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Abstract: Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological
effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against
Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase
in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis
was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO)
enrichment analysis showed that the synergy between MEL-A and LA affected many potential
cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and
ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways
were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-
related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid
metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy
of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new
insights for the prevention and control of L. monocytogenes.
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1. Introduction

Foodborne diseases caused by foodborne pathogens are one of the important factors
affecting food safety and human health [1]. L. monocytogenes is a representative Gram-
positive foodborne pathogen that can cause severe meningitis, sepsis, and pregnancy loss
primarily in immunocompromised individuals, with a fatality rate as high as 20–30% [2].
Most fatal cases of listeriosis are primarily through the ingestion of contaminated processed
food products, raw meat, sea food, dairy products, etc. [3]. L. monocytogenes can also utilize
a plethora of complex regulatory mechanisms (e.g., riboregulators and small non-coding
RNAs) to rapidly adapt to different extreme environments and can traverse different
epithelial barriers to cause host infection [2,4]. Hence, the exploration of biochemical agents
that effectively inhibit the growth and survival of L. monocytogenes is crucial for food safety.

Lactic acid is a “Generally Recognized as Safe” (GRAS) food additive and has been
widely used for the control of pathogenic bacteria in perishable foods such as meat and dairy
products due to its simple process, significant antibacterial effect, and low price [5,6]. LA has
been reported to have significant antibacterial activity against pathogens such as Salmonella
enterica, Escherichia coli, and L. monocytogenes [7]. Previous studies have shown that LA can
lead to the destruction of the membrane structure and intracellular structure of pathogenic
bacteria and the leakage of proteins, affecting the physiological and morphological changes
of bacterial cells to play an antibacterial effect [7,8]. However, due to the complexity of
the composition of real food systems and the strong tolerance of L. monocytogenes, a high
addition level is often required to effectively inhibit L. monocytogenes in food systems [9].
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Moreover, the addition of LA at high levels may affect the color, sensorial properties,
and commercial characteristics of food products [10]. Therefore, L. monocytogenes can be
effectively controlled in real food systems through the synergistic use of antimicrobial
agents, while reducing the concentration of individual use [11].

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants mainly produced by
yeast strains of the genus Pseudozyma [12]. Depending on the degree of acetylation, MELs
can be classified into four different conformations, including MEL-A, MEL-B, MEL-C,
and MEL-D [13]. MELs exhibit not only excellent interfacial activity and biodegradability,
but also biochemical activities such as antioxidant, antibacterial, anti-inflammatory, and
anticancer [14]. In terms of antibacterial activity, our previous studies showed that MELs
exhibited excellent inhibitory effects on Gram-positive pathogens such as Staphylococcus
aureus and Bacillus cereus [15–17]. In terms of the antibacterial mechanism, our previous
studies have shown that MEL-A has a significant damaging effect on the cell membrane
of pathogenic bacteria, causing the leakage of intracellular nucleic acids and proteins and
affecting the expression of the ABC transport system and membrane-related genes [16,18].
In addition, studies have shown that MEL-A can significantly improve the antibacterial
activity against methicillin-resistant Staphylococcus aureus (MRSA) in the biofilm state and
L. monocytogenes in the planktonic state by synergistic treatment with physical means, such
as ultrasound and ultrahigh pressure [19,20].

There are also differences in the gene expression and regulation patterns of bacteria
under different stresses. For instance, a pulsed magnetic field (PMF) can lead to the death
of L. monocytogenes primarily through disruption of biological functions (phosphorylation
and dephosphorylation, membrane, quorum sensing, etc.) and metabolism (carbohydrate
metabolism, energy metabolism, amino acid metabolism, etc.) [21]. Fingered Citron essen-
tial oil exerts anti-listeria activity mainly by affecting chemotaxis and flagellar assembly as
well as carbohydrate and metal cation uptake [22]. Furthermore, the regulation of genes un-
der the same stress may have strain differences [23]. However, the synergistic antibacterial
activity of MEL-A with chemical agents has been little explored. Therefore, in this study, we
focused on the synergistic antibacterial activity of MEL-A and LA against L. monocytogenes
EGD-e, a representative 1/2a serotype associated with human infection [24] and explored
the antibacterial mechanism of synergistic processing through genome-wide transcrip-
tomic analysis.

