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Abstract: The common ragweed Ambrosia artemisiifolia has spread throughout Europe since the 1800s,
infesting croplands and causing severe allergic reactions. Recently, the ragweed leaf beetle Ophraella
communa was found in Italy and Switzerland; considering that it feeds primarily on A. artemisiifolia in
its invaded ranges, some projects started biological control of this invasive plant through the adventive
beetle. In this context of a ‘double’ invasion, we assessed the influence of climate change on the spread
of these alien species through ecological niche modelling. Considering that A. artemisiifolia mainly
lives in agricultural and urbanized areas, we refined the models using satellite remote-sensing data;
we also assessed the co-occurrence of the two species in these patches. A. artemisiifolia is predicted to
expand more than O. communa in the future, with the medium and high classes of suitability of the
former increasing more than the latter, resulting in lower efficacy for O. communa to potentially control
A. artemisiifolia in agricultural and urbanized patches. Although a future assessment was performed
through the 2018 land-cover data, the predictions we propose are intended to be a starting point
for future assessments, considering that the possibility of a shrinkage of target patches is unlikely
to occur.

Keywords: Ambrosia artemisiifolia; Ophraella communa; ecological niche modelling; remote sensing;
GIS analysis; biological control; Europe

1. Introduction

Invasive alien species (IAS) are a topic of major importance in many research areas, because of
the countless implications they have on environment and human activities. IAS can alter ecosystem
functioning by replacing, competing, or directly preying upon native species [1–4]. IAS can have
a detrimental impact on agriculture, livestock farming, and, sometimes, human health [5–7], with
significant impacts in terms of both social and economic costs for managing strategies [8–12].

The successful establishment of IAS depends on many factors, including abiotic and biotic
interactions, as well as movement capabilities, concepts expressed in the biotic abiotic movement
(BAM) diagram of Soberón and Peterson [13]. Recently, many papers investigated the response of IAS
to climate change, with several studies indicating an increase of potential invasiveness, which goes
along with the global change [14–16]. In this context, ecological niche models (ENMs) are a tool that
can be used to infer the distribution of species in different spaces or times (e.g., [17–21]), even when
dealing with IAS. In this case, models can be calibrated on native areas of the IAS and subsequently
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projected to the environmental conditions of the invaded ranges; this can also be achieved for future
climatic conditions [1,22].

One of the most studied IAS is the common ragweed Ambrosia artemisiifolia L., an invasive plant
from North America, which is known to be in Europe since the 19th century. It rapidly expanded
and has become a weed of great importance in cultivated lands, mainly soybean, sunflower, maize,
and sugar beet [23–25]. Common ragweed is also known for its high allergenicity, with several
socio-economic consequences [26,27], and considerable effort has been dedicated to its control or even
eradication [28–33].

Since 1995 [34], the ragweed leaf beetle Ophraella communa LeSage, another IAS from North
America, has occurred in a “parallel” spread with respect to Ambrosia artemisiifolia in some Asian,
first, and European countries, after. This leaf beetle species mainly feeds on A. artemisiifolia, causing
heavy defoliation and decreasing the amount of pollen produced by the host plant [25]. Indeed, the
co-occurrence of both species is important to biocontrol the invasion of A. artemisiifolia as stated by
Buttenschøn et al. [35], Sun et al. [36], and Lommen et al. [37], especially for past failed attempts of
biocontrol by Zygogramma suturalis. Further, O. communa seems to be a good candidate for the control
of A. artemisiifolia in Asia and North America [38,39]. The control is also encouraged, considering
that non-target plants occurring along with A. artemisiifolia, such as sunflower and other crops, are
damaged in a smaller proportion with respect to the target weed [40,41].

Recently, the machine-learning algorithm implemented in Maxent [20] was used to infer
the possible response of A. artemisiifolia to climate change scenarios [42–45], or for investigating
co-occurrences between A. artemisiifolia and O. communa [36,46]. However, notwithstanding the high
interest of these two IAS in the human health and agricultural research areas [37,47–49], few papers
directly deal with the potential current and future distribution of these two species in the secondary
ranges, especially in light of climate change [36,37,50]. These articles focus mainly on the co-occurrence
of ragweed and its possible biological control agents through a biogeographic modeling approach
(species distribution models), in East Asia [36] and Europe [37,50,51]. Although important information
is provided, no specific inferences are made about the areas where A. artemisiifolia is usually found
(e.g., agricultural and urbanized areas). In this paper, we aimed to evaluate the current and future
potential European range of the two target species, taking into account their co-occurrence in different
greenhouse gas emission scenarios. We took advantage of both ENM techniques, which are widely
used for the study of biological invasions [18,52,53], coupled with GIS analyses, used as well for
biodiversity and conservation issues [54,55]. Further, we refined the outcomes of the modelling
process with the information about the areas where A. artemisiifolia is currently recorded (i.e., specific
croplands and urbanized areas), selecting these territories through satellite remote sensing (SRS) data
and geographic information system (GIS) spatial analyses at the European scale, considering a plausible
future scenario, where a straight connection is established between the increase of allergies and the
destiny of populations living in cities.

