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Background and Objective. Breast cancer is a common malignant tumor that seriously threatens the health of women in my
country and even around the world. The proliferation marker Ki-67 has been utilized to distinguish luminal B from luminal A
tumors and is a reliable indicator of more aggressive breast cancer growth. If a reliable prediction method for breast cancer
patients to avoid invasive damage can be found to predict Ki-67 before pathological examination, it will be very beneficial for
doctors to formulate later treatment plans and provide more useful treatment options. Methodology. This paper proposes a
tumor segmentation and prediction framework based on the combination of improved attention U-Net and SVM. The
framework first improves on attention U-Net by introducing coefficients for learning multidimensional attention. Make the
attention mechanism more aware of the main situation in the segmentation process. At the same time, the segmented breast
MRI results and corresponding labels were input into the SVM classifier to accurately predict the expression of Ki-67. Results.
The DSC, PPV, and sensitivity of our combined model are 0.94, 0.93, and 0.94, respectively, with better segmentation
performance. And we compare with the segmentation frameworks of other papers and find that our combined model can
make accurate segmentation of breast tumors. Conclusion. Our method can adapt to the variability of breast tumors and
segment breast tumors accurately and efficiently. In the future, it can be widely used in clinical practice, so as to help the clinic

better formulate a reasonable diagnosis and treatment plan for breast cancer patients.

1. Introduction

Tumors are the leading cause of death worldwide. Breast
cancer is the malignant tumor with the highest incidence
of female malignancies, and its incidence is increasing year
by year and younger women are being diagnosed with it
[1, 2]. Breast cancer is a very heterogeneous illness that can
be categorized into four molecular types: luminal A, luminal
B, HER-2, and basal-like, according to the rapid progress of
tumor molecular biology research. The disease manifesta-
tion, responsiveness to treatment, and other clinical behav-
iors of breast cancer patients with distinct molecular types
varied significantly [3-6]. The Ki-67 protein is a nuclear
antigen linked to cell proliferation that can accurately reflect

the proliferative activity of malignant tumors, making it a
useful indicator of tumor aggressiveness [7-9]. Recent
studies have found that the proliferation marker Ki-67 pro-
vides important prognostic information and may contribute
to the evaluation and improvement of treatment in prognos-
tic ER-positive breast cancer [10]. Although some relapse,
around 70% of human breast cancer tumors are ER-
positive and have a favorable prognosis.

The Ki-67 index, a proliferation marker, has been utilized to
distinguish luminal B from luminal A tumors in estrogen
receptor-positive individuals and is a consistent sign of more
aggressive breast cancer growth [11]. Patients with the luminal
B subtype had a higher rate of proliferation and a worse progno-
sis than those with the luminal A subtype. Luminal B tumors
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have reduced estrogen-related gene expression and a higher Ki-
67 index, making them a subgroup of ER-positive patients with
a poor prognosis who may benefit from adjuvant treatment. It is
critical to recognize groups [12-14]. Individuals with lower Ki-
67 levels have a basic pathological complete response (PCR)
after treatment, whereas patients with high Ki-67 expression
are considered a high-risk category in terms of prognosis,
according to new research [15]. The Ki-67 expression determi-
nation rule is follows: the proportion of positive cancer cells in
the sample is counted, and the proportion greater than 14% is
defined as high expression; otherwise, it is low expression
[16]. Data mining of the Ki-67 high and low expression based
on advanced algorithms [17-19] may assist in the prediction.
If a reliable prediction method for breast cancer patients to
avoid invasive damage can be found to predict Ki-67 before
pathological examination, it will be very beneficial for doctors
to formulate later treatment plans and provide more useful
treatment options basis.

