completely evaporated to form a CS/CNF/APP/ BPEI composite film. The
thickness of the CS-based composite film was 0.08 ± 0.01 mm and was roughly determined
by controlling the amount of the mixture in the Petri dish. For comparison, the pure CS
film and CS/CNF composite film without APP/BPEI were made by the same method.

2.3. Mechanical Properties Test

According to previous reports [28], the samples were cut into the sizes of 3 mm × 1 mm
× 0.08 ± 0.01 mm (length × width × height) for the tensile strength test with a span of
100 mm and a compression rate of 3 mm/min by a universal mechanical testing machine
(598X, Instron company, Norwood, MA, USA).

2.4. LOI Test

The LOI value of the CS-based samples with a size of 150 mm × 10 mm × 0.08 mm ±
0.01 mm (length × width × height) was estimated using an oxygen index meter (JF-3,
Jiangning District Analytical Instrument Factory, Nanjing, China), where both oxygen and
nitrogen were used to control the air atmosphere by adjusting the flow of each. The result
LOI value is an average value of three samples tested.

2.5. MCC Test

A micro-scale combustion calorimetry (MODEL-MCC-2, Govmark, Farmingdale, NY,
USA) was used to evaluate the combustion performance of the CS-based samples. The
usage amount of each sample was 5 mg, the temperature range was set from 30 ◦C to
750 ◦C. At the same time, the heating rate was 5 ◦C/min.

2.6. Characterization

The microstructure of the CS-based composite films was observed by scanning electron
microscopy (SEM, Hitachi S-4800). A Fourier transform infrared spectroscopy (FTIR, Perkin
Elmer, USA) was used to analyze the chemical compositions of the different CS-based
composite films, with a range of 400–4000 cm−1 across 32 scans. The crystal structure
of the different CS-based composite films was detected by X-ray diffraction (XRD-6000,
Shimadzu company, Tokyo, Japan) with 2θ from 5◦ to 65◦, and the crystallinity of the
CS-based composite films was analyzed using MDI JADE XRD spectrum analysis software
by separating and fitting the peaks of the XRD spectrum. The thermostability of the
different CS-based composite films was analyzed using thermogravimetric analysis with a
temperature range of 25~800 °C (TG- STA 449F3, Netzsch, Germany).

3. Results and Discussion
3.1. Formation Mechanism of CS-Based Composite Film

As shown in Figure 1, the preparation of the CS-based composite films was simple
and facile. CNF, BPEI and APP were added to the dissolved CS matrix; then, the composite
film was formed by drying. CS, a processed product of natural polysaccharide chitin
after further removing acetyl group, is non-toxic, pollution-free, and biodegradable, and
has high surface activity due to the rich -OH and -NH2 groups on its molecular chain.
As the solvent evaporates, these active groups (-OH and -NH2) gradually become closer.
They can form intramolecular hydrogen bonds, as well as intermolecular hydrogen bonds
with that of the adjacent CS molecular chain (as shown in the chemical structural formula
of Figure 1). These hydrogen bonds make CS molecules easily form crystalline phase
regions, resulting in a good film-forming property. CNF has a similar structure to CS
and possesses a good mechanical strength and high length–diameter ratio. Therefore,
CNFs can be entangled with each other to form a stable three-dimensional network in the
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CS matrix, beneficial to the improvement of mechanical strength. In addition, there are
amounts of -OH on the surface of CNF and they can form strong hydrogen bonds with
the -OH and -NH2 of CS molecular chain and -NH2 of BPEI around them (as shown in the
chemical structural formula of Figure 1), further enhancing the mechanical strength of the
CS/CNF composite film. CS itself contains a large amount of C element and low content
of n element (about 8.7% according to the report [29]) and has a certain flame retardant
effect. It is often used in combination with other flame retardants, and plays an auxiliary
flame retardant role. Both APP and BPEI were added to CS/CNF mixture to enhance its
flame retardant properties [30,31]. Since both CS and BPEI are cationic polymers and APP
is negatively charged, they can attract each other and bind together. In the presence of
fire, APP as the acid source generates a stable polyphosphoric acid, which plays a role of
oxygen isolation [32]. BPEI as the blowing agent stimulates the decomposition of APP
and, as the carbon source, produces a loose carbon layer and typical nonflammable gases
(e.g., CO2, N2, NH3). These gases can further block the supply of O2, achieving a flame
retardant effect. In the composite system, both CS and BPEI are highly viscous and can
enhance the bond between CNF and APP. Consequently, a CS-based composite film with
good flame retardancy and mechanical strength can be prepared.