2. Materials and Methods

2.1. Study Species

In this study, we considered the following two species:
Ambrosia artemisiifolia L. (Asteraceae), native to North America, is an invasive plant species that

has naturalized in most parts of the world, including Africa and Oceania. The common ragweed is a
very competitive weed and can produce yield losses in many cultivations, especially in soybeans [56].
Its wind-blown pollen is highly allergenic to humans [47].

Ophraella communa LeSage, an oligophagous leaf beetle (Chrysomelidae, Galerucinae) originating
from the Nearctic region, whose adults and larvae feed on the leaves of some plant species of the
Asteraceae, including the common ragweed, Ambrosia artemisiifolia [57]. Adults appear from May
to October and deposit eggs on the host leaves. Larvae eat leaves and complete their development
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in about 12 days. Mature larvae spin cocoons to pupate on the host. It takes about one summer
month for one generation. The primary range includes the south-eastern area of North America, while
the secondary range comprises some southern Asian (Japan and China) and European (Italy and
Switzerland) countries [34,38].

2.2. Dataset and Study Area

For both the primary and secondary range, records for Ambrosia artemisiifolia and Ophraella
communa were gathered by integrating GBIF occurrences and presence localities from published
resources, for a total of 23,262 occurrence localities for A. artemisiifolia and 359 for O. communa; possible
duplicate records were discarded through the ‘validate topology’ tool in ArcMap 10.0 [58]. To avoid any
correlation among the remaining presence localities, a partial removal of occurrences was performed
through the ‘spThin’ package [59] in R environment [60], setting the thinning parameter at 30 km and
10 replicates. Moran’s test was performed (‘spatial autocorrelation’ tool in ArcMap) for both the target
species’ datasets to further test possible self-correlation among presence localities. The datasets used
for the analyses are reported in the Supplementary Material Table S1. The study area was focused in
Europe, which is one of the invaded ranges of the two species worldwide; the presence locations in
Northern and Central America were used for the models’ calibration (see below).

2.3. Ecological Niche Modelling

To model current and future habitat suitability for both target species, the set of 19 bioclimatic
variables at 30” resolution was downloaded from the online repository Worldclim.org [61]. Bioclimatic
layers were cut to the geographic extent of both the native (North and Central America) and secondary
range in Europe and processed through the ‘band collection statistics’ tool in ArcMap, for testing
the correlation among predictors (Supplementary Material Table S2), considering a Pearson’s |r| <

0.85 [62,63].
To calculate models in future climatic scenarios, we chose three representative concentration

pathways (RCPs), 4.5, 6.0, and 8.5, and three different global climate models for each RCP, namely the
CCSM4 [64], the IPSL [65], and the MIROC-CHEM [66].

Ecological niche models (ENMs) were built using the Maxent algorithm [20] implemented in the
“SDMtoolbox” 2.4 version [67] in ArcMap 10.0. This toolbox takes advantage of the powerful Maxent
machine-learning algorithm, a modelling approach, integrating corrective files, and lowering possible
biases, which may occur during model calibration and/or projection, during the data preparation and
the process itself [67,68]. The latitudinal bias effect was corrected, in our analysis, through the “Bias
File for Coordinate Data” tool, and the generation of pseudo-absences was improved through the
“Background Selection: Sample by Buffered Minimum Convex Polygon (MCP)”; the resulting files
were combined with the “Clip Bias File for Coordinate Data (BFCD) by the Background Bias File” tool.

