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Abstract: Pertussis containing vaccine is recommended for pregnant women to protect neonates
prior to being fully immunized against the disease. The immune response during pregnancy may
be impacted by changes in the hormonal status. The aim of this study was to evaluate the im-
mune response to pertussis immunization in pregnancy and to assess the role of sex hormones.
In a cross-sectional study, blood samples were drawn from 174 pregnant and 74 non-pregnant
women 45–60 days following immunization. Anti-pertussis toxin (Anti-PT) IgG antibody levels,
estrogen, and progestogen concentrations were compared between the two groups. Multiple lo-
gistic regression analysis was used to examine the association between serum antibody and sex
hormone concentrations in each group, controlling for age, body mass index (BMI), and smoking
status. The geometric mean concentration (GMC) of anti-PT IgG antibody was significantly higher
in non-pregnant women compared with pregnant women (median of 2.09 and 1.86, interquartile
range = 2.36–1.8 and 2.11–1.16 respectively, p < 0.0001). Among pregnant women, the anti-PT IgG
antibody GMC was negatively associated with both progesterone (odds ratio = 0.300, 95% CI = 0.116,
0.772, p = 0.013) and estrogen (odds ratio = 0.071, 95% CI = 0.017, 0.292, p < 0.0001), after controlling
for age, BMI, and smoking. Pregnancy was associated with lower anti-PT IgG antibody levels (odds
ratio = 0.413, 95% CI = −0.190, 0.899, p = 0.026). This appears to be at least partially explained by
the higher levels of hormones during pregnancy. These findings demonstrate the important role of
sex hormones in the response to pertussis vaccine during pregnancy and can help to evaluate the
optimum vaccination schedule.
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1. Introduction

Pertussis is a highly contagious, vaccine-preventable disease caused by Bordetella
pertussis (B. pertussis). The whole cell vaccine against pertussis, combined with diphtheria
and tetanus toxoids, has long been part of the routine immunization schedule for infants
and young children. Since the early 1990s, an acellular vaccine has been introduced in
many countries [1]. Although the acellular vaccine is highly effective, it is less effective
in preventing the spread of the disease [2]. Pertussis vaccination was included in the
National Immunization Program in Israel in 1957 and since 2005, has been given together
with tetanus and diphtheria toxoids at two, four, six, and 12 months, at 7–8 years, and
13–14 years [3]. Despite a high vaccination infant coverage rate (>93%) in Israel, there is
still a considerable circulation of B. pertussis, particularly among 15–19 year-olds as well as
in the older age cohort (>60 years) [4]. Following many years of declining incidence rates,
over the past few years there has been a resurgence of pertussis [5,6].
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Pertussis maternal antibodies cross the placenta and provide the newborn with protec-
tion against pertussis in early life [7]. In 2012, in an effort to ensure high levels of maternal
antibodies, the United States Advisory Committee on Immunization Practices (ACIP) [7]
recommended a dose of pertussis-containing vaccine for pregnant women between 27 and
36 weeks gestation at every pregnancy. Maternal pertussis vaccination during pregnancy
became part of the National Immunization Program in Israel in 2015 [8]. Attitudes towards
pertussis vaccine, beliefs about safety, effectiveness, and the timing of communication
about vaccination are important determinants of vaccine acceptance during pregnancy [9].

Pregnancy is associated with substantial changes in concentrations of sex hormones
including estradiol, estriol, progesterone and prolactin and characterized by a period of
immune quiescence [10,11]. It is a unique system of pro- and anti-inflammation processes.
Changes in cellular and molecular processes facilitate maternal immune adaptations that
are only partly understood [10,11]. The immune environment reflected in peripheral blood
adapts to sustain immune tolerance [12]. There is evidence that the hormonal changes in
pregnancy may affect the immune response to vaccines [11,13]. Findings on the effect of
pregnancy on pertussis antibody levels following vaccination have been variable [14–18].
In one study, post-vaccination titers against pertussis toxin and filamentous hemagglutinin
were significantly higher in non-pregnant versus pregnant women [14]. Other studies
found that antibody responses to Tdap vaccine in pregnant women were not different
from those of non-pregnant women and they increase with the same extent [15,16]. For
influenza vaccines given in pregnancy, the antibody response was similar in pregnant and
non-pregnant women [17,18].