With the improvement, development, and application of
various MRI techniques, because of its unique imaging charac-
teristics and advantages, it has become an important supple-
mentary method after mammography and ultrasonography
[20]. MRI has a strong ability to distinguish between different
soft tissue structures, especially for various breast lesions [21].
Some studies have shown that its diagnostic sensitivity for
breast cancer reaches 94%-99%, and MRI also has higher accu-
racy and objectivity for the localization of breast lesions [22]. At
the same time, it can be observed whether the lesion has various
effects on the surrounding tissues, such as whether the lesion
involves adjacent muscle groups such as the pectoralis major,
whether it invades or destroys the adjacent bone structure,
and whether there is abnormal signal changes such as edema
in the surrounding normal soft tissue [23]. Especially when a
suspicious breast cancer is found, it is more valuable to assess
whether there is metastasis in the lymphatic drainage areas of
the breast, such as the axilla, subclavian, and posterior sternum,
which is helpful for the clinical staging of breast cancer and
assists early clinical development. Patients’ prognoses and sur-
vival times can be improved by using the appropriate treatment
options [24].

A technique that is noninvasive and nonharmful. Diffusion
weighted imaging (DWI) is a development of magnetic reso-
nance imaging (MRI) technology that has been widely
employed in breast imaging tests. It can detect the diffusion
movement of water molecules in human tissues. Information
such as direction and degree of restriction indirectly reflect
changes in tissue microstructure [25, 26]. The apparent diffu-
sion coeflicient (ADC) is a quantitative metric that closely rep-
resents biological tumor properties such as vascular anatomy
and water content [27]. Imaging analysis of breast tumor het-
erogeneity based on diffusion weighted imaging is currently
attracting great attention internationally. Previous studies have
found some significant DWT imaging features of breast molec-
ular typing and the relationship between ADC values in tumors
and surrounding stromal regions and pathological status [24,
28], but ADC values in tumors and surrounding stromal
regions were found. The heterogeneous signaling patterns and
the use of these features to predict molecular typing have not
been studied.
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Today, deep learning methods are applied to many pat-
tern recognition tasks with good results, in which convolu-
tional neural network algorithms can automatically learn
image features [29]. Among them, Piantadosi et al. [30]
accurately segmented the breast by applying CNN on 3D
MRI. They also used an appropriate projection fusion
method to merge U-Net with CNN for multiplanarity,
allowing for multiprotocol applications. The U-Net neural
network was appropriately modified by Piantadosi et al.
[31]. The network enables accurate segmentation of 3D
breast MRI. Zhang et al. [32] used the U-Net framework
incorporating a fully convolutional residual neural network
for accurate segmentation of breast MRI. It has the potential
to provide a reliable and efficient approach for processing
huge volumes of MRI data and quantitative breast density
analysis. To accurately segment breast MRI and catch mis-
takes, Kakileti et al. [33] suggested a cascaded CNN architec-
ture. The suggested system can automatically detect breast
regions regardless of picture capture or angle, allowing for
image and video analysis.

This paper proposes a tumor segmentation and prediction
framework based on the combination of improved attention
U-Net and SVM. The framework first improves on attention
U-Net by introducing coefficients for learning multidimen-
sional attention. It causes the attention mechanism in the
segmentation process to devote more attention to the main sit-
uation. At the same time, the segmented breast MRI results
and corresponding labels were input into the SVM classifier
to accurately predict the expression of Ki-67.

2. Materials and Methods
2.1. Construction of the Dataset

2.1.1. Data Acquisition. We collected breast MRI data from
164 patients from the Second Affiliated Hospital of Fujian
Medical University. According to the pathology report, there
were 98 cases with high expression of Ki-67 (greater than or
equal to 14%) and 66 cases with low expression of Ki-67 (less
than 14%). Inclusion criteria are as follows: (1) have had
breast MRI examination before surgery and (2) postopera-
tive pathology report accurately indicated the molecular sub-
type of breast cancer with Ki-67 classification. Patients were
scanned in the prone position using a 3.0T MRI scanner
(PHILIPS, Ingenia 3.0 T) with a dedicated phased array 8-
channel breast coil. The identical imaging strategy was used
on all of the patients. The breast DWI technique included a
DWI sequence (TR/TE =6000ms/90ms, flipangle=90°,
matrix size =256 x 256, slice thickness=4.0mm, and b
values of 0 and 850s/mm?) collected before the contrast
medium was injected. Part of the scanned image data is
shown in Figure 1.