Models were calculated through the “Run MaxEnt: Spatial Jackknifing” tool, using the bias
file obtained with the previous steps. Variables from both the primary and secondary range were
used for model calibration, and projections were made for the secondary range for the three future
climatic scenarios considered [1,22]. Spatial jackknifing, for improving the reliability of Maxent
predictions [68], was set at 5 spatial groups, with no thresholds set during this stage. The future
projections resulting from each different general circulation model (GCM) were combined through the
multivariate environmental dissimilarity index (MEDI) algorithm [69]. This procedure takes advantage
of the multivariate environmental surface similarity (MESS) (the measure of models’ extrapolation
with respect to the calibrating conditions) and proportionally averages the predictions resulting from
the different GCMs, down-weighting models with higher differences compared to environmental
conditions used for model calibration (and vice-versa). Predicted levels of suitability were divided in
three classes: Low (1), medium (2), and high (3), with thresholds 33% ÷ 66% ÷ 99%, respectively, as
also performed in other ENMs-based papers (e.g., [70–72]). This procedure was chosen to discretize
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the ENMs’ continuous output to facilitate a comparison between the two target species among the
different time scenarios considered, avoiding a high number of combinations.

2.4. Post-Modelling Analyses

MEDI-corrected models were further processed in the GIS environment to refine these predictions
in more plausible scenarios of distribution of the two study species. Thus, considering the information
on the preferred habitats colonized by A. artemisiifolia, we extrapolated the corresponding croplands
(see below) in the study area using SRS data. For this purpose, we used an object-based method [73–75]
through the Google Earth Engine (GEE) cloud platform, by using the multispectral Sentinel-2 (at a 10-m
spatial resolution) satellite recorded from 2016 to 2018. The GEE portal provides access to global
time-series satellite imagery, vector data and other ancillary data, cloud-based computing, and
algorithms for processing large amounts of data [76].

We performed latitudinal corrections to take into account the phenology of the crops more
sensitive to the invasion of A. artemisiifolia [23–25]; the image collections were mediated and merged
in a time interval ranging from April to October [77]. A false color composite (cloud free) for all of
Europe consisting of SWIR wavelengths (2202.4 nm for S2A and 2185.7 nm for S2B), NIR wavelengths
(835.1 nm for S2A and 833 nm for S2B), and BLUE wavelengths (496.6 nm for S2A and 492.1 nm for S2B)
was created to set a pixel-value threshold used for the identification of agricultural patches through
the classification method mentioned above. These data were further validated in the GIS environment,
by comparing them with the “agricultural” categories (coded as “2”) of the Corine Land Cover (CLC)
2018 (III level).

Data were further refined by intersecting the above-mentioned dataset with the global food
security-support analysis data at a 1-km spatial resolution (GFSAD1 km) [78], which contains the
spatial distribution of the five main types of global farmlands (wheat, rice, corn, barley, and soy).
Based on bibliographical information [23–25], we selected the agricultural classes preferred for
A. artemisiifolia’s spread (classes 2 and 4 of the GFSAD1 km). From now on, these areas will be named
‘target-croplands’.

Other areas that favor the spread of A. artemisiifolia, namely urbanized areas and the corresponding
roads and infrastructures [79,80], were considered in refining the models. These spatial data were
obtained through the CLC 2018 level III.

Target croplands and urbanized areas were used for both current and future analyses. Although
we are aware that these data will change, it will be difficult (if not impossible) for agricultural areas
to diminish, or urbanized areas to shrink, in the near future. Therefore, all future predictions are a
plausible underestimation of the potential future trends of invasion and resulting analyses can be
acknowledged as a starting point for future studies.

All satellite data processes were managed through the GEE platform and SNAP 6.0 software,
whereas all spatial processes and geographic analyses derived from the elaboration of both ENMs and
satellite/GIS data were managed in ArcMap 10.0 [58].

3. Results

The ‘thin’ function [59] reduced the two datasets from 23,262 to 1084 points for Ambrosia artemisiifolia,
and from 359 to 81 points for Ophraella communa. Moran test resulted in no autocorrelation among
presence localities for both the species considered, with values of 0.0004 (z-score = 1.62, p = 0.109) for
A. artemisiifolia and 0.0066 (z-score = 0.849, p = 0.396) for O. communa.

