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ABSTRACT
Objectives  To evaluate the spatiotemporal distribution of 
the incidence of COVID-19 hospitalisations in Birmingham, 
UK during the first wave of the pandemic to support the 
design of public health disease control policies.
Design  A geospatial statistical model was estimated as 
part of a real-time disease surveillance system to predict 
local daily incidence of COVID-19.
Participants  All hospitalisations for COVID-19 to 
University Hospitals Birmingham NHS Foundation Trust 
between 1 February 2020 and 30 September 2020.
Outcome measures  Predictions of the incidence and 
cumulative incidence of COVID-19 hospitalisations in local 
areas, its weekly change and identification of predictive 
covariates.
Results  Peak hospitalisations occurred in the first and 
second weeks of April 2020 with significant variation 
in incidence and incidence rate ratios across the city. 
Population age, ethnicity and socioeconomic deprivation 
were strong predictors of local incidence. Hospitalisations 
demonstrated strong day of the week effects with fewer 
hospitalisations (10%–20% less) at the weekend. There 
was low temporal correlation in unexplained variance. 
By day 50 at the end of the first lockdown period, the top 
2.5% of small areas had experienced five times as many 
cases per 10 000 population as the bottom 2.5%.
Conclusions  Local demographic factors were strong 
predictors of relative levels of incidence and can be 
used to target local areas for disease control measures. 
The real-time disease surveillance system provides a 
useful complement to other surveillance approaches 
by producing real-time, quantitative and probabilistic 
summaries of key outcomes at fine spatial resolution to 
inform disease control programmes.

INTRODUCTION
A range of preventative public health 
measures have been deployed to limit 
the transmission of COVID-19 during the 
pandemic in 2020 and beyond. Perhaps most 
prominently ‘lockdowns’ of whole regions or 
nations, involving the closure of businesses 
and public spaces and requiring people to 
stay home, have been implemented world-
wide. Lockdowns have been effective, but 
are blunt instruments, with potentially large 
collateral social and economic effects.1 More 
localised approaches that target high-risk 

areas and emerging disease clusters could 
potentially ameliorate some of these social 
and economic effects while maintaining low 
incidence rates, as has been demonstrated 
for other infectious diseases. For example, 
Ratnayake et al review the use of case area-
targeted intervention (CATI) for cholera, 
which entails targeting a range of measures 
at small areas (50–100 m), including chemo-
prophylaxis, water treatment and vaccina-
tion, in response to the early detection of an 
outbreak.2 However, the effective use of CATI 
requires both reliable early cluster detection 
and a good understanding of the spatial and 
temporal distribution of cases and clusters in 
order to delineate ‘case-areas’.

There are a growing number of explicit 
or direct geospatial statistical analyses of 
COVID-19 transmission and spread.3 Many 
of these examples use case data aggregated 
to small area levels (such as local govern-
ment authorities or provinces)4 5 3 and so 
cannot provide insight into the variability 
of COVID-19 incidence at more local levels, 
across urban areas. Therefore, there is almost 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Geospatial statistical methods can provide daily 
predictions of disease epidemiology at small spa-
tial scales as a complement to large-scale designed 
studies that report infrequently.

	⇒ Many countries and local authorities possess the 
data necessary to run real-time surveillance soft-
ware that can readily be deployed on a desktop 
computer, but careful consideration of key model 
parameters is required.

	⇒ Understanding the key predictors and extent of spa-
tial and temporal correlation of disease incidence 
and transmission can help target local case area-
targeted intervention programmes.

