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A B S T R A C T   

The recent experience of SARS-CoV-2 epidemics spreading revealed the importance of passive forms of infection 
transmissions. Apart from the virus survival outside the host, the latent infection transmissions caused by 
asymptomatic and presymptomatic hosts represent major challenges for controlling the epidemics. In this regard, 
social mixing and various biological factors play their subtle, but often critical, role. For example, a life- 
threatening condition may result in the infection contracted from an asymptomatic virus carrier. Here, we use 
a new recently developed microscopic agent-based modelling framework to shed light on the role of asymp-
tomatic hosts and unravel the interplay between the biological and social factors of these nonlinear stochastic 
processes at high temporal resolution. The model accounts for each human actor’s susceptibility and the virus 
survival time, as well as traceability along the infection path. These properties enable an efficient dissection of 
the infection events caused by asymptomatic carriers from those which involve symptomatic hosts before they 
develop symptoms and become removed to a controlled environment. Consequently, we assess how their relative 
proportions in the overall infection curve vary with changing model parameters. Our results reveal that these 
proportions largely depend on biological factors in the process, specifically, the virus transmissibility and the 
critical threshold for developing symptoms, which can be affected by the virus pathogenicity. Meanwhile, social 
participation activity is crucial for the overall infection level, further modulated by the virus transmissibility.   

1. Introduction 

Epidemics spreading of new coronavirus in population is a collective 
social phenomenon. It arises from individual actors’ behaviour that can 
get infected and spread the infectious agents via multiplexity of contacts. 
In this regards, the human participation activity conditioned by daily 
mobility patterns has been recognised as a primary driving force for the 
epidemics spreading [1–3]. Contrary to many social processes, the 
epidemic spreading has a vital biological component, which is promi-
nent at the elementary interactions scale [4,5]. In this respect, the recent 
developments with the SARS-CoV-2 epidemics have revealed several 
new features that were not previously recognised in virus spreading, see 
recent update in Ref. [6]. These are sizeable effects of the passive modes 
of the infection transmission [8–12], which can be related to the virus 

biology and strongly individual susceptibility of the human hosts to this 
particular virus [13–16]. Specifically, these latent infection trans-
missions rely on the virus long survival time outside the human host [14, 
17], which enables an indirect transmission to a new host. On the other 
hand, a considerable amount of asymptomatic hosts can remain un-
identified [18–21]. Recent empirical studies of COVID-19 epidemics 
reveal the silent transmissions occurring in different social or familiar 
circles [22–24]. Efforts are made to evaluate the contributions of pre-
symptomatic and asymptomatic cases and their implications to control 
the epidemics [25,26], in particular, by combining mathematical 
modelling with available biomedical data for a given population. For 
example, in an outstanding study [26], the authors take into account 
data on the seroprevalence for SARS-CoV-2 antibodies in populations on 
nine different locations in conjunction with compartmental epidemics 
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modelling to project “the temporal evolution and credible intervals of 
the effective reproduction number and the symptomatic, asymptomatic 
and recovered populations”. Noteworthy, these results revealed a 
symptomatic fraction that remains bellow 20% in all locations. Here, we 
address these issues using the microscopic agent-based modelling to 
reveal how different outcomes at the population level can emerge in the 
interplay of high-resolution social dynamics and relevant biological 
factors. 

Since the very beginning of the SARS-CoV-2 epidemics, it has been 
revealed that a wide spectrum of symptoms may occur, from very mild 
or none, on one side, to severe symptoms and life-threatening pneu-
monia requiring ICU treatment and possible fatal outcome [14]. Apart 
from potential virus mutations over time, e.g., changed transmissibility 
and pathogenicity [11,27,28], the observed individual susceptibility of 
human actors to the virus may range from a specific genetic origin to 
diverse factors related to the individual’s health condition [13,29,30]. 
The symptoms develop over a short period between 2 and 7 days. 
Meanwhile, the asymptomatic cases spontaneously recover within a 
period of one to two weeks, changing infectiousness over time [24,31]. 
The evidence of the temporal variation of infectiousness before and after 
the symptoms as well as in asymptomatic carriers are subject of in-
vestigations and debated among researchers [32,33]. Even though their 
viral load varies differently in time [32,34], both symptomatic and 
asymptomatic hosts are the virus carries and can spread the infection, cf. 
Fig. 1. Specifically, the circulating viruses produced by asymptomatic 
hosts can infect a susceptible individual, who, depending on the sus-
ceptibility, may or may not develop symptoms. Similarly, the viruses 
produced by presymptomatic carriers can lead to asymptomatic as well 
as symptomatic cases. Moreover, some measurements suggest that the 
viral contents are proportional to the severity of symptoms, and can vary 
over the infectious time [34]. Early estimates were that the proportion of 
asymptomatic cases could be as large as 80% of all infected [14]. A 
recent meta-analysis of the available data suggests a wide variation in 
the estimates from 20% up to 60% of asymptomatic carriers [20,21]. 

