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Abstract: Water scarcity in arid and semiarid regions poses problems for agricultural systems,
awakening special interest in the development of deficit irrigation strategies to improve water
conservation. Toward this purpose, farmers and technicians must monitor soil water and soluble
nutrient contents in real time using simple, rapid and economical techniques through time and space.
Thus, this study aimed to achieve the following: (i) create a model that predicts water and soluble
nutrient contents in soil profiles using electrical resistivity tomography (ERT); and (ii) apply the
model to different woody crops under different irrigation regimes (full irrigation and regulated
deficit irrigation (RDI)) to assess the efficiency of the model. Simple nonlinear regression analysis
was carried out on water content and on different ion contents using electrical resistivity data as the
dependent variable. A predictive model for soil water content was calibrated and validated with
the datasets based on exponential decay of a three-parameter equation. Nonetheless, no accurate
model was achieved to predict any soluble nutrient. Electrical resistivity images were replaced
by soil water images after application of the predictive model for all studied crops. They showed
that under RDI situations, soil profiles became drier at depth while plant roots seemed to uptake
more water, contributing to reductions in soil water content by the creation of desiccation bulbs.
Therefore, the use of ERT combined with application of the validated predictive model could be a
sustainable strategy to monitor soil water evolution in soil profiles under irrigated fields, facilitating
land irrigation management.

Keywords: electrical resistivity; tomography; regulated deficit irrigation; soil moisture; nonlinear
regression analysis

1. Introduction

More than one hundred countries in the world are under conditions of aridity and
semi-aridity. Africa is the continent most damaged by desertification followed by Asia,
Latin America and the Caribbean. On the European continent, Mediterranean countries
that comprise Spain, Portugal, Italy, Turkey and Greece make up one of the four zones
determined by the UN convention as being affected by desertification [1]. Hence, water
scarcity in arid and semiarid regions poses widespread problems for agricultural systems,
awakening special interest in the development of efficient irrigation strategies that facilitate
water saving [2]. The adoption of new strategies to optimize irrigation by reducing water
and energy consumption will be essential to maintain agricultural activity in desertification-
affected regions. With regard to this, the Segura basin (SE Spain) has a water structural
deficit of about 460 hm3 per year, making it the region with the greatest water deficit in the
European Union; it is also the most regulated basin in Europe with the highest water use
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efficiency [3]. Despite its water scarcity, productive agriculture is developed there whose
production is mainly exported to EU state members. Hence, irrigation of the Segura basin
leads in demand for the proportion of water it needs.

Currently, special interest has arisen for the development of regulated deficit irrigation
(RDI) strategies that strive to significantly reduce irrigation water content without affecting
production or crop quality [4–6]. RDI is based on reduction of water supply during non-
critical periods, covering water needs during critical periods and maximizing at the same
time production per unit of applied water [7]. Nonetheless, its success greatly depends on
adequate application of the water deficit. RDI also requires continuous and precise control
of the status of plants and soils in order to adjust water supplies at every crop phenological
period [8]. Consequently, there is a need to develop rapid, economical and easy-to-use
tools so that farmers and technicians can continuously monitor soil water content in real
time using soil profiles.

Methods for soil moisture determination are usually based on direct measures which
consist of weighing soil before and after oven-drying, or using in situ probes. Recent studies
have demonstrated the potential use of some geophysical techniques, such as electrical
resistivity tomography (ERT), for soil characterization and particularly for soil moisture
estimation [9–12]. While traditional techniques seem restricted to the rhizosphere area and
provide data from a single point of measure, the ERT technique offers continuous mea-
surements at multiple lengths and depths. The ERT technique is rapid, cost-effective and
does not cause strong perturbations in soils [13]. This approach is based on the relationship
between the behavior of a soil property and a real resistivity measure using regression
models. Polynomial functions or power functions are usually used for a large range of
moisture changes, typically from full saturation to dry soil states [14,15]. However, in some
particular cases, this relationship can follow a linear model, as reported by Michot et al. [11].
Thus, these results highlight the large variability of data and the complexity in developing
predictive models using ERT.