We defined three ROI regions (Figure 2). They are the
tumor body, the stromal area around the tumor, and three
ROIs that combine the two. The peritumor stroma was
defined as a 5 mm expansion of the tumor boundary.

2.1.2. Data Annotation. The tumor images we collected were
manually delineated by two senior medical radiologists
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FIGURE 1: Partially scanned image based on (a) Ki-67 highly expressed DWI sequence and (b) 2. Ki-67 low-expression DWI sequence.

engaged in breast imaging diagnosis, and the molecular sub-
type labeling was based on the pathology report as the gold
standard. In addition, corresponding contour labels are also
made according to the boundaries of the tumor labels. The
boundary of the contour label is represented by 1, and the
area outside the boundary is represented by 0.

The scanned images often generate various noises due to
external influences, so the images should be smoothed
before training to remove the influential noises, so that the
subsequent segmentation results are more accurate.

2.2. Improve Attention U-Net Network Model Implementation.
U-Net is an upgraded network model based on FCN that com-
prises of a contraction (encoding) path and an expansion
(decoding) path that are orthogonal to one another [34]. The
shrinking path reduces the size of the input image by down-
sampling the feature map via consecutive convolutional layers
and max-pooling layers; the expanding path restores the
image size and information by upsampling the feature map
through convolutional and deconvolutional layers. The
encoder and decoder are connected by skip connection layer,
and the image details lost during downsampling by the
encoder are recovered. U-Net can achieve good performance
when training samples with less data, so U-Net is widely used
in medical-related fields. The U-Net structure is shown in
Figure 3.

The human attention mechanism, which is commonly
employed in deep learning, was used to name the attention
model. In medical picture segmentation, an attention mech-

anism is included into the network structure to improve the
model’s sensitivity by highlighting the segmented object
region and suppressing the feature response of irrelevant
background regions. Inspired by attention U-Net [35], this
paper improves on the original attention, and its structure
is shown in Figure 4.

The attention mechanism takes two feature maps as
input, one is the feature x; in the skip connection, and the
other is the feature g, in the upsampling process; the input
feature is linearly transformed by 1x1 convolution, and
the size is unchanged, The feature maps whose number of
channels is C are added together. Then, the intermediate fea-
ture map is obtained through the SeLu activation function,
and after the 1 x 1 convolution operation, the Sigmoid func-
tion, and resampling, the graph attention coeflicient o;°%; is
obtained as the output feature map, and its expression is

X = aexy, (1)
where x; is the input feature and [ is the number of pixels in
each feature.

The output result x,,, of the attention mechanism is

xout:%l+gl' (2)

In the segmentation task, due to the existence of multiple
semantic categories, the coefficient of learning multidimensional
attention is introduced, so the attention mechanism can pay
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FIGURE 2: Three ROI regions based on (a) tumor body, (b) the stromal area around the tumor, and (c) a combination of both.
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FIGURE 4: Improved attention mechanism.

more attention to the main situation in the segmentation pro-
cess. Comparing the methods and performances of the multi-
plicative attention and additive attention algorithms, it can be
found that the additive attention algorithm has higher preci-
sion and better segmentation effect. The attention coefficient
o is

(3)

o =0, ((p(al (wxxl +tw,g;+ bg)) + bq,).

In the formula, w, is the weight of the input x;, w, is the
weight of the input g, ¢ is the standard convolution function,
b, is the offset value of g;, and b, is the bias value of ¢. The
input features xj, g, provide the attention mechanism with
contextual information, which can determine which of the
input features are related to breast tumors. «; weights the
low-level features, thereby increasing the correlation and sup-
pressing irrelevant background information, so as not to affect
the network judgment.