Given the occurrence of a sizable amount of asymptomatic virus 
carries, it is challenging to estimate the right parameters and predictions 
of the epidemics from the immediate data analysis [26,35,36]. Thus, it 
constitutes a considerable problem for efficient combat with the virus 
spreading [19,37–39]. The problem is increasingly more scientifically 
interesting in the third-wave epidemics because the virus circulates 
among a large fraction of the population. Hence, a better understanding 
of the factors that determine the proportion of the asymptomatic virus 
carries in a given social environment, and their impact on the overall 
infection growth is vital for managing the disease outbreak. In this work, 
we tackle these problems using the microscopic dynamics approach 
within the agent-based modelling framework developed in Ref. [1]. 

Complementary to the standard mean-field models with continuous- 
time dynamics of interdependent equations for groups [40,41], the 
microscopic agent-based modelling of SARS-CoV-2 epidemics gains an 
increasing attention [1,42–47]. As remarkable examples, we mention 
the modelling frameworks that were developed to simulate the epidemic 
outcomes by including accurate patterns of mobility at a particular 
geographic location [44] or statistical data of a given population [47]. 
This modelling approach provides us with intrinsic mechanisms of the 
epidemic processes, and the information on how it develops from the 
elementary-interaction level to the global-scale outcome. Moreover, it 
allows for considering individual features of the actors, their mobility 
and location of the interactions and participation in coupled stochastic 
processes [1,42–46] and intra-host viral dynamics [47]. We have 
recently developed an agent-based model for the latent infection 

transmissions [1], where the human actors possess individual suscepti-
bility to the virus. It thus allows us to differentiate between highly 
susceptible individuals, who can develop symptoms from those who are 
less susceptible and may become asymptomatically infected. The new 
host’s susceptibility accordingly modulates the probability of getting 
infected and the probability of that host to produce a new generation of 
viruses. Moreover, the model enables us to consider a finite survival time 
of the virus outside the host and different exposure times of each human 

Fig. 1. Schematic view of the processes: new susceptible individuals become 
exposed to active viruses. An infected individual is “asymptomatic”, if its sus-
ceptibility is low hi < hx, or “presymptomatic” if its hi ≥ hx, and develops 
symptoms over time; subsequently, it becomes “quarantined” or “hospitalised” 
and thus removed to a controlled environment. Whereas, “asymptomatic” 
carriers over time become “spontaneously recovered”. The active circulating 
viruses consist of a group produced “by asymptomatic” and “by presymptom-
atic” hosts. Thus, they can infect either the “asymptomatic” or “presymptom-
atic” group, depending on the agent’s susceptibility. Groups shown in the right 
rectangle do not contribute to the studied latent transmissions. 

Fig. 2. The close-up bipartite network of Host (large, blue) and Virus (small, 
white) nodes. The directed blue edges connect the Host with the viruses that it 
produced. Infection paths along the directed edges between successive Hosts via 
Virus nodes are shown in red. 
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actor. The process is visualised as a growing bipartite graphs, see Fig. 2, 
with host nodes who are producing the virus nodes (infected spots) 
during their infectious time and proportionally to the degree of infec-
tiousness. A more detailed description of the model is given in the next 
section, see also [1] for further details. This graphic representation of 
the process enables us to identify an infection path leading to each case. 
Therefore, in this modelling approach, each infection event where an 
actor encounters the virus is marked by the new host’s features and the 
host that produces the active virus. 