The ERT technique is based on the use of electric current to assess electrical properties
of the subsurface (e.g., resistivity, conductivity). A set of four electrodes driven into the
soil injects currents (two electrodes) and measures potential differences (two electrodes)
simultaneously. The interactions of these currents with subsurface materials act differently
depending on characteristics of the subsurface, allowing geoelectric profiles to be calcu-
lated [16]. Thus, soil electrical resistivity mainly involves constant physical properties of
the soil, such as clay content, but it also involves variable properties such as soil water
content, soil water electrical conductivity and temperature [11,17].

Electrical profiling using ERT requires many electrodes connected to a switch box by a
cable. This allows multiple apparent resistivity measurements to be made using different
electrodes. This system is called a multi-electrode system, or sometimes a multi-channel
system [18]. Subsequently, resistivity values are obtained from the inversions of apparent
resistivity values measured in the field [19,20].

Based on the aforementioned approach, we hypothesized that the ERT method could
replace moisture probes in woody crops during the vegetation period using a moisture-
resistivity model. Thus, an experiment was set up in different commercial tree orchards
where full irrigation and RDI were applied over a period of two years. The objectives of the
experiment were the following: (i) to calibrate a model that allows users to predict water
and soluble nutrient contents in soil profiles of different woody crops using ERT; (ii) to
validate the model in woody crop orchards under different irrigation regimes in order to
assess the efficiency of the model; and (iii) to assess differences in soil water content using
soil profiles from different irrigation schedules in different crops. We hypothesized that
$ values derived from ERT could be related to soil moisture and some nutrient contents
by the use of nonlinear regression analysis, thereby calibrating and validating a suitable
model. The application of this model would permit users to depict soil profile images
with estimated values of soil, water and nutrient concentrations for rapid and cost-efficient
monitoring of these properties by end-users.
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2. Materials and Methods
2.1. Study Area

The study was conducted at three commercial farms located in Campotéjar (Region of
Murcia, Spain) where different crops were selected. The first farm (38◦11′ N; 1◦18′ W) had
Saturn peach (Prunus persica var. platycarpa) and table grape (Vitis vinifera) crops. The P.
persica var. platycarpa crop had an extension of 4752 m2, with 288 trees at spacings of 5.5 m
between rows and 3.5 m between trees within the same row; the V. vinifera crop had an
extension of 3520 m2, with 252 trees at spacings of 3.5 m between rows and 3.0 m between
trees within the same row. The second farm (38◦17′ N; 1◦23′ W) had peach trees (Prunus
persica), with an extension of 4725 m2, with 270 trees at spacings of 5.5 m between rows and
3.5 m between trees within the same row. The third farm (38◦13′ N; 1◦22′ W) was cultivated
with nectarine trees (Prunus persica var. nucipersica), with an extension of 670,000 m2, with
31,900 trees at spacings of 6 m between rows and 3.5 m between trees within the same row
(Figure 1).

Figure 1. Locations of the selected orchards.

The climate of the area is semiarid Mediterranean with a mean annual temperature of
18 ◦C and a mean annual precipitation of 270 mm. Potential evapotranspiration surpasses
1200 mm per year. The geology of the area is represented by Neogene and Quaternary
marls [21] and soils are classified as Calcaric Regosols [22] with soil depths of Ap:0–45 cm
and C:>45 cm for Saturn peach; Ap:0–35 cm and C:>35 cm for grape; Ap:0–40 cm and
C:>40 cm for peach; and Ap:0–50 cm and C:>50 cm for nectarine. The main soil char-
acteristics for all crops are shown in Table 1. Customary cultural practices (e.g., weed
control, fertilization, pruning, fruit thinning and banding) are carried out by the technical
departments of these commercial orchards.