Assessing the effect of pregnancy on the immune response to the pertussis vaccine is
important for determining the timing of vaccination for optimal protection of the infant
prior to active immunization. The goal of this study was to examine the immune response
to pertussis vaccine in pregnancy and the association of estrogen and progesterone levels
with the immune response.

2. Methods
2.1. Study Design

A cross-sectional study was conducted in the Shamir (Asaf Harofe, Be’er Ya’akov,
Israel) Medical Centre between 2017 and 2018.

2.2. Study Population

Healthy pregnant women 18–45 years-old were recruited from the obstetric depart-
ments at a general hospital. Inclusion criteria were first pregnancy with a single foetus, no
underlying chronic or pregnancy related medical conditions and vaccinated during preg-
nancy with pertussis-containing vaccine. The comparison group, comprising non-pregnant
women aged 18–45 years, was recruited from the occupational clinic at the hospital. In
accordance with the Israeli Ministry of Health regulations, every new employee in a medi-
cal institution must be vaccinated against pertussis. The candidates were recruited in the
occupational clinic, which is responsible for administering and documenting the vaccines
for all employees in the medical centre. Inclusion criteria were healthy women who do not
take birth control pills, with no underlying comorbidities, and who were vaccinated as
part of their employment in the hospital. All participants received an explanation on the
background and the purpose of the study, signed an informed consent form to participate
in the study, provided their details, and filled out the questionnaires. Medical records were
checked to verify the pertussis vaccine administration.

Pregnant and non-pregnant women who had previously received the pertussis con-
taining vaccine or who had documented pertussis within the previous five years were
excluded. In order to rule out vaccination in recent years, only pregnant women with a
first delivery child were included in the study. In addition, every woman was asked about
getting vaccinated for any reason. Pregnant women were asked about weight in pregnancy,
so the BMI value of pregnant women is a derivative of their weight at the time of receiving
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the vaccine. Parameters such as smoking status, height and weight were self-reported. All
participants were vaccinated between years 2017–2018. A total of 74 non-pregnant women
(control group) and 174 pregnant women immediately prior to labour were recruited. Insti-
tutional Review Board Statement: The institutional review board at Shamir (Asaf Harofe)
Medical Center, Israel and ethics committee at Haifa University, Israel approved the study
protocol. Approval numbers are 0290-17-ASF and 0181-17-ASF.

2.3. Blood Sampling

Blood samples were drawn 45–60 days after the immunization and centrifuged within
an hour of collection. Sera samples were stored at −70 ◦C until tested for anti-pertussis
toxin (anti-PT) IgG antibody, estrogen, and progesterone levels.

2.4. Questionnaires

Questionnaires were administered to women in both groups contained questions
about their age, weight, height, time of the vaccination during pregnancy, chronic diseases,
smoking status and use of medication on a regular basis. Body mass index (BMI) was
calculated as weight (in kilograms)/height (in meters)2.

2.5. Study Vaccine

In both groups, the licensed pertussis vaccine (Tdap, Boostrix®, GlaxoSmithKline,
Middlesex, UK) was administered as a 0.5-mL intramuscular injection containing 5 Lf of
tetanus toxoid, 2.5 Lf of diphtheria toxoid, 8 µg of inactivated PT, 8 µg of FHA (Filamentous
Hemagglutinin), and 2.5 µg of pertactin.

2.6. Antibody Assays

The enzyme-linked immunosorbent assay (ELISA) was used for quantitative deter-
mination of anti-PT IgG antibody in serum (expressed in International Units per milliliter,
IU/mL). The presence of pertussis IgG antibodies was detected by using a commercially
available ELISA kit (EUROIMMUN, Lübeck, Germany). The lower detection limit of the
quantitation for pertussis toxin IgG was 0.2 IU/mL.

2.7. 17β-Estradiol and Progesterone Quantitative Determination

Electrochemiluminescence immunoassay (ECLIA) was performed for 17β-estradiol
and progesterone quantitative determination. Further, 17β-estradiol and progesterone
values below the limit of detection are reported as <5 pg/mL and <0.05 ng/mL, respectively.