In this work, we extend the developed modelling framework for 
latent infections such that we keep the information about the preceding 
host’s susceptibility when the virus is transmitted to a new host. In this 
way, each infection case can be distinguished as either coming from a 
sensitive, i.e., potentially symptomatic case before it gets hospitalised or 
quarantined, or otherwise from a low-susceptibility host being asymp-
tomatic. The threshold susceptibility hx, which distinguishes the highly 
susceptible agents from those that are potentially asymptomatic, is a 
varying parameter in our model. The values of this parameter depend on 
the health and genetic factors of a given population and on the patho-
genicity of the virus in question, possibly assessable from some empirical 
data [13,18,19,21]. We note that these stochastic processes involving 
symptomatic and asymptomatic hosts are strongly entangled at the level 
of interactions between the agents and viruses as the most elementary 
constituents of the process, cf. Fig. 1. Therefore, they can be suitably 
differentiated only at the microscopic interaction scale within 
individual-based modelling. Precisely, by tracing every infection event, 
we can differentiate the virus original host and, thus, determine its 
contribution to the growth of the infectious curve over time. With the 
extensive simulations, we demonstrate how the asymptomatic host’s 
contribution to the infection growth varies with the social participation 
activity and the biological factors that determine the threshold suscep-
tibility and transmission rate. Our simulations confirm that the overall 
infection level critically depends on social participation activity. 
Meanwhile, the biological factors are primarily responsible for the 
respective proportions of the asymptomatic and presymptomatic hosts 
in the overall infection curve. 

2. Latent infection transmissions: model details 

We adopt the model for latent infection transmissions developed in 
Ref. [1], specifically, introducing the differentiation between an 
asymptomatic infected case from those who can develop symptoms, as 
schematically shown in Fig. 1. As in the original work [1], the visual-
isation of the process by an evolving bipartite graph enables us to 
identify the infection path leading to each agent. It consists of infected 
individuals (Host nodes), who can produce viral spots (Virus nodes) 
during their infectious time, cf. Fig. 2. The social participation activity 
drives the dynamics; as a good proxy, we use an empirical time series st 
inferred from social networks [48]. In analogy to the time series of the 
human mobility within cities [44,49], this time series represents a cu-
mulative activity of an open social group in an area with circulating 
viruses. Thus, it does not assume any prior relationships among partic-
ipants (see also the Discussion section). 

Features that influence the dynamics are several individual charac-
teristics of the human actors H{…} and viruses V{…} summarised as 
follows 

H
{

i; hi,Ti
h, r

i
h; state

}
;V

{
j; Tv; gj,Oi→j

h ; state
}
. (1) 

Specifically, apart from a unique identity, i, each human actor has its 

individual susceptibility to the virus, hi, which critically determines its 
role in the process; in particular, it modifies the agent’s likelihood of 
infection in contact with the virus and also its productivity of new vi-
ruses after infection has occurred, as explained below. For each created 
agent, it is taken from a uniform random distribution in the range 
hi ∈ [0, 1]. Furthermore, each agent has a characteristic exposition to the 
viruses specified by its exposure time Ti

h measured in hours; we take a 
uniform random number Ti

h ∈ [1, Th], where Th = 24 hours. As 
mentioned in the Introduction, when a highly susceptible agent hi ≥ hx 

is infected, it can develop symptoms over a certain number of days, 
ri
h ∈ [2, 7], characteristic to that agent; consequently, it stops contrib-

uting to the latent transmissions by moving to a controlled environment 
(hospital or quarantine) [1]. Meanwhile, individuals with the suscepti-
bility below a threshold hi < hx would not develop symptoms by con-
tracting the viruses; they will stay asymptomatically infected and 
eventually will spontaneously recover after rs days and removed from 
the process. In the model, rs is a parameter equal to all asymptomatic 
agents. The infectious time of each host is counted from the moment the 
infection occurred. Both the asymptomatic and presymptomatic hosts 
can produce viruses throughout their infectious time, although in 
different amounts [6,7]. In the model, the amount of viruses is propor-
tional to the host’s susceptibility, which remains unchanged throughout 
its infectious time [1]. On the other hand, each virus node is charac-
terised by a unique identity j, survival time Tv, and its generation gj (the 
number of the hosts along the infection path) [1]. Besides, for this work, 
each Virus node has a new property, Oi→j