A drip irrigation system was installed, with two lines per tree row and nine pressure-
compensated emitters (1.6 L h−1) per tree placed at every 75 cm. Irrigation was scheduled
weekly at nights. The frequency of irrigation varied according to evaporative demand,
which was 1 to 2 times per week in winter, 2 to 7 times per week in spring and autumn,
and 7 to 14 times per week in summer. All crops were irrigated with well water having
an electrical conductivity ranging between 2.5 and 2.8 dS m−1. We applied two different
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irrigation treatments as follows: (1) a control group (CT) where trees were irrigated to
satisfy the maximum water requirement of each crop type; and (2) a regulated deficit
irrigation (RDI) group where trees were irrigated at 100% of the crop water requirement
except for the post-harvest period in P. persica var. platycarpa, the post-veraison period in V.
vinifera and the pre-harvest and post-harvest periods in P. persica var. nucipersica, which
were irrigated at 50% CT; the aim of this was not to surpass the threshold of the stem water
potential of −2 MPa. The total crop water needs were estimated as the product of reference
crop evapotranspiration (ET0) and the crop coefficients (between 0.25 and 0.55) proposed
by the Agricultural Information System of Murcia (http://siam.imida.es, 1 March 2015) for
this area, adjusted for tree size [23]. The experiment was set as a randomized design with
three replications per treatment. Each replicate had three adjacent tree rows and fifteen
trees per row. All measurements and samplings were carried out in the central row of
each replicate.

Table 1. Main soil properties for the different crops used in this study.

Crops

Soil Properties Saturn Peach Table Grape Peach Nectarine

Bulk density (g cm−3) 1.23 1.17 1.17 1.32
pH 7.90 7.76 7.79 8.02

Electrical conductivity 1:5 (mS cm−1) 3.42 2.43 4.56 1.34
Organic carbon (g kg−1) 9.1 12.8 10.1 12.8
Total nitrogen (g kg−1) 1.05 1.16 0.94 1.42

CaCO3 (%) 43 46 33 56
Clay (%) 10 15 16 13
Silt (%) 56 56 24 59

Sand (%) 34 29 60 28

2.2. ERT Methodology

The combination of electrical sounding and profiling methods in a single process
(2D resistivity imaging) allows the ERT method to provide information about lateral and
vertical resistivity changes along a soil profile [24,25]. Apparent resistivity measurements
were obtained using a computer-controlled multielectrode system consisting of a Syscal-R1
switch resistivimeter (IRIS Instruments, 2001) connected to 36 stainless steel electrodes
spaced 30 cm from each other. The electrodes were georeferenced using a GPS unit,
allowing characterization of the soil to a depth of 2 m (Figure 2). Connections between
the resistivimeter and electrodes were made using a multicore cable and takeout clips
for galvanic coupling of the electrodes to the ground. The datasets were acquired using
a Wenner–Schlumberger electrode array due to its high signal-to-noise ratio and good
vertical resolution [21].

Campaigns of ERT were carried out during the summer periods of 2015 and 2016
(July–August) at the previously mentioned commercial farms. The summer period was
selected since deficit irrigation was applied to all crops at this time, and the differences
between CT and RDI treatments were at their greatest. This is important since electrical
resistivities of soils depend on amounts of water and dissolved ions present in the pores [26].
The ERT campaigns were performed in one of the irrigation lines along the 15 trees in the
central row of each plot.

Data obtained were analyzed with all erroneous values first removed before inversion
in the PROSYS software. Data were subsequently processed by the RES2DINV software,
which runs an inversion process based upon the smoothness-constrained least-squares
method in order to obtain a 2D distribution of electrical resistivity. Thus, the 2D distribution
is related to physical properties of the subsurface named as an inverted resistivity image
or 2D resistivity section [27]. The accuracy of the inversion model of each section was
characterized by its root-mean-square (RMS) error value [13,28]. The inversion software
(RES2DINV) divided the subsurface into rectangular pixels with each of them taking a

http://siam.imida.es
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singular resistivity value according to the material present in it. ERT resolution depends
on electrode spacing and resistivity contrast; vertical resolution decreases as depth in-
creases [29]. In our study, the pixel width was 0.15 m and the vertical pixel dimension was
around 0.16 m. Pixel shape achieved in this study was sufficient to distinguish property
changes at shallow depths [30]. Figure 3 shows data numbers (700 data points) obtained in
one electrical tomography profile.