2.8. Statistical Analyses

In the current study we tested pre-defined hypotheses of association between preg-
nancy status, estrogen and progesterone levels with anti-PT IgG antibody levels. For the
association with the hormones, we planned stratified analyses separately for pregnant
and non-pregnant women. The levels of estrogen and progesterone are highly correlated.
Thus, to avoid multicollinearity, these variables were analyzed in separate models. Other
variables such as age, body mass index, and smoking were included in all models as
potential confounders.

The characteristics of the groups were described using means, standard deviations
(SD), medians, minimum and maximum and the inter-quartile range for continuous vari-
ables. Percentages were computed for categorical variable. The main independent variable
was pregnancy status, additional variables were selected as covariates (age, BMI, smoking
status). The main outcome variable was the anti-PT IgG antibody concentration.

The scatter plots were used to visually display the relationship between the variables
(anti-PT IgG antibody, estrogen, progesterone, age, BMI and smoking status) in each group
of pregnant and non-pregnant women. The data on antibody, estrogen, and progesterone
concentrations were transformed to natural logs in order to calculate the Geometric Mean
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Concentration (GMC). Continuous variables were tested for normality using the Shapiro-
Wilk test.

The log-transformed antibody, estrogen and progesterone concentrations were com-
pared between the pregnant and non-pregnant women groups using the Mann-Whitney
test. Correlations between independent variables were tested using Pearson’s correlation.
Multicollinearity was assessed using variance inflation factor (VIF). According to the man-
ufacturer protocol, the anti-PT IgG antibody level <40 IU/mL was defined as negative, and
antibody level ≥40 IU/mL was assumed to be positive. Concentration of 40 IU/mL was
defined as anti-PT IgG antibodies cut-off value. Multiple logistic regression analysis was
used to compute odds ratios (OR) for the association of the dichotomous antibody level
with pregnancy status (pregnant or non-pregnant) after adjusting for age, BMI, and smok-
ing status. Multiple logistic regression analysis was also used to examine the association
between anti-PT IgG antibody following immunization and serum hormones (estrogen
and progesterone) in each group of pregnant and non-pregnant women, controlling for
age, BMI and smoking status. All analyses were performed using SPSS-27 software, IBM,
Armonk, NY, USA.

3. Results

The demographic characteristics of the groups are shown in Table 1.

Table 1. Demographic and clinical characteristics of non-pregnant and pregnant women.

Characteristics of Study
Participants Non Pregnant Women (n = 74) Pregnant Women (n = 174)

Ethnicity, n (%)

Jews 67 (90.5%) 148 (85.0%)

Arabs 7 (9.5%) 26 (15.0%)

Age (years)

Mean (SD) 24.5 (8.5) 26.0 (3.3)

Median (min, max) 19.5 (18.0, 45.0) 26.0 (18.0, 31.0)

Height (cm)

Mean (SD) 162.5 (7.2) 163.0 (6.8)

Median (min, max) 161.0 (147.0, 182.0) 162.0 (148.0, 184.0)

Weight (kg)

Mean (SD) 58.5 (9.2) 75.3 (13.3)

Median (min, max) 57.0 (42.0, 8) 74.0 (50.0, 133.0)

BMI kg/m2

Mean (SD) 22.1 (3.2) 28.4 (4.4)

Median (min, max) 21.7 (16.4, 28.7) 27.8 (20.0, 44.0)

Smoking status, n (%)

Yes 11 (14.9) 15 (9.0)

No 63 (85.1) 159 (91.0)
SD = Standard Deviation; BMI = Body Mass Index; n = Number of participants.

The mean age of control group was 24.5 years (SD = 8.5) and the mean age of women
at birth was 26.0 (SD = 3.3).

The scatter plots for the visualization of the results are shown in Figures 1 and 2.
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Figure 2. Scatter plots for anti-PT IgG antibody, age and BMI in pregnant and non-pregnant women.

Scatter plots of the levels of anti-PT IgG antibody (IgG, IU/mL), estrogen (pg/mL), and
progesterone (ng/mL) show no correlation in non-pregnant women. In pregnant women,
the antibody level tends to decrease as the estrogen and progesterone levels increase.

Scatter plots (Figure 2) of level of anti-PT IgG antibody (IgG, IU/mL), age (years) and
BMI show no correlation in pregnant women. In non-pregnant women, the antibody level
tends to decrease as the age increases.