	⇒ We report the output of a proof-of-principle surveil-
lance system using geospatial statistical methods to 
predict local, daily COVID-19 risk using data on hos-
pitalisations for COVID-19 in Birmingham, UK during 
the first wave of the pandemic in 2020.
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no published evidence or existing reporting systems that 
can guide CATI-type approaches for COVID-19. There are 
many ‘indirect analyses’ that compare local or larger scale 
risk factors with COVID-19 epidemiology, which could be 
used to identify high-risk areas for disease control inter-
vention.3 6 7 For example, population age has consistently 
emerged as a key risk factor in a number of studies.8 In 
high-income countries, more socioeconomically deprived 
areas and areas with a high minority ethnic population 
proportion have also been identified as high risk.9 But it is 
not known just how well these factors explain small-scale 
spatiotemporal variance in incidence rates.

Geospatial statistical analysis is increasingly in use 
as a tool for disease surveillance, mapping and epide-
miology.10 Incident cases and disease testing occur at 
discrete locations in space and time. Where data on these 
outcomes are spatially referenced and time stamped, they 
can be modelled to provide predictions of prevalence 
or incidence over an area of interest. Models can incor-
porate relevant covariate data and allow for spatial and 
temporal correlation, so that predictions are ‘smoothed’ 
over time and space. One specific application of these 
methods is for real-time surveillance.11 Daily incident case 
data can be used to predict incidence rates across an area 
of interest, such as a city, in ‘real time’ to identify areas 
with a high probability of high or rising risk.12 We devel-
oped a proof-of-principle real-time surveillance system 
using individual level data on COVID-19 hospitalisations 
in Birmingham, UK, although the software and statis-
tical approach could be used for any disease. The system 
is designed to rerun the analyses with each new day’s 
case data, thus its output represents an evolving spatio-
temporal analysis of COVID-19 hospitalisations over the 
course of the pandemic. This article presents results from 
this analysis for the first wave of the COVID-19 pandemic.

METHODS
The analyses presented in this article were conducted 
as part of a project to develop software for real-time 
disease surveillance. The aim was to develop a proof-of-
principle system that could be deployed for COVID-19 
surveillance, or for any disease where there exists 
spatially referenced and time-stamped individual-level 
case data. Most data sources available in ‘real time’ 
are positive-case (or proxy) outcomes from healthcare 
system databases, such as hospitalisations, presenta-
tions to health services or contact with public health 
telephone or internet services (such as NHS Direct in 
the UK). This contrasts with binomial testing data from 
large-scale surveys that occur on a less frequent basis13. 
The advantage of healthcare system data is that it also 
usually has patient residential address to enable geolo-
cation of each case. Following previous applications of 
real-time surveillance systems,11 we took a geospatial 
statistical approach to the development of the software 
and used data on COVID-19 hospitalisations to demon-
strate proof-of-principle. The method we describe below 

was primarily designed and set up to provide reliable 
predictions of incidence rates, and not for the purposes 
of estimating the effects of covariates or the nature of 
spatial and temporal correlation structure. However, 
outputs from these models provide useful descriptions 
of disease risk, its variation across an urban area and its 
correlations with key predictors. Our software is avail-
able online.14

Data
We obtained data on all COVID-19 hospitalisations to 
hospitals in the University Hospitals Birmingham NHS 
Foundation Trust (UHB-FT) for the period 1 February 
2020 to 30 September 2020, which covers the first wave 
of COVID-19 in the UK. A COVID-19 hospitalisation 
was defined as any inpatient admission, where the 
primary diagnosis was COVID-19; we did not specify 
how the diagnosis was made. Our primary data for these 
patients comprised their residential address and date of 
admission.

We defined our area of interest as the approximate 
catchment area of UHB-FT within Birmingham, which 
encompasses approximately 70% of the area of the city 
(figure 1). Cases resident outside this area were, there-
fore, excluded. We conducted the analysis as if the data 
were provided daily (see below), and each day’s analysis 
included data from the preceding 14 days. Our first day 
was taken to be 23 March 2020, when the UK entered its 
first nationwide lockdown, so any cases admitted prior 
to 9 March 2020 were excluded from the data. Prior to 
23 March 2020, there were few admissions overall, and 
most days had zero admissions. Residential addresses 
were converted into longitude and latitude coordi-
nates using the Google Maps Application Programming 
Interface (API).