h , which is given by the host’s 
susceptibility that produced that virus. At present, we do not consider 
different variants of the virus; thus, a unique survival time Tv applies as a 
parameter. Here, we also do not consider potential mutations along the 
infection path. In Ref. [1], by keeping track of the number of hops of the 
virus (virus generation) since the original infection case, its potential 
mutations can eventually moderate the transmission rate. For the pre-
sent work, we keep the mutation factor fixed, i.e., g = 1. Other values 
can also be analysed with the developed framework once reliable data 
on mutation patterns become available [28]. During the process, each 
virus’s state changes from “active” when its host produces the virus to 
“expire” once its survival time exceeds the value Tv. Similarly, the state 
of each human actor changes from “susceptible” to “exposed (for active 
viruses)” to “active carrier” when infected. Further differentiation is 
caused by its susceptibility corresponds to a transition path in Fig. 1 
towards either “spontaneously recovered” or “hospitalised or quaran-
tined”, see section III for simulation details. 

As in the original model, in each event the basic transmission rate λ0 
is modulated by the individual susceptibility of the agent i encountering 
the virus at the moment t, see Eq. (2). In addition, the probability λi

t also 
varies in time due to the fluctuations in the global viral load V(t). 
Specifically, 

λi
t = λ0(Φt + 1)hig , (2)  

where the global feedback factor Φt ≡ dV(t)/dHa(t) follows the tempo-
ral fluctuations of the viral load with respect to the current number of 
active carriers Ha(t). Note that the upper limit of the virus production 
rate at time t corresponds to a hypothetical situation where each active 
carrier has the maximum susceptibility hi = 1 producing a new virus at 
every time step. Hence, the temporal feedback in the fluctuating trans-
mission rate of Eq. (2) accounts for the actual heterogeneity of the virus 
carriers. The potential origin of the hosts’ heterogeneity mentioned in 
the Discussion can further modulate the transition rate. 

B. Tadić and R. Melnik                                                                                                                                                                                                                        



Computers in Biology and Medicine 133 (2021) 104422

4

3. Microscopic dynamics and sampled quantities 

As shown in Fig. 1, the process is driven by the empirical time series 
{st} representing the temporal fluctuations of the social activity level. 
Thus, this time series’s resolution and length define the time step and 
duration of simulations, respectively. Moreover, its intensity determines 
the number of agents created during the simulations as Nt =

∑t
t′ st′ . 

Specifically, at an hourly resolution it brings st new susceptible agents, 
which become exposed to active viruses. Note that the viruses can sur-
vive outside the hosts, such that the currently active viruses are those 
produced by all active carriers (asymptomatic as well as presymptom-
atic) within the past Tv = 4 hours, corresponding to the considered virus 
survival time. Each agent remains exposed for a period corresponding to 
its exposure time Ti

h, during which it can get infected with the proba-
bility given by Eq. (2). If infected, the agent is removed from the exposed 
agent’s list and appears in one of the infected agent’s groups, i.e., 
asymptomatic (if its susceptibility is below the threshold hx), or pre-
symptomatic, if hi ≥ hx. During their respective infectious times, the 
agents in both groups produce new viruses with a pace that is modulated 
by the agent’s susceptibility. After developing symptoms within an in-
dividual time interval of ri

h ∈ [2, 7] days, each symptomatic agent is 
hospitalised or quarantined and removed from the process. Whereas, 
each asymptomatic agent stays in the process until its spontaneous re-
covery after rs days (equal to all agents). A detailed program flow is 
given in the Appendix. 