2. Materials and Methods
2.1. Bacterial Strains and Chemical Reagents

L. monocytogenes EGD-e (ATCC BAA-679, serovar 1/2a) was purchased from the Amer-
ican Type Culture Collection (ATCC, Manassas, VA, USA). Unless otherwise mentioned,
L. monocytogenes was cultured in brain heart infusion (BHI) or BHI agar (Hopebiol, Qingdao,
China) at 37 ◦C. Lactic acid (purity, over 98%, CAS 79-33-4) was purchased from Aladdin
(Shanghai, China) and dissolved in sterile water. MEL-A was produced by our laboratory
according to the previous method [18,19,25].

2.2. Synergistic Antibacterial Activity Assessment

To evaluate the synergistic antibacterial activity of MEL-A and LA against L. monocyto-
genes, 50 mL of BHI with different concentrations of LA (0, 1, and 2 mg/mL) and MEL-A
(0 and 32 µg/mL) was prepared. Then, logarithmic growth stage L. monocytogenes was
harvested, washed 3 times (4000× g, 2 min, 37 ◦C) with phosphate-buffered saline (PBS,
20 mM, pH 7.4), and diluted to obtain a final inoculum of 106 CFU/mL as seeds. Next, 1 mL
of L. monocytogenes (1.0 × 106 CFU/mL) seed solution was inoculated into shaking flasks
(50 mL BHI), and all flasks were incubated in an orbital shaker (180 rpm at 37 ◦C) (Thermo
Fisher Scientific, Waltham, MA, USA). Then, 100 µL of bacterial suspension was removed
from the flasks after 24 h, respectively, and the gradient dilution was spread evenly on
BHI plates and incubated in an incubator (Thermo Fisher Scientific, Waltham, MA, USA)
at 37 ◦C. L. monocytogenes was counted by the plate count method, and the amount of
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bacteria was expressed as CFU/mL. The antibacterial rate was calculated according to the
following formula:

R (%) = (C − E)/C × 100% (1)

where R: antibacterial rate (%); C: number of bacteria in the control group (CFU/mL); and
E: the number of bacteria in the experimental group (CFU/mL).

2.3. RNA Isolation and Sequencing

Approximately 1 × 106 CFU of L. monocytogenes was incubated in BHI and BHI
supplemented with MEL-A (32 µg/mL) and LA (2 mg/mL) at 37 ◦C for 12 h. Bacterial cells
were then collected by centrifugation at 2500× g for 5 min and then snap-frozen in liquid
nitrogen. Next, total RNA was extracted using the method described by Kafantaris [26].
Then, total RNA from all samples was sent to Novogene company (Beijing, China) for
subsequent library construction and transcription sequencing. Briefly, the libraries were
constructed using the NEBNext® UltraTM RNA Library Prep Kit (New England Biolabs,
Los Angeles, CA, USA) according to the manufacturer’s instructions. Then, these libraries
were sequenced on the Illumina Novaseq platform (Illumina, San Diego, CA, USA) and
150 bp paired-end readings were generated. Three biological replicates were performed
in both the experimental group and the control group. Next, in-house perl scripts were
used to process raw data (raw reads) in fastq format. The next step was to remove readings
containing an adapter, readings containing N bases, and readings of low quality from the
raw data in order to obtain clean data (clean readings). Furthermore, Q20, Q30, and GC
content clean data were calculated. All downstream analyses relied on clean data.

2.4. Differential Expression Analysis

Differential expression analysis was performed using the DESeq R package (1.20)
(Sydney, NSW, Australia). The DESeq program provides statistical routines for analyzing
digital gene expression data using a negative binomial distribution model. Using Benjamini-
Hochberg’s approach, we adjusted the resulting p-values for false discovery. Differentially
expressed genes were identified by DESeq with an adjusted p-value of 0.05.

2.5. GO and KEGG Analysis of Differential Gene Expression

GO enrichment analysis of differentially expressed genes was implemented by the
GOseq R package (Beijing, China). The differentially expressed genes were considered
significantly enriched for GO terms with corrected p-values less than 0.05. KOBAS software
(Beijing, China) was used to test the statistical enrichment of differentially expressed genes
in KEGG pathways.