We obtained population and demographic data for 
lower layer super output areas (LSOA) covering the 
area of interest from the Office for National Statistics.15 
Each LSOA covers an average population of 700 people; 
there were 639 LSOAs within our area of interest. For 
each LSOA, we extracted and compiled projected 2019 
population density (people per hectare), the propor-
tion of the population aged over 65, the proportion 
of the population identifying as white ethnicity, the 
Index of Multiple Deprivation (IMD), an index used to 
capture socioeconomic deprivation based on outcomes 
including education, employment and crime.16 The 
IMD is an ordinal index, and LSOAs are grouped into 
deciles, which we used in our analysis. We also deter-
mined from the date of admission, the day of the week 
of the case, which was also used as a covariate in the 
predictive model.

Statistical model and computational methods
The Appendix gives a more detailed description of our 
statistical model and associated methods of inference. 
Here, we give an informal summary.
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Our statistical model is a spatiotemporal, log-Gaussian 
Cox process.17 This model considers the study region 
as a spatiotemporal continuum, within which case inci-
dence at location s and time t is expressed as

	﻿‍ λ
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s, t

)
= e
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s
)
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In equation (1), the terms within the exponential 
decompose the spatiotemporal variation of individual-
level risk into three multiplicative components, a 
constant of proportionality ‍exp

(
β0

)
‍ and two varying 

terms ‍exp
(
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‍ and ‍exp

(
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(
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‍. The first of these 

is a log-linear regression that accounts for variation in 
risk that can be explained by measured characteristics 

‍x
(
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)
‍. The second accounts for any residual, unex-

plained variation, which we represent as the unob-
served realisation of a stochastic process. Specifically, 
we assume that ‍Z

(
s, t

)
‍ is a spatially and temporally corre-

lated Gaussian process. The term ‍e
(
s
)
‍ is the population 

density (number per hectare) at s, which converts risk 
into an expected incidence per hectare per unit time; 
we assume that ‍e

(
s
)
‍ does not change materially over the 

time window of the data.
To fit the model, we use Bayesian inference to obtain 

the joint predictive distribution of ‍λ
(
s, t

)
‍ at all loca-

tions s and time t, given all available data up to and 
including time t. This allows us to calculate and display 
suitable summaries of the predictive distribution for 
whatever properties of the complete history of the inci-
dence surface we wish, for example, current incidence; 
change in incidence from 1 day (or week) to the next; 
exceedance of a prespecified incidence threshold; 

decomposition of incidence into explained and unex-
plained components. This flexibility is a crucial aspect 
of our approach, which allows predictions to be made 
in whatever form is most relevant to each user’s needs.

Although our model is formulated in a spatiotem-
poral continuum, for computation, we approximate the 
study region by a grid of square cells with side length 
approximately 50 m, and record the time of each case as 
an integer number of days since 23 March 2020.

Presentation of results
The model described in equation (1) can be used to 
generate a range of outputs and predictions relevant to 
disease surveillance for each lattice cell. These include:
1.	 Incidence of COVID-19 hospitalisations per 10 000 

person-days. We notate this as ‍Ist‍ for grid cell ‍s‍ at time ‍t‍.
2.	 The relative risk of each cell associated with the ob-

served covariates, ‘observed RR’: ‍exp
(
β1x

(
s, t

))
‍ in equa-

tion (1).
3.	 The relative risk associated with the Gaussian process 

‘Latent RR’: ‍exp
(
Z
(
s, t

))
‍ in equation (1). This compo-

nent captures variation in risk associated with unob-
served or unexplained local factors.