Figure 1. Formation mechanism of CS-based composite film.

3.2. Surface Morphologies

As shown in Figure 2a,b, CS showed good film-forming property, and the pure CS film
was smooth and dense due to the strong hydroxyl bonds formed inside and among the CS
molecular chains. After the introduction of CNF, the surface of the CS/CNF composite film
showed many irregular filamentous bulges due to the partial exposure of CNFs with high
length–diameter ratio on the film surface (Figure 2c,d). When only adding both APP and
BPEI (Figure 2e,f), there was no obvious phase separation in the composite film, indicating
that CS has good compatibility with PEI. However, some small holes appeared on the film
surface; this might be caused by bubbles bursting during drying. After the CNF, APP and
BPEI were added (Figure 2g,h), the exposures of the CNFs and APP were more obvious.
The additional amounts of CNF, APP and BPEI was very small and their distribution was
relatively uniform, so the transparency of the CS-based composite films was very good and
the covered substrate can be clearly seen in the illustrations of Figure 2.

3.3. Chemical Structure Analysis

As shown in Figure 3a, in the pure CS film, the main diffraction peaks are at 9.26◦ and
22.66◦. This is consistent with the previous report [33] where the crystalline forms of CS
appear 2θ = about 10◦ (marked as Form I) and 20◦ (marked as Form II), respectively. The
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crystallinity of the CS film as given by the MDI-JADE XRD spectrum analysis software was
22.97%. In the CS/CNF film, the main diffraction peaks were located at 11.8◦ and 21.48◦;
the position of the peaks produced a little deviation and the crystallinity of the CS/CNF
composite film was reduced to 12.34%. This may be because the hydrogen bonding between
CS molecules and CNF disturbs the original crystallization of CS. However, the two peaks
of the CS/CNF film widened, which may be due to the superposition of the diffraction
peaks of CS and CNF [34]. When both APP and BPEI were added to the CS/CNF system,
the characteristic peaks of APP showed at 14.9◦and 27.34◦ [35]. The main diffraction peaks
of CS were located at 11.34◦ and 22.52◦, and only had a weaker change compared with that
of the CS film, and the crystallinity of the CS/CNF/ APP/BPEI composite film increased
to 23.88%. This was because APP could play a role in blocking CS and CNF off from direct
contact to some extent and affect the forming of the hydrogen bonds between CS and CNF,
weakening the influence of CNF on the crystal structure of the CS film.

Figure 2. SEM images of the (a,b) pure CS, (c,d) CS/CNF, (e,f) CS/APP/BPEI, and (g,h) CS/
CNF/APP/BPEI composite films and their illustrations showing transparency.

Figure 3. (a) XRD and (b) FTIR spectrums of the different CS-based composite films.
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FTIR was used to detect the surface chemical structure of the CS-based composite films.
As shown in Figure 3b, in the pure CS film the wide absorption peak at about 3275 cm−1

corresponded to the stretching vibration of -OH and -NH and the absorption peak at
2900 cm−1 was caused by the stretching vibration of C-H; the peak at about 1200 cm−1

was formed due to the stretching vibration of C-O; the absorption peaks of 1650 cm−1 and
1541 cm−1 were produced by the stretching vibration of C=O in the amide group and the
deformation vibration of -NH2, respectively [36]. After the addition of CNF, the FTIR curve
of the CS/CNF composite film was extremely similar to that of the pure film, due to their
analogous molecular structure. Compared with that of the pure one, the characteristic peak
of both -OH and -NH in the CS/CNF film appeared at 3264 cm−1 and moved towards
a lower wave number due to the strengthening of intramolecular and intermolecular
hydrogen bonds, suggesting that there was a strong hydrogen bond between the CNF and
CS. It could be proved that CS and CNF have good biocompatibility, which is beneficial to
the stability of the composite film [37]. In the CS/CNF/APP/BPEI composite film, aside
from the two peaks at 1452 cm−1 and 889 cm−1, which were caused by the stretching
vibration of -CH2 in BPEI and the stretching vibration of P-O-P in APP [38], respectively,
there were no new peaks appearing, indicating that there was no chemical reaction between
BPEI/APP and CS/CNF, but only physical bonding. This was also consistent with the
above formation mechanism analysis results.