2.6. Real-Time qPCR Analysis

Eight genes with significant regulations were selected for RT-qPCR analysis. A Prime-
Script RT reagent Kit with gDNA Eraser (Takara, Osaka, Japan) was used to synthesize
cDNA. Next, real-time PCR analysis on these cDNA was performed using the TB Green®

Premix Ex Taq™ (Tli RNaseH Plus) Kit (Thermo Fisher Scientific, Waltham, MA, USA) and
the Applied Biosystems™ QuantStudio™ 3 instrument (Thermo Fisher Scientific, Waltham,
MA, USA). As an internal reference gene, drm was used. Data analysis was carried out
using the 2−∆∆Ct method [27] with 3 biological replicates per group.

2.7. Statistical Analysis

Data were presented as mean ± standard deviation. All experiments were analyzed
using one-way analysis of variance (ANOVA) and Duncan’s multiple range test (DMRT).
Tests were run in triplicate, and statistical significance was defined as p < 0.05.
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3. Results and Discussion
3.1. Synergistic Antibacterial Activity of MEL-A and LA on L. monocytogenes

Our previous study [18] showed that MEL-A inhibited L. monocytogenes significantly
when added at a concentration of 32 µg/mL; therefore, we chose 32 µg/mL as the addition
concentration in this study. As shown in Table 1, when LA was 1 mg/mL, the addition
of MEL-A could increase the antibacterial rate from 50.0% to 99.4%, and when LA was
2 mg/mL, the antibacterial rate increased from 89.4% to 99.9%; the results also showed
that there was a concentration-dependent effect of LA. Previous studies have shown
that the Minimal inhibitory concentrations (MIC) of LA alone against L. monocytogenes is
5000 µg/mL (0.5%) [28]. Therefore, the addition of MEL-A can significantly reduce the use
of LA and reduce the impact on food quality. In conclusion, the synergistic treatment of
MEL-A and LA significantly improved the antibacterial effect on L. monocytogenes.

Table 1. Synergistic antibacterial activity of MEL-A and LA on L. monocytogenes.

Treatment Log (CFU/mL) Log Reduction (CFU/mL) Antibacterial Rate (%)

Control 9.44 ± 0.01 a — —
MEL-A (32 µg/mL) 8.70 ± 0.03 c 0.74 81.8

LA (1 mg/mL) 9.13 ± 0.10 b 0.31 50.0
LA (1 mg/mL) + MEL-A (32 µg/mL) 7.14 ± 0.26 e 2.30 99.4

LA (2 mg/mL) 8.46 ± 0.04 d 0.98 89.4
LA (2 mg/mL) + MEL-A (32 µg/mL) 6.45 ± 0.09 f 2.99 99.9

Statistically significant differences (p < 0.05) are indicated by letters above each column (mean ± standard deviation).

3.2. Effect of Synergistic Effect of MEL-A and LA on the Transcriptome Profile of L. monocytogenes
3.2.1. Global Response of L. monocytogenes to the Synergistic Treatment (ML Group)

Transcriptomic analysis was performed to further study the synergistic antibacterial
mechanism of MEL-A and LA against L. monocytogenes. As shown in Figure 1A, the squares
of the Pearson correlation coefficients (R2) of different samples between the same group
were greater than 0.96, which indicated a very high similarity of expression patterns be-
tween samples [29]. In the principal component analysis (PCA), 93.67% of the difference
between the two groups came from PC1 and 2.04% of the difference came from PC2, indicat-
ing that the synergistic treatment group had a significant difference against L. monocytogenes
compared to the control (Figure 1B). In addition, significant differences in the heat map
(Figure 1C) between the two groups also indicated significant differences in expression
patterns between the synergistic treatment group and the control group.