2.3. SVM Principle. Support vector machine (SVM) has
obvious advantages in small sample statistics and has the
ability to avoid structural risks. While pursuing roughly cor-
rect classification, it can avoid overfitting to a certain extent
and has the best prediction ability [36]. Support vector
machines are divided into linearly separable and nonlinearly
separable. The basic principle is to map the sample training
data in the low-dimensional space to the high-dimensional
space, so that the sample training data is linearly separable,
and then, the boundary is linearly divided by the Equations
(3) and (4) defines the minimization function for finding
the optimal hyperplane margin and its constraints.

(4)

112
mibn 3 Hw H subject to the constraints,
W,

yi(We5 +b), 5)
where w is the normal, b is the threshold, and x; is each sam-
ple instance.

In this work, the support vector machine’s kernel func-
tion is a polynomial kernel function, which is defined as

K(x,%;) = [(xex;) + 1], (6)

where d is the power of the polynomial kernel function;
the larger the d, the more complex the algorithm and the
longer the running time.

24. A Framework for Breast Tumor Segmentation and
Prediction Based on Combinatorial Models. This paper pro-
poses a tumor segmentation and prediction framework
based on a combination of improved attention U-Net and
SVM. The suggested framework, as illustrated in Figure 5,
is divided into two stages: preprocessing, feature extraction,
and training to improve attention U-Net and SVM and seg-
mentation and creation of final Ki-67 prediction findings.

First, the enhanced attention U-Net and SVM are
trained to learn the mapping from the grayscale picture
domain to the tumor label domain. Then, the labeled seg-
mentation output and labels of the improved attention U-
Net are fed into the SVM classifier to obtain accurate Ki-
67 predictions.

In the segmentation process, the target image changes
greatly, which increases the difficulty of segmentation. In
order to reduce the loss of adjacent feature information
between different subregions, this paper uses the residual
multiscale pooling layer to extract information of different
scales. The pooling model fuses the features of the pooling ker-
nel with 4 different scales, 2 x 2,4 x 4, 8 x 8, and 16 x 16 from
top to bottom, to extract global contextual feature informa-
tion. The four layers of the pyramid output feature maps of
different scales. In order to keep the global feature weight
unchanged, a 1 x 1 convolution operation is connected behind
the four different layers to reduce the number of channels of
the output feature map. Then, using bilinear interpolation,
upsample the low-level feature map to acquire features of the
same size as the input pooling layer’s original feature map
and superimpose the obtained feature map with the original
feature map to build a multichannel multiscale feature map
for picture segmentation.

2.5. Model Design Details. The encoding and decoding part
of the original U-shaped network is replaced with a recur-
rent residual atrous convolutional network. The problem of
gradient disappearance caused by too deep network layers
is solved by introducing identity mapping; the underlying
feature information is repeatedly extracted and accumulated
by using the cyclic structure; the receptive field is further
expanded without loss of information through hole convolu-
tion, which improves the correlation between the layers of
the network strengthens the global connection, but it also
brings problems such as over-extraction of features and
noise interference. To address these issues, a multiscale
attention mechanism is added to the encoding and decoding
skip connection, which increases the weight of tumor feature
information and combines the feature semantic information
of high and low layers, reduces the amount of network
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FIGURE 5: A framework for breast tumor segmentation and prediction based on a combinatorial model.

model parameters that must be calculated, and improves the
light and dark contrast segmentation.

The encoder consists of 4 groups of downsampling
layers and convolutional layers. The sampling layer is com-
posed of 2 parallel channels. The convolutional layer adopts
the cyclic residual hole convolution module to optimize the
network structure and adds Dropblock to the convolutional
block. Prevent overfitting problems. The decoder consists of
4 sets of upsampling layers, a convolutional layer of size
3x3 and a convolutional layer of the highest layer of
1 x 1, which is used to restore the feature size and output
the segmentation result. The encoder and the decoder are
connected by a skip layer with an attention mechanism. This
module is used to fuse the imaging background and tumor
proportions to reduce the influence of background chaos
on tumor morphology. Low-level feature semantic informa-
tion is usually less precise as time goes on, while high-level
feature semantic information is more precise as time goes
on. The context feature extraction module is a residual multi-
scale feature pooling layer that uses multiscale pooling to
aggregate information from diverse locations and then
extracts global context information.