3.4. Thermal Stability Analysis

The thermal stability is one of the important indicators of fire retardant properties.
Figure 4a showed a change in the CS-based composite films from 25 to 800 ◦C. The decrease
in the mass of all the CS-based composite films below 100 ◦C was caused by a large amount
of evaporation of water. The decomposition and carbonization of CS at around 171~571 ◦C
resulted in a rapid decrease in the mass of the pure CS film, and it exhibited stability
after 571 ◦C because the remaining carbon would not significantly reduce with the change
in temperature [39] and the residue was only 6.8% (Table 1). The mass of the CS/CNF
composite film decreased from 172 to 377 ◦C due to the decomposition and carbonization
of both CS and CNF. When the temperature reached 400 ◦C, the CS/CNF composite film
tended to be stable in mass. This might be because after the thermal decomposition, the
CS formed a carbon layer covering the surface of CNF, which had a certain protective
effect. Consequently, the remaining weight of the CS/CNF film was higher [40]. The fastest
decomposition rate of the CS-based composite films showed no discernible difference before
and after the addition of CNF due to the similar properties of CS and CNF, occurring at
271 ◦C and 276 ◦C, respectively (Figure 4b). In the CS/CNF/APP/BPEI composite film, CS,
APP and BPEI decomposed with the increase in temperature and produced a loose carbon
layer on the CNF surface. Therefore, the TG curve was similar to the CS/CNF one, but
showed the lowest temperature (255 ◦C) of the fastest decomposition rate due to the thermal
decomposition of APP and BPEI. After 600 ◦C, the CS/CNF and CS/CNF/APP/BPEI
composite films had higher residual mass (28% and 26.1%, respectively) than that of the
pure one, suggesting the addition of CNF, APP and BPEI was beneficial to the thermal
stability of the CS-based composite film [25].

3.5. Flame Retardant Analysis Test

In the flame burning test, the samples, with a weight of about 10 mg, were moved into
a flame from an alcohol lamp and not moved out until 15 s of burning was observed [41].
Figure 5 shows the macroscopic morphologies of the CS-based composite films during the
process of the combustion test. The pure CS film curled up when entering the flame from
the alcohol lamp and there was a small amount of burning residue left after 15 s (Figure 5a).
After the addition of CNF, flame was observed to break out (Figure 5b), which might cause
certain harm in the practical application, but not in the CS/APP/BPEI composite film
(Figure 5c). This was caused by the combustion of CNF on the composite film surface.
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When CNF, APP and BPEI were added, no flame was observed (Figure 5d). This was
because the CNF was covered by BPEI and APP and became unburnable.

Figure 4. (a) TG and (b) DTG curve of the different CS-based composite films.

Table 1. Decomposition temperature and residue of the CS-based films.

Sample Decomposition Temperature (◦C) Residue at 800 ◦C (wt%)