4.	 The incidence rate ratio (IRR). For each grid cell, we 
determine the incidence per 10 000 person-days rela-
tive to the same location 7 days prior:‍Ist/Is,t−7‍

5.	 The cumulative incidence up to time ﻿‍T ‍, which is ‍
∑T

t=1 Ist

‍.
We graphically examine the posterior means of these 

outputs for the grid cells. We also report the posterior 

Figure 1  Boundary of the area of study representing the approximate catchment area of University Hospitals Birmingham NHS 
Foundation Trust in Birmingham, UK.
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distributions for the model parameters (both in the linear 
predictor and covariance function) at different points 
during the first wave (1 April, 1 May and 1 June 2020).

Finally, we also consider the ‘persistency’ of risk across 
the area of interest. For each day of the analysis, we iden-
tified the top 10% of lattice cells in terms of population 
standardised incidence. For each cell, we then deter-
mined the proportion of days it was in the top 10%. If 
risk was completely random across the area, then each 
cell should appear in the top 10% approximately 10% of 
the time. If it was completely deterministic, then 10% of 
cells would appear 100% of the time.

RESULTS
For the period 23 March to 30 September, there were 
4040 recorded admissions for COVID-19 to UHB-FT 
hospitals. Of these, 2668 could be geolocated and were 
resident in the area of interest. Figure 2 summarises the 
model predictions. Figure 3 provides model geographic 
outputs for 1 April 2020.

The first wave of the pandemic is evident from days 1 
to 50 after March 23, with peak hospitalisations occurring 

in the first and second weeks of April 2020. A day-of-the-
week effect is evident in the incidence, particularly consid-
ering the observed relative risk. Table 1 reports estimates 
of model parameters; the rate of hospitalisations was 
15%–30% lower at the weekend than on weekdays. There 
was significant variation in incidence rates across the city. 
For example, the 2.5th and 97.5th quantiles of posterior 
mean incidence rates on March 30 (day 7) differed by a 
factor of approximately 10, they were 0.14 and 1.11 hospi-
talisations per 10 000 person-days respectively. This differ-
ence is also reflected in the cumulative incidence: by day 
50 at the end of the first lockdown period the top 2.5% of 
cells had experienced five times as many cases per 10 000 
population (>35) as the bottom 2.5% (<7).

Figure 2 also shows the 7-day IRR, for which both the 
mean and median posterior mean remained greater than 
1 until day 15 of the lockdown. By day 18, the posterior 
mean was lower than one for almost all cells. Figure  3 
shows that there was significant variation in the IRR 
across the city – in the north of the city one small area 
had both relatively high predicted incidence and high 
IRR. A sudden ‘spike’ in observed relative risk is observed 

Figure 2  Model predictions of city-wide COVID-19 incidence, relative risks, 7-day incidence rate ratio (IRR) and cumulative 
incidence. Plots show mean value of posterior mean predictions across the city with bands for 50%, 80% and 95% intervals. 
The March–May lockdown period is highlighted in red.



5Watson SI, et al. BMJ Open 2021;11:e050574. doi:10.1136/bmjopen-2021-050574

Open access

around day 140 when hospitalisation rates approached 
zero.

Population age, ethnicity, and socioeconomic depri-
vation were all strongly associated with COVID-19 hospi-
talisation rates (table 1). The effect of age was largest in 
magnitude: a 10 percentage point (pp) increase in the 
proportion of the population aged over 65 was associ-
ated with an approximate doubling in the rate of hospi-
talisation. A 10 pp increase in the proportion of the 
population identifying as white was associated with an 
approximate 10% reduction in incidence. Good evidence 

of a ‘weekend effect’ was also apparent; patients were less 
likely (~10%–20%) to be admitted at the weekend than 
at the weekday.

As a heuristic, one can multiply the spatial and 
temporal range parameters by three to get approximate 
upper limits of the distance and time over which observa-
tions are correlated (see online supplemental appendix 
1 for further statistical details). The spatial correlation 
was approximately of the order of 0.2 km—unexplained 
increases in incidence were similar across areas of this 
magnitude. However, the estimated temporal range was 

Figure 3  A sample of surveillance system outputs for 1 April 2020. Left: predicted incidence of COVID-19 hospitalisations; 
right: incidence rate ratio (IRR) relative to 7 days prior.