As shown in Figure 1D, a total of 1563 genes were identified as differentially ex-
pressed genes (DEGs), of which 756 were up-regulated and 807 were down-regulated
(Table S1). In the synergistic treatment group, the genes lmo2185 (log2FC 10.68), lmo1250
(log2FC 9.49), lmo2186 (log2FC 9.05), lmo2180 (log2FC 8.90), lmo1007 (log2FC 8.42), lmo1958
(log2FC 8.42), lmo2181 (log2FC 8.17), and lmo2183 (log2FC 7.88) were among the top
up-regulated genes. These genes mainly encode the antibiotic resistance protein, the fer-
richrome ABC transporter permease, and the hypothetical protein, and they mainly belong
to the Iron Transport-associated domain, Major Facilitator Superfamily (MFS), and FecCD
transport family. Iron acquisition and utilization by L. monocytogenes is important not only
for infection but also for growth and survival in diverse environments [30,31]. Furthermore,
MFS transporters are also reported to be involved in the transmembrane uptake of small
molecules and the excretion of harmful compounds [32]. Together, these findings suggest
that the synergistic processing of MEL-A and LA may hinder the transmembrane transport
of small molecules such as iron by bacteria, resulting in a decrease in bacterial viability.
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The most significantly down-regulated genes mainly included an operon from lmo2121
to lmo2125 (log2FC ranged from −10.94 to −13.44). These genes mainly encode the maltose
phosphorylase, maltodextrose utilization protein MalA, sugar ABC transporter permease,
and sugar ABC transporter substrate-binding protein. These findings suggest that synergis-
tic treatment can inhibit the sugar transport and utilization (which are reported to be critical
for bacterial energy supply and growth) [33] of L. monocytogenes. Therefore, this may be
another important reason for the synergistic effect of MEL-A and LA on L. monocytogenes.

3.2.2. GO Enrichment Analysis of the ML Group and the Control Group

Our first step was to perform GO enrichment analysis in order to better understand the
biological function of DEGs. The top 20 enriched GO terms of DEGs are shown in Figure 2.
The most significantly enriched GO terms were “phosphoenolpyruvate-dependent sugar
phosphotransferase system” in the Biological Processes (BP) category, “protein-N(PI)-
phosphohistidine-sugar phosphotransferase activity” in the Molecular Function (MF)
category, and “ribosome” in the Cellular Component (CC) category. The sugar phos-
photransferase system has been reported to not only play a crucial role in carbohydrate
uptake but also to control carbon and nitrogen metabolism, biofilm formation, and other
bacterial responses to changing environmental conditions through a highly complex car-
bohydrate sensor system [34,35]. In addition, ribosome-related genes are also frequently
identified under extreme environmental conditions (including acidity, low temperature,
and high pressure, etc.) [19,36,37]. In detail, in the CC category, the most significantly
enriched GO terms were “ribosome”, “intracellular ribonucleoprotein complex”, and “ri-
bonucleoprotein complex” in the up-regulated genes (Figure S1A) and “bacterial-type
flagellum” and “cell projection” in the down-regulated genes (Figure S1D). In the MF cate-
gory, the most significantly enriched GO terms were “structural constituent of ribosome”,
“structural molecule activity”, and “GTP binding” in the up-regulated genes (Figure S1B)
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and “protein-N(PI)-phosphohistidine-sugar phosphotransferase activity”, “carbohydrate
transmembrane transporter activity”, and “carbohydrate transporter activity” in the down-
regulated genes (Figure S1E). Moreover, in the BP category, the most significantly enriched
GO terms were “cellular amide metabolic process”, “translation”, and “amide biosynthetic
process” in the up-regulated genes (Figure S1C) and “phosphoenolpyruvate-dependent
sugar phosphotransferase system”, “carbohydrate transport”, and “organic substance
transport” in the down-regulated genes (Figure S1F).
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Figure 2. GO enrichment analysis of the ML group and the control. There are four circles from the
outside to the inside. The first circle shows the classification of enrichment. Outside the circle is a
coordinate ruler showing the number of genes. Each color represents a different category. On the
second circle, the category number and the p-value are shown. A larger number of genes, a longer
bar, and a smaller value results in a redder color. In the third circle, you can see the ratio of genes
that are up-regulated and down-regulated; dark purple represents up-regulated genes, and light
purple represents down-regulated genes. The fourth circle: the Rich Factor represents the number of
foreground genes in each category divided by the number of background genes, while each cell on
the background auxiliary line represents 0.1.