3. Results

3.1. Segmentation Evaluation Metrics. Coeflicient of Dice
similarity (DSC) is an index that measures the rate at which
manual and automatic segmentation are repeated. It is
defined as follows:

2TP

DSC= ————MMMM—.
S FP +2TP + FN

(7)

Here, TP, FP, and FN are the number of tumor points
detected as true positive, false positive, and false negative,
respectively.

The fraction of correctly segmented tumor points in the
segmentation result of tumor points is known as positive
predictive value (PPV), which is defined as:

TP

PPV=_— .
TP + FP

(8)

Sensitivity is the proportion of correctly segmented
tumor points to the true value of tumor points, which is
defined as

TP
TP +FN’

)

Sensitivity =

3.2. Segmentation Results of the Combined Model. We train
and segment the collected breast tumor photos to test the
combined model’s segmentation effect and then provide
the experimental results. The result graph clearly shows the
segmentation effect, demonstrating the efficiency of our
strategy. The segmentation results of image slices of Ki-67
highly expressed breast cancer samples are shown in
Figure 6.

At the same time, we randomly chose some samples
from scan images of breast cancer with low Ki-67 expression
for testing in order to confirm the efficiency of our proce-
dure once more. The segmentation of image slices of breast
cancer samples with low Ki-67 expression is shown in
Figure 7.

It can be seen from the figure that our network can effec-
tively segment breast tumors. Therefore, our network is very
effective for the segmentation of breast tumors.

3.3. Comparison with Existing Methods. To demonstrate the
usefulness of our suggested method, we compare it to
methods proposed by other researchers, and the results of
the comparison are shown in Table 1. Among them, Dalmis
et al. [37] applied U-Net neural network. They segmented
breast and FGT in MRI in datasets containing various MRI
protocols and breast densities. Baccouche et al. [38] pro-
posed an architecture called Connected-U-Nets, which uses
other modified skip connections to connect two U-Nets.
Hagq et al. [39] proposed an automatic breast tumor segmen-
tation segmentation method using conditional GAN
(cGAN). It can be seen from the results in Table 1 that the
combined framework proposed in this paper outperforms
other methods in DSC, PPV, and sensitivity, which proves
the feasibility of our method.

At the same time, in order to prove the universality of
our combined network, we compare it with the traditional
network. The experimental results are shown in Table 2.
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FIGURE 6: Segmentation results of image slices of breast cancer samples with high Ki-67 expression based on (a) raw MRI scan image,
(b) tumor segmentation results, (c) tumor boundary segmentation results, (d) tumor and boundary segmentation results, and (e)

schematic overlay.

At the same time, in order to see the performance improve-
ment of our combined network more intuitively, we calcu-
lated the improvement of the evaluation indicators, as
shown in Table 3.

4. Discussion

Breast cancer is a very heterogeneous tumor with a wide
range of morphologies, therapeutic responses, and patient
outcomes due to distinct molecular subgroups. Ki-67 is a
commonly used immunohistochemical marker in breast
cancer detection, and its expression level is closely related
to the invasiveness, type, treatment effect, and prognosis of
breast cancer. However, in clinical practice, the expression
of Ki-67 in the tumor can only be obtained through postoper-
ative pathological tissue staining and immunohistochemical
analysis and treatment are important. Magnetic resonance
imaging (MRI) DWI can quantify the apparent diffusion coef-
ficient (ADC) in the absence of a contrast agent, which reflects
the movement of free water molecules in the tumor and pro-
vides information about tumor biology and microstructure.
Texture analysis can capture microscopic features unrecogniz-
able to the human eye in magnetic resonance imaging, quan-
tifying tumor heterogeneity.