Table 1  Posterior mean (95% credible intervals) of model parameters from analyses conducted on three dates

Parameter April 1 May 1 June 1

Linear predictor

 � 10 pp increase in proportion of population aged 65 and over 2.12 (1.96, 2.29) 1.86 (1.81, 1.91) 1.72 (1.66, 1.78)

 � 10 pp increase in proportion of population identifying as white 
ethnicity

0.92 (0.90, 0.94) 0.92 (0.91, 0.92) 0.91 (0.90, 0.92)

 � Increase (less deprived) in IMD decile (linear) 0.93 (0.91,0.95) 0.91 (0.90, 0.92) 0.89 (0.88, 0.90)

 � Monday 0.99 (0.86, 1.15) 0.85 (0.82, 0.89) 0.98 (0.91, 1.06)

 � Tuesday 1.10 (0.94, 1.26) 1.01 (0.96, 1.07) 1.09 (1.02, 1.17)

 � Wednesday 1.12 (0.95, 1.31) 1.12 (1.08, 1.17) 1.11 (1.05, 1.17)

 � Thursday 0.73 (0.62, 0.86) 1.05 (0.99, 1.12) 0.92 (0.87, 0.97)

 � Friday Ref. Ref. Ref.

 � Saturday 0.84 (0.73, 0.80) 0.84 (0.80, 0.89) 0.85 (0.80, 0.90)

 � Sunday 0.68 (0.58, 0.80) 0.83 (0.79, 0.88) 0.75 (0.71, 0.79)

Covariance parameters

 � Sigma 1.12 (1.05, 1.19) 1.05 (1.04, 1.06) 1.05 (1.04, 1.06)

 � Spatial range 0.07 (0.07, 0.08) 0.07 (0.07, 0.08) 0.08 (0.07, 0.08)

 � Temporal range 0.16 (0.13, 0.20) 0.11 (0.10, 0.11) 0.10 (0.09, 0.11)

IMD, Index of Multiple Deprivation.

https://dx.doi.org/10.1136/bmjopen-2021-050574
https://dx.doi.org/10.1136/bmjopen-2021-050574
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substantially shorter than a day. This implies that the 
unexplained component of local incidence on any 1 day, 

‍x
(
s, t

)
‍, is poorly predictive of the unexplained compo-

nent on the next day. Given the lack of temporal correla-
tion, one might ask whether it is possible to predict the 
location of local disease clusters given previous data. 
Figure 4 0 reports the ‘persistence’ of risk for the 1411 
grid cells across the city. Four grid cells were in the top 
10% of grid cells by daily incidence more than 75% of 
the time. Approximately, 5% of grid cells were in the 
top 10% of grid cells by incidence more than 50% of the 
time. Approximately, 40% of grid cells were never in the 
top 10%. These results suggest that one could predict a 
high-risk area with reasonable confidence based on its 
observed characteristics ‍x

(
s, t

)
‍.

DISCUSSION
Our results agree with observations made early in the 
COVID-19 pandemic, namely, that age and ethnic 
minority status are associated with increased risk of 
COVID-19 transmission.8 9 Indeed, these factors along 
with a general measure of socioeconomic deprivation 
could reasonably predict the small areas of Birmingham 
with a relatively high incidence of COVID-19 hospitalisa-
tions. However, further research is required to determine 
whether these associations persist in subsequent disease 
waves to guide longer term public health policy.