Figure 2. Scheme of the methodology applied in our study.

Figure 3. Arrangement of electrodes for a 2D electrical survey and pseudosection data patterns for
the Wenner–Schlumberger arrays.

2.3. Soil Sampling and Analytical Methods

Immediately after the ERT campaigns, soil samples were collected along the ERT
profiles at different electrode positions at two different depths (0–30 cm and 0–70 cm). A
total of 84 soil samples were collected, 12 for each crop type and year. Soil samples were
collected with an auger hole. For each depth, soil was introduced into a polyethylene bag
and mixed, after which samples were transported to the laboratory where oven-drying was
applied for 48 h at 45 ◦C. Samples were passed through a 2-millimetre sieve for analyses.
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Soil moisture was measured in situ using a ProCheck and 5TM sensors (Decagon
Devices, Pullman, WA, USA). Soil pH and electrical conductivity (EC) were measured in
deionised water (1:1 and 1:5 w/v, respectively). Soil texture was measured from a soil/Na-
polyphosphate extract and determined using laser diffraction (Mastersizer 2000, Malvern
Panalytical, Malvern, UK). Soil organic carbon (SOC) was determined using the dichromate
oxidation method [31], CaCO3 was determined using the Bernard’s calcimeter and total
nitrogen (NT) was determined using the Kjeldahl method [32]. Soluble cations (Na+,
Ca2+, K+ and Mg2+) and anions (NO3

−, Cl− and SO4
2−) were extracted with deionized

water (1:5 w/v). Anions were measured using ion chromatography (ICNet, Metrohm,
Herisau, Switzerland), while cations were measured using atomic absorption spectrometry
(AAnalyst 800, Perkin Elmer, Waltham, MA, USA).

2.4. Data Analyses

A Kolmogorov–Smirnov normality test at p < 0.05 was used to ensure normality in
fitting the data. No normal distribution of data was achieved even after log-transformation.
Consequently, a Mann–Whitney U test at p < 0.05 was performed in order to assess signifi-
cant differences among CT and RDI treatments for each variable. A Spearman correlation
was carried out to establish relationships between electrical resistivity data and soil physic-
ochemical properties. These statistical analyses were performed with the software IBM
SPSS statistics v.23.

Some studies assess the relationship between moisture and resistivity applying Archie’s
laws; however, this is not recommended for soils with sand and coarse-sized materials
content below 80% [9] or for heterogeneous soils [13,15]. Therefore, in our study a simple
nonlinear regression analysis was carried out in order to obtain a model that allowed
prediction of soil water content and soluble nutrients in crop fields based on electrical
resistivity data. The selected response variable (Y) was the soil water content or the con-
tents of different cations and anions, while the soil resistivity or log-resistivity was used
as the explanatory variable for prediction (X). Of the total data, 67% were used as the
calibration set, while the remaining 33% of the total data were used as the validation set.
Outlier data were excluded from the analyses. Thus, 53 values were used for calibration
and 31 values used for validation. Residuals from the calibrated models were satisfactory
checked for the model assumptions of normality (Kolmogorov–Smirnov test), linearity
and homocedasticity, and equations with R2 < 0.6 were rejected. In order to validate the
models, residuals from the estimated variables of the validation set had to be within the
confidence interval (CI) (at 95%) of the residual distribution of the calibrated model. CI was
calculated as ±1.96 standard deviations of the residuals in the calibrated model. Modelling
was performed with the software SigmaPlot v.12 (Systat Software, Inc., San Jose, CA, USA).