Based on the correlation matrix (Supplementary Material Table S2), the following 11 bioclimatic
variables were selected to perform the modelling process: BIO1 (annual mean temperature), BIO2 (mean
diurnal range), BIO6 (minimum temperature of the coldest month), BIO7 (temperature annual range),
BIO8 (mean temperature of the wettest quarter), BIO10 (mean temperature of the warmest quarter),
BIO11 (mean temperature of the coldest quarter), BIO12 (annual precipitation), BIO13 (precipitation of
the wettest month), BIO15 (precipitation seasonality), and BIO18 (precipitation of the warmest quarter).
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ENMs showed high values of the mean area under the curve (AUC) of the receiver operating
characteristic curve (AUC = 0.871 for A. artemisiifolia; AUC = 0.966 for O. communa), and low values
of standard deviation (SD) (SD = 0.003 for A. artemisiifolia; SD = 0.012 for O. communa) for the whole
replicates. The three most contributing variables were: BIO6 (43.8%), BIO12 (25.3%), and BIO10 (20.3%)
for A. artemisiifolia, and BIO12 (36.2%), BIO6 (21.3%), and BIO15 (16.7%) for O. communa. The marginal
response curves obtained for the most contributing variables, BIO6 and BIO12, show different trends
for the two species analyzed. For both variables, the ranges of O. communa are narrower with respect
to the ones of A. artemisiifolia, which means they are more tolerant both to lower and higher values
in the minimum temperature of the coldest month, and to higher values of the annual precipitation.
However, the ranges of optimality in both cases are widely shared with O. communa (Figure 1). Thus, a
wider adaptability was found for A. artemisiifolia, considering a high tolerance to low and high values
in the minimum temperature of the coldest month, and to high values of annual precipitation.
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Figure 1. Shared variables’ response curves for Ambrosia artemisiifolia and Ophraella communa. Marginal
response curves obtained for the two variables BIO6 (minimum temperature of the coldest month) (a)
and BIO12 (annual precipitation) (b), which were among the three most contributive predictors for
both Ambrosia artemisiifolia and Ophraella communa.

A wide area was predicted in medium and high classes for A. artemisiifolia for the current climatic
conditions, while a less extensive area was predicted as suitable for O. communa in the same classes
(Figure 2). For the future scenarios, the predicted suitability in medium and high classes increased for
both species, with the higher classes of A. artemisiifolia and O. communa increasing with the increase of
the RCPs considered (from 2050-RCP 4.5 to 2050-RCP 8.5). Nevertheless, O. communa showed: (a) A
more limited extent of predicted suitable areas for the high class, which ranged from 43% to 51% with
respect to the ones predicted for A. artemisiifolia; and (b) an opposite trend, instead, for the low (from
156% to 206%) and medium (from 123% to 202%) classes (Figure 2).

The current climate scenario shows continuous and high suitable areas for A. artemisiifolia,
extended also in the north-western territories of Europe. On the contrary, O. communa shows a more
fragmented scenario incompletely covering the suitable areas of A. artemisiifolia, mainly in the Balkans
and north-eastern Europe (Figure 3a). In future scenarios, a more regular continuity among the
separated areas of the current scenario is predicted for A. artemisiifolia, while for O. communa, we
obtained changes in its range depending on the RCP considered (Figure 3b–d).

The overlap between the two species for medium and high classes of suitability increases, but
several suitable areas for A. artemisiifolia are not suitable for O. communa in the medium and high
classes. The greatest overlap occurs between the medium suitability class of O. communa and the high
suitability class of A. artemisiifolia, highlighting how a potential biocontrol by O. communa will probably
not be able to limit the spread of A. artemisiifolia (Figure 4).
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Figure 2. Suitable areas predicted for Ambrosia artemisiifolia and Ophraella communa for current and
future climate scenarios. Predicted low (1), medium (2), and high (3) suitable areas for current (a),
2050—RCP 4.5 (b), 2050—RCP 6.0 (c), and 2050—RCP 8.5 (d) scenarios for Ambrosia artemisiifolia (red)
and Ophraella communa (blue).

To infer possible biological control exerted by O. communa over A. artemisiifolia, the area shared
by the two species was calculated and intersected considering two land-use typologies, croplands
(soybean, sunflower, maize, and sugar beet) obtained by satellite data, and urbanized areas by CLC
2018. For the current scenario, a total of 92.97% of the target croplands intersects the areas with medium
(51.36%) and high (41.61%) classes of suitability for A. artemisiifolia; the value rises to 97.06% for the
urbanized areas.

For future scenarios, an increase of the highly suitable areas is predicted from the 2050-RCP 4.5
to the 2050-RCP 8.5, ranging from +84% to +98% for target croplands, and from +34% to +50% for
urbanized areas (Figures 5a and 6a). On the contrary, a concurrent decrease for low and medium
classes of suitability is observed (Figures 5a and 6a).