3.2.3. KEGG Pathway Enrichment Analysis of the ML Group and the Control Group

KEGG pathway enrichment analysis was conducted for further in-depth analysis of
DEGs. From the overall pathway, the synergistic processing of MEL-A and LA significantly
affected the phosphotransferase system (PTS), ribosomes, and multiple metabolism-related
pathways (including fructose and mannose metabolism, starch and sucrose metabolism,
and amino sugar and nucleotide sugar metabolism, etc.) (Figure 3A). In addition, these
pathways are closely related each other (Figure 3B). Specifically, among the up-regulated
genes, the most significantly enriched KEGG B-level pathways were membrane transport,
carbohydrate metabolism, and translation (Figure S2A), while subdivided into metabolic
pathways were ribosomes, fatty acid metabolism, fatty acid biosynthesis, and ABC trans-
porters (Figure S2B). Among the down-regulated genes, the most significantly enriched
KEGG B-level pathways were membrane transport, carbohydrate metabolism, and energy
metabolism (Figure S2C), while subdivided into metabolic pathways were phosphotrans-
ferase system (PTS), fructose, mannose metabolism, and starch and sucrose metabolism
(Figure S2D).
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Figure 3. KEGG enrichment analysis of the ML group and the control. (A) Bubble plot of the top
20 KEGG enriched pathways. The horizontal axis of the bubble chart is the normalization coefficient
of up and down; the vertical axis is −log10Pvalue. Different colors represent KEGG A classification
of different pathways, and the orange threshold line is p-value = 0.05. Genes enriched by the current
pathway are represented by the size of the bubble. The table on the right shows the 20 KEGG
pathways with the smallest p-values. (B) Pathway networks enriched with KEGG annotations. The
KEGG pathway is represented by nodes of different colors and sizes, with the size of the node
representing the number of genes enriched in the pathway, and the gradient color of the node
represents the p-value of the KEGG enrichment analysis; the solid line represents the connection
between the pathway and the pathway or between the pathway and the gene. An isolated node in
the graph indicates that the pathway is not directly related to other pathways in the graph.

In this study, the ribosome was the most significantly up-regulated pathway in the
KEGG enrichment analysis. The 70S ribosome of bacteria consists of a large subunit (50S)
and a small subunit (30S). The large subunit contains 23S RNA, 5S RNA, and more than
30 kinds of proteins, and the small subunit contains 16S RNA and more than 20 kinds of
proteins [38]. Previous studies have shown that ribosomes, as the hub of protein quality
control whose main function is to convert the genetic code into amino acid sequences
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and build protein polymers from amino acid monomers, are essential for bacterial protein
synthesis and normal life activities [39]. In addition, studies have found that many clinically
useful antibiotics exert their antibacterial effects by blocking protein synthesis on bacterial
ribosomes, and people have begun to artificially design some ribosome-targeting antibi-
otics [40,41]. Therefore, the general up-regulation of ribosome-related genes (Figure 4A)
caused by the synergistic processing of MEL-A with LA suggests that the effect on the
protein synthesis process of the ribosome may be an important reason for its synergistic
antibacterial activity.
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The phosphotransferase system (PTS) was the most significantly down-regulated path-
way in the KEGG enrichment analysis. In bacteria, PTS not only catalyzes sugar transport
and sugar phosphorylation, but it also regulates various transport, metabolic, and mutage-
nesis processes and the expression of numerous genes [42]. Many previous studies have
shown that PTS is one of the key targets of many antibacterial agents [43–45]. As shown
in Figure 4B, the synergistic treatment of MEL-A and LA also led to the downregulation
of a large number of PTS-related genes, indicating that the effect of synergistic treatment
on PTS sugar transport and sugar phosphorylation is also one of the important reasons
for its inhibition of L. monocytogenes. These results are also consistent with our previous
findings [19].

In this study, we selected L. monocytogenes EGD-e, a representative 1/2a serotype
associated with human infection, for further study. However, there may be differences
in the antibacterial mechanisms among strains [23], so subsequent studies could be con-
ducted for comparative analysis of multiple strains. Moreover, previous studies have
shown that both MEL-A and LA have significant damaging effects on the cell membrane
structure of pathogenic bacteria and lead to the leakage of intracellular nucleic acids and
proteins [7,8,16,18]. Therefore, the significant antibacterial activity of MEL-A and LA co-
treatment against L. monocytogenes may be mainly due to the superimposed effect on the
membrane structure and intracellular macromolecular substances.