3.1. Comparison of Anti-PT IgG Antibody Levels between Pregnant and Non-Pregnant Women

The post-vaccination anti-PT IgG antibody levels (GMC) were compared between the
pregnant and non-pregnant groups (Figure 3). In both groups the anti-PT IgG antibody
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levels were above the detection limit of 0.2 IU/mL. Pregnant women had significantly lower
GMC compared to non-pregnant women, with a median of 1.86 and 2.09, and interquartile
range (IQR) = 2.11–1.16 and 2.36–1.8 respectively, p < 0.0001.
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Figure 3. Anti-PT IgG antibody levels (GMC) in serum from pregnant (n = 174) and non-pregnant
(n = 74) women. GMC = Geometric Mean Concentration.

3.2. Multiple Logistic Regression Analysis—Pregnancy Status (Pregnant vs. Non-Pregnant
Women) Assosiation with Anti-PT IgG Antibody Levels, Controlling for Other Variables

The results of the multiple logistic regression analysis of the association of pregnancy
status with anti-PT IgG antibody levels, after controlling for age, BMI, and smoking, are
shown in Table 2. A significant negative association was found between pregnancy status
and anti-PT IgG antibody levels (OR = 0.413, 95% CI 0.190, 0.899, p = 0.026).

Table 2. Multiple logistic regression analysis of the association between levels of anti-PT IgG antibody
(GMC) with pregnancy status, age, BMI, and smoking.

Variables in the Model β Coefficient Odds Ratio 95% CI p

Pregnancy (Yes vs. No) −0.885 0.413 0.190, 0.899 0.026
Age, years −0.044 0.957 0.906, 1.011 0.119

BMI, kg/m2 −0.024 0.976 0.914, 1.043 0.470
Smoking, (Yes vs. No) 0.034 1.034 0.495, 2.161 0.928

GMC = Geometric Mean Concentration; n of non-pregnant women = 74; n of pregnant women = 174; BMI = Body
Mass Index.

3.3. Estrogen and Progesterone Levels in Each Group of Pregnant and Non-Pregnant Women

Compared to non-pregnant women, pregnant women exhibited significantly higher
serum estrogen and progesterone levels. The Mann–Whitney test revealed differences in pro-
gesterone (GMC) concentration between pregnant and non-pregnant women, median = 2.86
(IQR = 2.99–2.64) and 0.39 (IQR = 1.38–(−0.11) respectively, p < 0.0001. The median es-
trogen GMC in pregnant and non-pregnant women was 4.86 (IQR = 4.99–4.63) and 2.47
(IQR = 2.67–2.07), respectively, p < 0.0001.
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3.4. Multiple Logistic Regression Analyses of the Association between Anti-PT IgG Antibody
Levels and Sex Hormones
Association between Anti-PT IgG Antibody Levels and Estrogen

Multiple logistic regression analysis of the association between anti-PT IgG antibody
levels (cut-off of 40 IU/mL) and serum estrogen (GMC) in non-pregnant and pregnant
women controlled for age, BMI, and smoking status is shown in Table 3.

Table 3. Multiple logistic regression analysis for the association between anti-PT IgG antibody levels
with estrogen, age, BMI, smoking status in non-pregnant and pregnant women.

Variables in the Model 95% CI Odds Ratio β Coefficient p

Non-pregnant (n = 74)

Estrogen (GMC) −0.663 0.515 0.134, 1.975 0.333
Age, years −0.094 0.911 0.848, 0.978 0.010

BMI, kg/m2 −0.134 0.875 0.713, 1.072 0.197
Smoking, (Yes vs. No) −1.472 0.229 0.023, 2.251 0.206

Pregnant (n = 174)

Estrogen (GMC) −2.641 0.071 0.017, 0.292 <0.0001
Age, years 0.053 1.054 0.946, 1.175 0.340

BMI, kg/m2 −0.012 0.988 0.916, 1.066 0.758
Smoking, (Yes vs. No) 0.587 1.799 0.733, 4.416 0.200

GMC = Geometric Mean Concentration; BMI = Body Mass Index.

In non-pregnant women group, significant negative association was found between
age and levels of anti-PT IgG antibody (OR = 0.911, 95% CI 0.848, 0.978, p = 0.010). Among
pregnant women, serum estrogen levels were negatively related to the levels of anti-PT
IgG antibody (OR = 0.071, 95% CI 0.017, 0.292, p < 0.0001) (Table 3).