CS 205.41 6.8
CS/CNF 210.27 28

CS/CNF/APP/BPEI 220.27 26.1

Figure 5. Flame burning test of the (a) CS film; (b) CS/CNF film; (c) CS/APP/BEPI film; (d) CS/
CNF/APP/BEPI film.
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The LOI value is one of the key indicators of flame-retardant materials; when its LOI
value is not less than 21%, it is called a flame-retardant material [42]. The samples were
ignited in an LOI meter, the ignition source was immediately removed, and their burning
was observed. The results (Figure 6) showed that the LOI value of the pure CS film was
27.6%. CS itself had a certain flame retardant property due to its high carbon content and
a portion of n, as well as some nonflammable gases and carbon layers that were formed
during heating, which helped prevent further combustion. The LOI value of the CS/CNF
film was 28.1% and showed no significant difference compared to the pure CS film, which
might be due to the low additional amount of CNF. After the addition of both APP and
BPEI, the flame retardant performance of the CS/APP/BPEI and CS/CNF/APP/BPEI
composite films had been greatly improved and their LOI values were up to 32.1% and
32.7%, respectively. This was because APP and BPEI increased the N and P elements of the
system, and BPEI could stimulate the decomposition of APP, releasing CO2, N2, NH3, etc.,
and forming a protective phosphating layer to block the entry of O2.

Figure 6. LOI curve of the different CS-based composite films.

To further verify the flame retardant properties, the MCC analysis was conducted.
As shown in Figure 7a–c, it could be seen that both before and after adding only CNF,
the heat release rate (HRR), the peak heat release rate (PHRR) and the total heat release
rate (THR) all showed no discernible difference due to the low additional amount of
CNF. Additionally, the CS-based films showed the strong peaks at about 210 ◦C, and the
corresponding PHRR reached 39.38 W/g and 40.83 W/g before and after adding only CNF,
indicating that there was no obvious effect on flame retardancy. After adding APP/BPEI,
the HRR, PHRR and THR showed a significant decrease, and the peak intensity (PHRR)
of the CS/APP/BPEI and CS/CNF/APP/BPEI composite films decreased significantly to
29.26 W/g and 28.87 W/g, respectively, proving that the flame retardant effect had greatly
improved. The results corresponded with the LOI value.

3.6. Mechanical Properties Test

As shown in Figure 8a,b, the pure CS film had good ductility and its tensile strength
was 57.18 Mpa because of CS’s long chain molecular structure. They displayed very good
film-forming due to the interaction of hydrogen bonding (as described above Figure 1).
When APP and BPEI were increased, its ductility became poor and the tensile strength
was down to 31.41 Mpa, as APP, as a granular material, was able to block the hydrogen
bond links among CS molecular chains [43]. There were no chemical bonds with CS and
PEI (as analyzed in Figure 4), which affected the stability of the whole film. Therefore,
CNF was used to inhibit the effect of APP on the mechanical properties of CS film. The
mechanical strength of the CS/CNF composite film showed a great improvement and
reached 91.14 Mpa. This is because CNF is a filamentous material and easily able to form a
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stable three-dimensional network structure in the CS matrix [38]. Additionally, the abun-
dant -OH on the CNF surface could form strong hydrogen bonds with the active groups
of CS. However, the ductility became weak. When CNF was added to the CS/APP/BPEI
system, the tensile strength came back to 71.84 Mpa, showing a good inhibitory effect on
the negative impact of APP on the mechanical strength of CS-based films.

Figure 7. The (a) PHHR capacity comparison, (b) TRR comparison, (c) HRR curves of the different
CS-based composite films.

Figure 8. The (a) stress–strain curves and (b) tensile strength of the different CS-based
composite films.

4. Conclusions

In summary, a CS-based composite film with good flame retardancy, mechanical
strength and transparency could be prepared by a simple process of mixing CS, CNF, APP
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and BPEI, and drying. It was found that CNF is an ideal natural material for improving
the mechanical properties of the CS-based film; the mechanical strength of the CS/CNF
composite film reached 91.14 Mpa and was much higher than the pure CS film (57.18 Mpa).
This is because CNF itself has a high toughness and is rich in surface hydroxyl groups which
can produce strong hydrogen bonding with CS. Both APP and BPEI are highly effective
and commonly used flame retardants and could greatly enhance the flame retardant effect
and the thermal stability of the CS-based composite film, in which the LOI value was up
to 32.7% compared to 27.6% in the pure CS film. To a certain extent, APP particles could
inhibit the formation of hydrogen bond among CS, CNF and BPEI, and cause a decrease in
the mechanical strength, but it was still at 71.84 Mpa due to the present of CNF. The facile
preparation strategy and good performance means the CS-based composite film has good
prospects for development.
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