3. Results and Discussion
3.1. ERT Model

We observed that log-resistivity was negatively and significantly correlated with soil
moisture (R = −0.545; p < 0.05), EC (R = −0.305; p < 0.01), NO3

− (R = −0.295; p < 0.01),
SO4

2− (R =−0.380; p < 0.05) and Mg2+ (R =−0.378; p-value < 0.05). The negative correlation
suggests that a high concentration of water and salts is followed by low values of electrical
resistivity [14]. Nonetheless, correlation coefficients were low, indicating a lack of any
strong linear correlations between electrical resistivity and other variables.

As a result of the simple nonlinear regression, multiple equations were obtained for
each dependent variable. However, among all of them, only an exponential decay of a three-
parameter equation between soil moisture and log-resistivity achieved all assumptions for
model acceptance (residuals normality (Z = 0.54; p < 0.05), linearity and homoscedasticity,
and R2 ≥ 0.6) (Figure 4). The lack of any strong correlations between electrical resistivity
and the different cations and anions hampered the calibration of suitable models. In this
sense, soil moisture was the only variable that showed a strong correlation (R > 0.5) with
resistivity. Hadzick et al. [33] were also able to calibrate ERT data with soil water content



Sensors 2022, 22, 1365 7 of 13

using regression equations, although in linear dependence. These authors reported that
the accuracy of the regression model increased with increasing soil depth, showing values
of R2 = 0.4–0.6 for 30 cm and 70 cm soil depths, similar to those obtained in this study for
the exponential equation. Farzamian et al. [10] obtained moisture distribution maps from
exponential equations obtained in a regression analysis comparing degree of saturation
versus resistivity in unsaturated soils.

Figure 4. Calibrated model (exponential decay of a three-parameter equation) for soil moisture
estimation using the logarithm of electrical resistivity as the explanatory variable (n = 53).

The efficiency of the only model obtained by nonlinear regression analysis was vali-
dated by applying the exponential decay of a three-parameter equation to the validation
set. This validation was shown by plotting the actual moisture values measured in farm
soils and the moisture estimated with the model using the 31 validation samples (Figure 5).
A total of 65% of the estimated data were within the CI (at 95%), verifying good quality of
the model. This methodology was similar to that used by other authors [9,15,29] who also
faced estimated and real moisture data in plots.

3.2. Electrical Resistivity and Soil Moisture Imaging

Resistivities are specific to each soil type, since they depend on several soil properties
such as porosity, cation exchange capacity, organic matter content, salinity or clay con-
tent [10,13,34]. In order to ensure correct application of the model to all of the studied
orchards, different soils were previously studied to select those orchards that reported
similar soil properties. In order to avoid clay interferences with resistivity measurements,
selected soils had to exhibit low clay contents, as can be seen in Table 1.

Inversion of measured resistivities is an essential step before interpretation of ERT
profiles since apparent resistivity values rarely reveal the true structure of soils [15]. As a
consequence, a 2D inversion was performed in this study using a cell-based model where
the subsurface is subdivided into rectangular cells. The positions of the cells are fixed
and only the resistivities of cells are allowed to vary during the inversion process, being
the model parameter of the resistivity for each cell [20]. Hence, after a certain number
of iterations, values of the interpreted resistivities and depths were obtained and plotted
using the resistivity model (Figures 6–9).
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Figure 5. Relationship between real moisture and calculated moisture using the calibrated model
(CI-U: upper limit of the confidence interval; CI-L: lower limit of the confidence level).

Figure 6. Resistivity model (top) and predicted soil moisture (bottom) for control (left) and deficit
irrigation (right) in the peach orchard.

The Mann–Whitney U test showed that there were significant differences (p < 0.05)
between CT and RDI treatments for soil moisture, Na+ and Mg2+. However, the 2D
resistivity sections were only replaced by 2D soil moisture sections by application of the val-
idated model (Figure 4) to all electrical resistivity values obtained with each ERT campaign
(Figures 6–9). Note that white-coloured areas in the plots were considered outliers of the
model developed since these data exceeded the calibration range of the model.