3.5. Association between Anti-PT IgG Antibody Levels and Progesterone

Multiple logistic regression analysis of the association between anti-PT IgG antibody
levels (cut-off of 40 IU/mL) and serum progesterone (GMC) in non-pregnant and pregnant
women, controlled for age, BMI, and smoking status, is shown in Table 4.

Table 4. Multiple logistic regression analysis for the association between anti-PT IgG antibody levels
with progesterone, age, BMI, smoking status in non-pregnant and pregnant women.

Variables in the Model 95% CI Odds Ratio β Coefficient p

Non-pregnant (n = 74)

Progesterone (GMC) 0.489 1.631 0.713, 3.733 0.246
Age, years −0.092 0.912 0.850, 0.979 0.011

BMI, kg/m2 −0.123 0.885 0.723, 1.083 0.235
Smoking, (Yes vs. No) −1.560 0.210 0.021, 2.140 0.188

Pregnant (n = 174)

Progesterone (GMC) −1.205 0.300 0.116, 0.772 0.013
Age, years 0.066 1.068 0.962, 1.186 0.220

BMI, kg/m2 −0.011 0.989 0.920, 1.063 0.760
Smoking, (Yes vs. No) 0.458 1.581 0.673, 3.713 0.294

GMC = Geometric Mean Concentration; BMI = Body Mass Index.

The multiple logistic regression model for the effect of individual variables (proges-
terone, age, BMI, and smoking) on anti-PT IgG antibody levels in non-pregnant women
showed that increased age was significantly negatively associated with antibody level
(OR = 0.912, 95% CI 0.850,0.979, p = 0.011), but no significant association was found with
progesterone level. In pregnant women, the logistic regression model (controlled by age,
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BMI and smoking status) demonstrated a negative association between progesterone level
and anti-PT IgG antibody levels (OR = 0.300, 95% CI 0.116, 0.772, p = 0.013) (Table 4).

In the cohort of pregnant women, we found a statistically significant positive cor-
relation between progesterone and estrogen (Pearson correlation = 0.89, p < 0.0001). We
chose to perform another test of multicollinearity between the variables using the variance
inflation factor [19]. According to this test, the correlations between VIF values (VIF > 5 for
estrogen and progesterone, p < 0.0001 and p = 0.006 respectively) were high, meaning it
is difficult to separate the independent effect of estrogen and progesterone in the model.
As a result, we decided not to include estrogen and progesterone in the same model of
logistic regression.

4. Discussion

We compared anti-PT IgG antibody concentration after the vaccination in pregnant
and non-pregnant women and examined the association of sex hormones with the antibody
levels in each group separately. Our findings revealed that, compared with non-pregnant
women, pregnant women who were vaccinated against pertussis during the third trimester
in pregnancy developed significantly lower anti-PT IgG antibody levels. Among preg-
nant women, the level of pertussis IgG antibodies was negatively associated with both
progesterone and estrogen.

4.1. There Are Several Strengths and Limitations of the Study

There could be some selection bias, since all participants were selected from one
hospital, which generally represents one geographical area in the country. However, there
does not seem to be any reason why the results should not be generalizable to other
populations. As regards information bias, data on height, weight, smoking status, and
comorbidities were self-reported. There may be incompleteness of the reports of the
comorbidities. There is no reason to suspect that the extent of possible inaccuracies would
differ substantially between the groups. The information about the last vaccination by
pertussis containing vaccine is based on medical records and should be reliable in both
groups. In pregnant women, hormone levels were not measured at the time of vaccination,
but 45–60 days after. Since serum estrogen and progesterone levels remain high until the
end of the third trimester of pregnancy [20–23] and change only after delivery [24,25],
the hormone levels measured immediately before delivery should be representative of
the hormone levels at the time of immunization. As regards the anti-PT immunological
memory in the study population, due to previous exposure or immunization, there does not
appear to be any reason to believe that the extent of immunological memory in pregnant
and non-pregnant groups will be different.

4.2. Comparison with Other Studies

Concentrations of estrogens and progesterone are considerably increased over the
course of pregnancy, with highest levels achieved during the third trimester [7] when
pregnant women are vaccinated. Our results are in agreement with the study of pregnant
and non-pregnant women vaccinated with Tdap, where anti-PT IgG antibody titers were
determined 28 days post-vaccination [14]. They found that antibody levels against pertussis
toxin and filamentous hemagglutinin were significantly higher in non-pregnant women.