We estimated a low temporal correlation in unex-
plained variation in incidence. This is likely due to the 
attenuation effect of identifying cases by their date of 
admission rather than by their (unknown) date of infec-
tion, which could have occurred several days or weeks 
before admission. This is a limitation of many sources of 
real-time surveillance data, including positive test data. 
Nevertheless, these results also indicate the strength of 
our underlying statistical approach, as it enables us to 
precisely quantify the degree of certainty, or lack thereof, 
associated with any predictions we make about local 
disease risk. Crude positive test counts have been the 

most reported statistic for disease surveillance during the 
COVID-19 pandemic in the UK and elsewhere.18 These 
counts are correlated with the underlying incidence 
and can provide useful and rapid feedback to officials to 
implement disease control methods such as lockdowns 
and tracking and tracing programmes. However, they are 
a blunt instrument as they do not reflect uncertainty in 
the underlying estimates of incidence, nor can they offer 
predictions of locally varying relative risk and associated 
risk factors. Inferences based only on crude outcomes 
can easily lead to the identification of signals where none 
exist.

The results in this article lead to some conclusions 
to support policy, both specifically for COVID-19 and 
for disease surveillance in general. First, at the time of 
writing, vaccination programmes are rolling out in the UK 
and elsewhere. A spatial approach should be taken with 
respect to prioritising who gets the vaccination. Trans-
mission occurs locally, and areas with older populations, 
more ethnic minority residents, and that are more socio-
economically deprived have higher rates of transmission. 
These areas should be prioritised. Second, predicting 
small-scale day-to-day changes in incidence is difficult 
and highly uncertain, especially once a pandemic has 
reached an exponential growth phase. Real-time surveil-
lance systems may have the greatest utility for monitoring 
diseases that are under general control in the population 
to enable rapid, targeted responses to emergent disease 
clusters. Once transmission levels are high across the 
population, there are no longer isolated clusters, although 
measured characteristics can still give reliable predic-
tions of local relative transmission rates. Third, there 
are several scientific and statistical approaches to disease 
surveillance.17 19 Epidemiological transmission models 
provide a framework for modelling and estimating trans-
mission rates,20 but currently available models cannot 
easily incorporate locally varying and spatially correlated 
effects. Moreover, these models often require high-quality 
data, for example, from randomised studies, that can only 
be collected at relatively infrequent intervals. Geospatial 
statistical models fitted to electronic health record data 
offer an alternative method of quantifying uncertainty 
and making real-time probabilistic predictions that 
complement other approaches. The methods described 
in this article use publicly available software and can be 
run on a desktop machine in a matter of hours using 
routinely collected data. Thus, there is a strong case for 
incorporating them into the suite of public health tools 
used for disease surveillance.

We note some weaknesses of our approach. We have 
cautiously interpreted the parameters associated with 
local covariates, including age and ethnicity, but all esti-
mates in spatial models are biased to some extent.21 22 
We excluded the data from many admissions, principally 
because they were out of area, however, a significant 
proportion could not be geolocated. If the missingness 
of location data were correlated with latent disease risk 
then this would prejudice our predictions. However, we 

Figure 4  Proportion of time each grid cell was in the highest 
incidence 10% of grid cells.
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believe such correlations are likely small. Data quality is 
one of the key limitations of using routine health system 
data across all applications, so results from large, high-
quality studies should be used to validate any results 
where possible. Extensions to the type of model used in 
this article may provide a better fit to the types of data we 
describe, for example, a Hawkes process model allows for 
new cases to increase the probability of subsequent cases. 
However, the greater complexity of such models may 
require increased computational resources and so limit 
their usefulness for the types of applications described 
here. Similarly, alternative approximations may provide 
a more desirable trade-off between computational time 
and accuracy.23 Further research in this area is warranted.

There have been previous examples of proof-of-
principle real-time surveillance systems. For example, 
the Ascertainment and Enhancement of Gastrointestinal 
Infection Surveillance andStatistics (AEGISS) project 
used daily data from the then NHS Direct telephone 
service to identify potential outbreaks of gastrointestinal 
disease in Southern England.11 However, there have been 
few well-documented implementations of such systems 
since despite advances in software and availability of 
computational resources. Localised spatiotemporal inter-
ventions have been trialled for several conditions, such 
as cholera, and have been broadly successful.2 Real-time 
surveillance tools can provide an important and timely 
input into targeting them.
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