As explained above, in the model, we keep information about the 
origin of each virus. Hence, in each new infection event, the number of 
infected nta increases by one if the virus originates from an asymptom-
atic host, and, in the case of a presymptomatic host, nts is increased. In 
each case the total number of infected agents per time step, nt = nta+ nts 
increases, however, the relative proportions of nta and nts can vary, 
depending on several parameters, as we show in the following. As it is 
schematically indicated in Fig. 1, these two processes are strongly 
interlinked at the microscopic scale. Particularly, the infection by pre-
symptomatic hosts can end up as an asymptomatic as well as a pre-
symptomatic case, depending on the susceptibility of the new exposed 
agent. Similarly, an infection by asymptomatic hosts can result in either 
an asymptomatic or symptomatic case; but each symptomatic case may 
eventually end up in the intensive care unit with an uncertain outcome, 
depending on its susceptibility [13,50]. Given the difficulty in detecting 
asymptomatic virus carriers in real life, understanding the intrinsic 
mechanisms along this potential line of events is of great importance. 

This microscopic modelling framework allows us to keep full control 
of the process, which results in different time-varying quantities, as 
shown in Fig. 3. Specifically, for the time period spanning eight weeks 
and resolution of 1 h, at each time step i = 1, 2⋯st new agents are im-
ported, and their individual properties hi and Ti

h are fixed. Then at each 
time step, we determine the number of currently exposed agents et , the 
number of agents infected from viruses by asymptomatic hosts, nta, and 
by-presymptomatic hosts, nts. By respecting the individual hospital-
isation time for each presymptomatic host and spontaneous recovery 
time for all asymptomatic ones, as well as the virus survival time, we 
compute the number of active carriers Ha(t) and active viruses V(t). 
Having these quantities at hand, we determine the actual transmission 
rate λi

t via eq. (2), at each infection event. Its temporal profile can ex-
press the impact of the basic transmission rate λ0, as shown in Fig. 3 
bottom panel, as well as a potential self-tuning during the process, e.g., 
by altered social activity or virus mutations [1]. 

In the following, we simulate the infection process by varying the 
relevant parameters, i.e., the transmission rate λ0, the threshold sus-
ceptibility hx, and the recovery time rs of agents and the social activity 
level. These simulations enable us to assess their impact on the pro-
portion of infections caused by asymptomatic and presymptomatic virus 
carriers. 

4. Proportion of cases infected by asymptomatic carriers for 
varied parameters 

As shown above, the cases infected by asymptomatic hosts can be 
differentiated at the microscopic dynamics scale from the cases infected 

Fig. 3. Temporal fluctuations of the number of agents: (a) 1–socially active or 
susceptible st , 2–exposed agents et , 3–infected by asymptomatic nta and 4–by 
presymptomatic nts hosts. (b) H–The number of active carriers Ha(t) and 
V–active viruses V(t). (c) The corresponding total number of infected agents It 
(infectious curve), the proportions of infected by asymptomatic and by pre-
symptomatic hosts, and the total number of spontaneously recovered, and 
hospitalised and quarantined over time. In the simulations, we fixed Tv = 4 h, 
maximum exposure time Th = 24 h, the spontaneous recovery time rs = 7 days, 
and the threshold value hx = 0.8 and λ0 = 0.23. (d) The actual values of the 
transmission rate λi

t occurring in the sequence of infection events within the 
corresponding time frame, for two values of the basic rate λ0 indicated in the 
legend. The number of agents created is 9040; among them, 5823 became 
infected and produced 1307183 virus nodes during the simulation. 

B. Tadić and R. Melnik                                                                                                                                                                                                                        



Computers in Biology and Medicine 133 (2021) 104422

5

by presymptomatic hosts. Consequently, their relative contributions to 
the growth of the infectious curve can be systematically estimated. Here, 
we focus on how these proportions vary in time (always starting from 
one symptomatic infected case), and how they depend on relevant pa-
rameters. Firstly, for a given social activity time series and fixed 