DWTI can employ the diffusion motion of water mole-
cules to display spatial information and cell density in

human tissues at the molecular level, making it a useful
MRI-assisted diagnostic procedure. In clinical practice, the
most typically utilized ADC value is to quantify the diffusion
degree of tissue water molecules. The ADC value of the
Ki-67 high-expression group was lower than that of the low
expression group ((0.820.08)10% vs. (0.980.15)107> mm?/s,
P =0.001), and the ADC value was inversely connected with
Ki-67 expression (r=-0.514, P=0.05), according to the
findings. That is, the higher the Ki-67 index value, the lower
the ADC value. At present, breast MRI scan and dynamic
enhancement DWI scan are mostly used in clinical practice,
which can obtain relatively complete imaging-related data
of breast lesions, which further improves the diagnostic effi-
ciency of breast cancer. It can distinguish between lesions
and surrounding tissues and can also semiquantitatively or
quantitatively evaluate the hemodynamic characteristics of
breast lesions, which has high sensitivity for qualitative diag-
nosis of breast diseases.

Similar to other researchers, our method also suffers
from certain limitations. The attention module used in this
paper makes the segmentation model pay more attention
to the local feature information of the tumor nucleus and
the enhanced tumor region, ignoring the global feature
information of the whole tumor, resulting in a slight
decrease in the segmentation effect of the whole tumor. In
the future segmentation model research, the local feature-
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(e)

FIGURE 7: Segmentation results of image slices of breast cancer samples with low Ki-67 expression based on (a) raw MRI scan image, (b) tumor
segmentation results, (c) tumor boundary segmentation results, (d) tumor and boundary segmentation results, and (e) schematic overlay.

TaBLE 1: Comparison of different algorithms.

Method Literature DsC PPV Sensitivity
U-Net Dalmus et al. [37] 0.87 0.86 0.89
Connected-U-Nets Baccouche et al. [38] 0.89 0.90 0.91
BTS-GAN Hagq et al. [39] 0.90 0.92 0.91
CNN+SVM Our method 0.94 0.93 0.94
TasLe 2: Compared with traditional network. level global feature information of tumor segmentation will

be fused at the same time, in order to improve the segmen-

Method DS PPV Sensitivit .

o ¢ NSy tation accuracy of the whole tumor [40]. Note that volumet-
U-Net 0.80 0.81 0.80 ric modelling and visualization [41, 42] pertaining to the
V-Net 0.83 0.83 0.84 breast tumor structures can help in the analysis of breast
CNN 0.86 0.88 0.87 cancer for future implementation. In addition, the consider-
FCN 0.90 0.92 0.91 ation of harnessing the extreme learning methods [43] for
CNN+SVM 0.94 0.93 094 segmentation used in this research may also be proposed

as future work, and will enhance medical evaluation as well.

TaBLE 3: Performance boost. 5. Conclusion
U-Net V-Net CNN FCN This paper proposes a tumor segmentation and prediction
DSC (7) 0.14 0.11 0.08 0.04 framework based on a combination of improved attention
PPV (1) 0.12 0.10 0.05 0.01 U-Net and SVM. This method outputs the segmentation
Sensitivity (1) 0.14 0.10 0.07 0.03 results and labels of a learned improved attention U-Net into

a SVM. During the training phase, we introduce coeflicients
for learning multidimensional attention. Focus on the main
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situation in the segmentation process through the attention
mechanism. In order to achieve accurate prediction of Ki-67
high and low expression, we trained a support vector machine.
The labeling output of the improved attention U-Net is sent to
the SVM classifier for accurate classification. The method can
adapt to the difference of breast tumors and segment breast
tumors accurately and efficiently. In the follow-up research,
we will explore attention U-Net in conjunction with other
powerful classifiers. Compared with the segmentation frame-
works of other papers, it is found that the DSC, PPV, and sen-
sitivity of our combined model are 0.94, 0.93, and 0.94,
respectively, with better segmentation performance and can
generate accurate segmentation of breast tumors.
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