The expected relationship of resistivity and soil moisture is inverse, since reduction
of the liquid phase decreases charge mobility (anions and electrons) [35] and should be
strong enough to show variations in resistivity on the order of 10–100 Ω·m between dry
and moist soil [14]. Muñoz-Castelblanco et al. [36] found that variations in the degree of
water saturation between 20% and 100% corresponded to variations in electrical resistivity
between 100 and 10 Ohm·.m from resistivity data for loess at 1 m of depth (e = 0.84 and
e = 0.72) and at 3.3 m of depth. Figure 6 shows the electrical resistivity and moisture sections
for CT and RDI in the peach (P. persica) orchard. Variations in soil resistivity between CT
and RDI profiles were attributed to variations in soil moisture since soil conditions and
composition were the same in both profiles, except for the irrigation scheme used. Thus,
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the CT profile showed moderate values of resistivity (~50–70 Ω·m) in the first 30 cm of
depth along the central part of the profile (3–8 m). This resistivity was associated with low
water content (8–12%), with opposite trends observed at the borders. Below 30 cm of depth,
the section showed lower resistivity values (~0–10 Ω·m) with increased moisture values
(40–45%). There were furthermore two spots of moderate resistivity (20–40 Ω·m) at 4 m
and 7 m from the first electrode (0 m) and at depths of 1–2 m, which were associated with
moistures of 25%.

Figure 7. Resistivity model (top) and predicted soil moisture (bottom) for control (left) and deficit
irrigation (right) in the nectarine orchard.

Figure 8. Resistivity model (top) and predicted soil moisture (bottom) for control (left) and deficit
irrigation (right) in the Saturn peach orchard.

The distribution of resistivity throughout the RDI profile was more heterogeneous
than in the CT profile from depths of 50 cm. Resistivity reached values of 20 Ω·m with
some low resistive spots that were coincident with water accumulation areas (25–50% of
moisture). It is important to highlight the discordance of high resistivity (>100 Ω·m) and
low moisture values (0–10%) observed for depths of 1–2 m and 6 m from the first electrode,
which in the CT profile reported resistivity values next to zero. This suggests that under
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RDI water may be retained in soil sub-superficial layers (50–70 cm of depth), likely as a
result of root action [37]. In this research, the ERT profiles were carried out very close to
the trees, thus it is very likely that these anomalies resulted from the presence of roots.
According to Giambastiani et al. [38], the presence of roots significantly affects ERT results;
moreover, there are significant variations in resistivity ranges depending on the type of tree
and on measurement conditions (wet or dry) [39–41].

Figure 9. Resistivity model (top) and predicted soil moisture (bottom) for control (left) and deficit
irrigation (right) in the table grape orchard.

In the nectarine (P. persica var. nucipersica) crop area the CT profile (Figure 7) revealed
medium to high resistivity values (60–90 Ω·m) at 30–50 cm depth with high resistive soil
pockets (>100 Ω·m) linked to low water content (~10%). In the RDI plot (Figure 7), the sub-
superficial soil layer (30–50 cm depth) showed larger and deeper resistive areas (>100 Ω·m)
than those of the CT profile. These resistivity values were linked to moisture values ≤ 10%.
Furthermore, no percolation of water to deeper soil layers (>1 m) was observed. These
observations suggest that in the CT crop where 100% of the water requirement was satisfied,
a portion of the water was absorbed by trees while the rest percolated through the soil
profile, reaching values of moisture close to 20%. In RDI the irrigation water was mainly
consumed by tree roots in sub-superficial layers. Discordances in resistivity and moisture
values recorded at the borders of profiles are normally a result of the border effect of the
ERT model [20].