In two studies [15,16], there was no evidence of differences in the antibody responses
to Tdap vaccine in pregnant and non-pregnant women. Pertussis IgG antibody levels
increased significantly and to the same extent after vaccination in pregnant and non-
pregnant women [15,16].

In both studies [15,16], the small number of participants were enrolled. Prior vaccina-
tion information about receiving the vaccine was obtained mainly through self-reporting
which is a possible source of information bias [16]. It is possible that both studies were
underpowered to detect any differences in the antibody responses between pregnant and
non- pregnant females.
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4.3. Possible Mechanisms

We believe that differences in pertussis IgG antibody levels that we observed between
pregnant and non-pregnant women may be the result of immune and other profound
alterations during pregnancy that cause unique and diverse hormonal, metabolic and
physiological changes. According to our findings, a high level of reproductive hormones
correlate with low vaccine response. Since pregnancy is characterized by high levels of
estrogen and progesterone [10], the activation of immune responses to vaccines may be
altered by pregnancy [26] with increased susceptibility to different pathogens [27]. This
suggests that hormones or the hormone-associated physiological status contributes to the
immune response to pertussis vaccination.

High estradiol concentrations, usually encountered during pregnancy, lead to CD4+
type 2 helper T-cell (Th2) responses [28,29]. This mechanism, responsible for successful
pregnancy maintenance, is related to a switch from the T helper 1 profile to the T helper
2 profile. Th17 cells (part of pertussis post vaccination response) involved in successful
pregnancy, and Th1/Th2/Th17 paradigm is a part of complicated immune cells interac-
tions [30] and pertussis vaccine mediated immune responses. Progesterone has suppressive
role in general, and in pregnancy it influences the balance between Th1 and Th2 immune
responses [31,32] and participates (in animal model) in Th17 expression inhibition in a
dose-dependent manner [33].

The complete immunological mechanisms of the protection provided by acellular
pertussis (aP) vaccines are not fully described. It is possible that antibody-mediated and
Th1/Th17 immune responses are important [34,35]. Acellular pertussis vaccines, such as
Boostrix, promote the immune responses to a mixed Th2/Th1 profile, and enhance antibody
production after the vaccination [36]. Complex T- and B- cell immune responses to pertussis
vaccine have been demonstrated [37]. Protective immune responses are depended not only
on antibodies but also on CD4+ T cell and B cells. B and T cell cross-talk is required for
the optimal maintenance of functional B as well as T-cell memory to pathogen [38]. B cells
contribute to protective immunity to B. pertussis in mice by activating CD4+ cells or by
producing chemokines and cytokines [39]. Memory B cells are crucial for the pertussis IgG
antibodies production [40]. CD4+ T cells secreting both IL-9 and IL-17 have been shown to
be associated with pertussis-specific responses after the vaccination. IFN-β is regulator of
both IL-9 and IL-17 [41].

We believe that the association that we found between progesterone, estrogen and
pertussis IgG antibody levels could be explained, at least in part, by the effect of sex
hormones on B cells. The characteristics of peripheral B cell compartment differ significantly
between pregnant and non-pregnant women [42] and the inverse association found in
this study could be explained by the immunosuppressive activity of estrogen levels in
pregnancy and the activity of progesterone.

The number and activity of B lymphocyte precursors in the bone marrow have been
demonstrated in normal pregnant mice, suggesting that B lymphopoiesis is sensitive to
negative regulation by sex steroids [43,44]. The inhibitory effects of elevated estrogens
suppress adult B-lymphopoiesis during pregnancy [45]. In animal models, progesterone
represses the differentiation and maturity of B cells [46]. The interplay between hormone
levels, the activity of immune cells post vaccination, and the immunosuppression in
pregnancy may explain the lower anti-PT IgG antibody levels.

5. Conclusions

Pregnancy is a unique period that combines hormonal interplay and complex systems
of pro- and anti-inflammation immune responses. The impact of sex hormones on the
response to pertussis vaccine should be taken into account when evaluating the immune
response to vaccination in pregnancy. Clinical and epidemiological studies should include
the influence of the reproductive and hormonal status on vaccine-induced immunity.
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