maximum exposure times of agents Th = 24 hours, we consider different 
values of the threshold susceptibility hx and the recovery time of 
asymptomatic hosts rs. Specifically, for the same driving time series st as 
in Fig. 3, we show in Fig. 4 that the relative proportions of the cases 
infected by asymptomatic and by presymptomatic hosts strongly depend 
on the recognised threshold susceptibility. Meanwhile, the total number 
of infected remains statistically similar, being chiefly conditioned by the 
social participation activity. For example, for the threshold hx = 0.8, 
corresponding to 80% asymptomatic cases, the fraction of infected by 
asymptomatic carriers levels up at 94% of all cases, whereas the 
remaining 6% cases are infected by presymptomatic virus carriers. The 
corresponding temporal evolution of these fractions is shown in the top- 
right panel of Fig. 5, starting from a single symptomatic case. On the 
other hand, by assuming that asymptomatic infections comprise of 40% 
of all cases, i.e., the threshold susceptibility hx = 0.4, the total number 
of infected by presymptomatic carriers is initially higher, but the events 
attributed to infections by asymptomatic carriers win at later times. 
Eventually, for even lower values of the threshold, the number of 
infected by asymptomatic hosts remain below the number of infected by 
presymptomatic. The exact proportions evolve over time, as shown in 
Fig. 5, depending not only on the threshold value but also on the in-
fectious time rs of the participants. The outcomes (averaged over the last 
682 evolution steps) are shown in the bottom panel of Fig. 4 for the 

Fig. 4. Top panel: Infection curve Itot
t versus time (thin full lines) and the 

respective proportions of the cumulative number of infected by asymptomatic 
hosts (thick full lines) and by presymptomatic hosts (broken lines) for the 
threshold susceptibility hx = 0.8 and hx = 0.4. The recovery time of asymp-
tomatic cases is rs = 14 days, other parameters are fixed (λ0 = 0.23, Th = 24 h, 
Tv = 4 h). Bottom panel: For varied threshold susceptibility hx, the emergent 
proportions of infected by asymptomatic (open symbols) and by presymptom-
atic (filled symbols) plotted against hx; two sets of curves correspond to rs = 14 
and 7 days, as indicated in the legend. 

Fig. 5. Time evolution of the proportions of the infections by the asymptomatic 
(A) and presymptomatic (S) cases for varied threshold susceptibility hx = 0.8, 
0.6, 0.4, and 0.2 (top to bottom panels). The spontaneous recovery time of 
asymptomatic cases is rs = 7 days (left column) and 14 days (right column). 

Fig. 6. Top panel: Varied-intensity social participation activity time series st . 
Bottom panels: For two threshold susceptibilities hx, shown in each panel, the 
total infection curve It and the corresponding proportions of infected by 
asymptomatic and by presymptomatic carriers for two different values of the 
basic transmission rate λ0 = 0.23 and 0.39. The number of agents created 
during the simulations is 13905; the number of infected agents 10674 and vi-
ruses 802254 occurred for hx = 0.2, meanwhile 10611 agents and 2679841 
virus nodes appeared when hx = 0.8. 
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whole range of threshold values and two infectious periods of the 
asymptomatic carriers, rs = 7 and 14 days, respectively. 

Next, we examine how these proportions depend on the social 
participation level and the basic transmission rate λ0. For this purpose, 
we extend the duration of the process. We use the same driving signal for 
the first eight weeks and then the signal with the reduced intensity but 
the same fractal structure for the following eight weeks, as shown in the 
top panel of Fig. 6. The simulation results for the infectious curves are 
shown in two bottom panels in Fig. 6. As this figure shows, the reduced 
social participation activity leads to the gradually slower growth of the 
total infection curve, in agreement with the findings in Ref. [1] sup-
porting the idea of social lock-down measures. Here, we are interested in 
how these variations in the social activity level combined with the 
transmission rate can affect the relative proportions of the infected by 
asymptomatic and by presymptomatic carriers. Specifically, we consider 
two cases of the threshold susceptibility, hx = 0.8 and hx = 0.2, and two 
basic transition rates; the value λ0 = 0.23, according to early estimates 
of the average rate [6,42], and 70% increased transmission rate λ0 =

0.39, suggested by news regarding recent mutations; the results are 
displayed in Fig. 6. These results reveal that, for a low basic transmission 
rate, even though the social activity level strongly influences the total 
number of cases, the relative proportions of these cases infected by 
asymptomatic and by presymptomatic carriers remain virtually unaf-
fected. However, the increased basic transmission rate increases both 
the total number of infected and alters the proportions of the infected by 
asymptomatic and by presymptomatic carriers. Moreover, these pro-
portions are dramatically different when the susceptibility threshold is 
high, e.g., 0.8, compared to the case when it is as low as 0.2. Particularly, 
in the first case, a practically entire increase of the infection curve for the 
increased transmission rate can be attributed to the infections by 
asymptomatic carriers. On the other hand, the situation is not sym-
metrical when the number of asymptomatic comprises 20% of all 
infected. In this case, we find that the proportions of infected by pre-
symptomatic carriers exceed the proportion of infected by asymptomatic 
by an amount, which increases with the increased basic transmission 
rate. 