Peach and nectarine crop areas were located in farms with similar soil clay contents,
with values of 16% and 13%, respectively; these could strongly affect resistivity values
(Table 1). Despite both farms having very different salinity values between them (Table 1),
4.56 mScm−1 in peach and 1.34 mScm−1 in nectarine, the effect of electrical conductivity on
resistivity values was not significant, since the correlation between EC and log-resistivity was
low (R =−0.305; p < 0.01) and it did not achieve all assumptions for model acceptance. Therefore,
resistivity values were mainly affected by moisture content, where resistivities > 60 Ω·m were
associated with moisture contents of ~12%, while resistivities of 10–20 Ω·m were linked
to moisture contents of 25%. Resistivity values < 10 Ω·m were associated with moisture
contents of 40–45%.

Saturn peach (Prunus persica var. platycarpa) showed moderate resistivity values (20–50 Ω·m)
at the borders and at the centre of the control pseudosection (Figure 8), and were linked
to soil moisture values of 15–30%. Moreover, some resistive soil spots (90–100 Ω·m) were
observed at depths of 0.5 m and 1 m, and were linked to moisture values < 12%. This
suggests an effect in water movement by root water uptake [15]. In the RDI profile, low
resistivity values (<10 Ω·m) were more homogeneously present in areas below 50 cm depth;
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this was associated with a water content of 30%. Moderately resistive soil was located over
this area, showing soil pockets with high resistivities (up to 160 Ω·m) as a result of reduced
water availability (10% moisture) for tree roots. Since the amount of irrigation water was
lower in RDI treatment than in CT, percolation of water and soil moisture content were
lower in RDI than in CT (Figure 8). White areas in both control and RDI plots were outliers
of the model.

Table grape (Vitis vinifera) showed homogeneous resistivity behaviour throughout
the profile with a resistivity of 10 Ω·m and moisture values close to 25–30%, except on
the soil surface where some soil pockets of low to medium resistivity (20–30 Ω·m) were
observed along with moisture values of 15–35% (Figure 9). Note that along 50 cm of depth,
a strip of zero resistivity was observed, extending to 2 m of depth at the right zone of the
white-coloured subsection. In this area the moisture values were considered outliers of the
model. Additionally, a higher resistive patch was observed 4–6 m from the first electrode
with a meter of thickness from the first meter of depth, reaching values of 80 Ω·m (moisture
content <12%). Immediately below this strip, moisture values decreased from 90% to 12%,
indicating that no infiltration took place. The RDI profile (Figure 9) showed resistive soil
spots (>100 Ω·m) associated with moisture values close to 12%. This behaviour was not
observed in the CT profile, suggesting an absence of water percolating and powerful water
uptake by grape roots.

4. Conclusions

The results showed that log-resistivity was negatively and significantly correlated with
soil moisture, EC, NO3

−, SO4
2− and Mg2+; however, due to low values of their correlation

coefficients (R < 0,55), only an exponential decay of the three-parameter equation between
soil moisture and log-resistivity achieved all assumptions for model acceptance (residuals
normality (Z = 0.54; p < 0.05), linearity and homoscedasticity, and R2 ≥ 0.6). The model
obtained allowed assessment of spatial variabilities of water content between irrigation
schedules, showing differences between full irrigation (CT) and regulated deficit irrigation
(RDI) among the different crops (Saturn peach, table grape, peach and nectarine). In the CT
nectarine crop, results revealed that a portion of the irrigation water was absorbed by trees
while the rest percolated through the soil profile in contrast with RDI where the irrigation
water was mainly consumed by tree roots in sub-superficial layers. The ERT model has
shown that under deficit irrigation situations, Saturn peach trees seem to uptake water from
more distant locations from their root systems than when under full irrigation. At the same
time, vertical water movement was not registered in RDI, contributing to water savings.
The ERT model applied to the table grape orchard under the RDI regimen suggested an
absence of water percolating and powerful water uptake by grape roots. Therefore, the ERT
technique could be a useful and efficient tool for estimating soil moisture by calibration of
empirical nonlinear regression models and for depicting different moisture zones through
the soil profile, thereby avoiding aggressive measurements in the field. In addition, the
results obtained from the model can be used to calculate soil-water related coefficients,
such as water stress coefficients.
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