3.3. Comparative Transcriptome Analysis of the ML Co-Treatment Group and the LA Treatment
Group Alone

To further explore the addition of MEL-A on the antibacterial mechanism of L. monocy-
togenes compared with LA treatment alone, we also performed GO and KEGG enrichment
analysis of the DEGs in the ML group and the LA group. In the GO enrichment analysis,
locomotion-related biological processes and membrane-related (including integral compo-
nents of membranes, intrinsic components of membranes, integral components of plasma
membranes, intrinsic components of plasma membranes, membranes, etc.) cellular compo-
nents were significantly enriched (Figure 5A). In addition, in the secondary classification of
GO terms, biological processes related to metabolic processes, cellular components related
to membranes, and molecular functions related to catalytic activity contained the largest
number of DEGs (Figure 5B). The destruction of cell membrane structures by MEL-A has
also been confirmed in our previous microstructure observation and biochemical index
determination, which may be one of the key mechanisms of its antibacterial effect [14,19].
In addition, the general downregulation of locomotion-related genes indicated that MEL-A
significantly reduced the motility of L. monocytogenes, thereby hindering its growth and
reproduction process. In the KEGG enrichment analysis, pathways related to carbohydrate
metabolism (butanoate metabolism, inositol phosphate metabolism, etc.) and amino acid
metabolism (phenylalanine, tyrosine, and tryptophan biosynthesis, etc.) were significantly
enriched. These results demonstrated that cells required carbohydrates and amino acids to
repair damage caused by MEL-A treatment [21].

3.4. RT-qPCR Validation of RNA-Seq Data

As shown in Figure 6, we analyzed the transcription level of lmo0248, lmo0249, lmo2623,
lmo2628, lmo2123, lmo2124, lmo2347, and lmo2348 by real-time quantitative PCR to verify
the accuracy of the transcriptome data. It was highly consistent between the RNA-Seq and
qPCR results (R2 = 0.9903), which demonstrated the reliability of our transcriptome data.
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Figure 5. GO enrichment analysis (A,B) and KEGG enrichment analysis (C,D) of the ML co-treatment
group and the LA treatment group. (A) Regarding the z-score bubble chart of GO enrichment
analysis, the ordinate is −log10 (p value), and the abscissa is the up–down normalization value (the
ratio of the difference between the number of differentially up-regulated genes and the number of
differentially down-regulated genes to the total differential genes). The size of the bubble represents
the number of target genes enriched by the current GO term; the yellow line represents the threshold
of p-value = 0.05; the right side is the list of the top 20 terms with the p-value, and different colors
represent different Ontologies. (B) Statistical plot of secondary classifications for GO enrichment
analysis. The abscissa is the different GO terms, and the ordinate is the number of target genes
enriched by the current GO term. Genes that are up-regulated are represented by red, while genes
that are down-regulated are represented by green. (C) Bar graph of the top 20 significantly enriched
pathways. (D) Statistical chart of the B-class classification for each pathway.
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Figure 6. RT-qPCR validation of RNA-Seq results for the ML treatment groups. Three biological
replicates were performed for each group. The horizontal coordinate is the log2 Fold Change value
obtained from qPCR data and the vertical coordinate is the log2 Fold Change value obtained from
RNA-Seq data.

4. Conclusions

In this study, the synergistic antibacterial effect of LA with a novel biosurfactant
MEL-A was investigated. In addition, the gene expression changes of L. monocytogenes
after synergistic treatment were evaluated by transcriptomics to reveal the synergistic
antibacterial mechanism. Specifically, GO enrichment and KEGG pathway analysis demon-
strated significant changes in sugar phosphotransferase system, carbohydrate transport,
and ribosomes. Interestingly, synergistic treatment of MEL-A with LA also affected loco-
motion and membrane-related GO terms as well as carbohydrate metabolism and amino
acid metabolism-related pathways, compared with LA treatment alone. Overall, these
findings provide new insights into the synergistic antibacterial mechanisms of MEL-A and
LA on L. monocytogenes and may contribute to the development of novel strategies against
L. monocytogenes in the food industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11172660/s1, Table S1: DEGs in the co-treated group of
MEL-A and LA. Figure S1: Bubble plot of GO enrichment analysis for ML group and control.
Figure S2: KEGG histogram enrichment analysis of ML group and control.
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