5. Discussion and conclusions 

We have studied the microscopic dynamics modelling of SARS-CoV-2 
epidemics by building on the modelling framework developed in 
Ref. [1]. By keeping information about the host that produces a virus 
implicated in an infection event, we have been able to disentangle the 
cases attributed to asymptomatic from those caused by presymptomatic 
virus carriers. With the extensive simulations that comprise up to 16 
weeks of the evolution time with the hourly resolution, we have 
demonstrated how the corresponding proportions of the infection curve 
vary in time and depend on the implicated bio-social factors. Dealing 
with a highly nonlinear stochastic process, we note that changing a 
parameter that affects the events at the microscopic interaction scale 
may lead to an altered course of events and a different final outcome. At 
the same time, our results revealed certain regularities regarding the 
groups of social and biological factors. Specifically:  

• The overall infection level critically depends on social participation 
activity. Hence, the increase of the infection curve can be forcefully 
controlled, e.g., by temporally reducing the social activity level, 
having the other factors fixed;  

• For a given total infection, the relative ratio of the cases infected by 
asymptomatic carriers to the cases infected by presymptomatic car-
riers crucially depends on several biological factors. These are, the 

threshold susceptibility (depending on the virus pathogenicity and 
human genetic and other health factors of the implicated actors), and 
the virus transmissivity;  

• The interplay between social and biological factors can be altered, 
increasing the proportion of cases attributed to the asymptomatic 
carriers, when the virus transmissivity considerably increases. For 
example, the considered situation where the basic transmission rate 
is increased by 70% is motivated by recently debated potential mu-
tations of SARS-CoV-2, see Refs. [27,28]. 

In this modelling framework, we consider high-resolution temporal 
fluctuations of a community’s cumulative social participation but 
without a specified spatial dimension. For different challenges of 
modelling COVID-19 epidemics, see the agent-based [42–47] and 
compartmental dynamics models [51,52]. Our model focuses on the 
individual features of agents and viruses that impact the infection pro-
cess at the elementary interaction scale, while accounting for the 
global-scale outcomes, and in this sense, it is unique in the current 
literature. The model can be adequately extended to consider the virus 
mutations during the entire process [1]. Such mutations can lead to 
markedly altered pathogenicity or transmissivity, resulting in the 
simultaneous presence of different strains. At the agents’ level, a 
time-dependent infectiousness profile during the agent’s infectious time 
can be included. Moreover, individual or group’s attitudes towards 
respecting non-medical prevention measures can be implemented at 
different levels, i.e., by modifying the basic transmission rate or 
affecting each infection event. 

In conclusion, our microscopic dynamics modelling of the SARS- 
CoV-2 epidemics reveals the interplay between different biological 
and social factors of this nonlinear process, which shapes the increase of 
the infectious curve and the proportions attributed to asymptomatic and 
presymptomatic virus carriers. Given social participation activity under 
control, our results shed light on the intrinsic action mechanisms of the 
key biological factors. In particular, these are the critical threshold 
susceptibility to the virus and the increased virus transmissivity, which 
lead to the increased proportions of the infections by asymptomatic 
carriers. Thus, our theoretical study suggests that the role of asymp-
tomatic and presymptomatic carriers in the SARS-CoV-2 epidemics can 
be revealed by assessing these biological factors. Apart from the health- 
related and genetic features of a given population, these factors depend 
on the predominant virus type and mutations. At a community level, 
assuming that pertinent empirical data on the virus transmissivity and 
pathogenicity can be available, these findings should assist in better 
estimates of the impact of the hidden asymptomatic carriers, and 
consequently, in the design of the appropriately improved measures. 
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