In the current scenario, many cultivated territories host medium or high suitable conditions
for both species (medium suitability for O. communa; high suitability for A. artemisiifolia, 22.7%; and
medium suitability for both, 35.5%) (Figure 5b), while for future scenarios, a change is observed for
the shared areas. An increase of high suitable conditions for A. artemisiifolia and medium suitable
conditions for O. communa is evident in cropland areas for all the RCPs considered (54.6% in 2050-RCP
4.5, 55.2% in 2050-RCP 6.0, and 53.2% in 2050-RCP 8.5), as well as a slight increase of croplands hosting
high climatic suitability for both the target species (19.9% in 2050-RCP 4.5, 22.6% in 2050-RCP 6.0,
and 25.6% in 2050-RCP 8.5) (Figure 5b). Still, in the croplands, a contraction of areas with medium
suitability for both species is also observed (12% on average), and a stability of shared areas with low
suitability for O. communa and high suitability for A. artemisiifolia is also predicted from RCP 4.5 to
RCP 8.5 (Figure 5b).
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Figure 3. Maps of predicted suitability for Ambrosia artemisiifolia and Ophraella communa for current
and future climate scenarios. Models of predicted suitability (low suitability areas are not displayed for
graphical purposes; these correspond to white zones for both target species) obtained for Ambrosia
artemisiifolia (red) and Ophraella communa (blue), and the overlap between them, for current (a),
2050—RCP 4.5 (b), 2050—RCP 6.0 (c), and 2050—RCP 8.5 (d) scenarios.
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Figure 4. Shared predicted suitable areas for Ambrosia artemisiifolia and Ophraella communa for current
and future climate scenarios. Areas (cumulative) shared by Ambrosia artemisiifolia and Ophraella communa
in the three different suitability classes (class 1 = low; class 2 = medium; class 3 = high) predicted by
the models, performed for each different time frame considered.
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Figure 5. Trends for Ambrosia artemisiifolia and cumulative areas shared by target species in agricultural
areas. Areas predicted as suitable (class 1 = low; class 2 = medium; class 3 = high) for Ambrosia
artemisiifolia falling within target agricultural patches in the different time frames considered (a); areas
(percent, cumulative) potentially shared by both Ambrosia artemisiifolia and Ophraella communa for the
different suitability classes (class 1 = low; class 2 = medium; class 3 = high) and time frames considered,
falling within target agricultural patches (b).
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Figure 6. Trends for Ambrosia artemisiifolia and cumulative areas shared by target species in urbanized
areas. Areas predicted as suitable (class 1 = low; class 2 = medium; class 3 = high) for Ambrosia
artemisiifolia falling within urbanized patches in the different time frames considered (a); areas (percent,
cumulative) potentially shared by both Ambrosia artemisiifolia and Ophraella communa for the different
suitability classes (class 1 = low; class 2 = medium; class 3 = high) and time frames considered, falling
within urbanized patches (b).

Moreover, comparable trends with respect to the selected croplands are also observed for the
shared areas between A. artemisiifolia and O. communa overlapping urbanized areas, with increasing
percentages of medium suitability for O. communa, high suitability for A. artemisiifolia, and high
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suitability for both (~45% and 27% ÷ 41%, respectively), and a decreasing trend for medium suitability
areas (11% ÷ 5%) (Figure 6b).

Finally, the co-occurrence analyses performed over European countries depict a current scenario
(Figure 7a) where northern France, central Belgium, central Great Britain, and northern Greece show
the ‘best’ co-occurrence combination (O. communa class 3—A. artemisiifolia class 2) for biocontrol of
the A. artemisiifolia invasion, while the ‘worst’ scenario (O. communa class 1—A. artemisiifolia class 3)
is observed in the north of Portugal and of Spain, southern Montenegro, northern Albania, central
Romania, and vast areas of central and southern Poland. In the future predictions, an increase in the
overlap between the target species is observed in different countries with respect to the predictions of
the current scenario. In fact, the ‘best’ scenario is inferred throughout Romania, Bulgaria, and vast
areas of Serbia and Hungary. On the contrary, the ‘worst’ scenario is predicted for southern Finland,
northern Portugal, and western U.K. (Figure 7b–d). About medium suitability classes for both target
species, a general shift to the ‘O. communa class 2—A. artemisiifolia class 3′ is observed with respect to
the current scenario, where a ‘mix’ between ‘class 2—2′ and ‘class 2—3′ are predicted for central and
northern Europe and the Iberian peninsula (Figure 7).
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4. Discussion

The ecological difference found between the climatic preferences of two target species reveals
lower adaptation capabilities for O. communa with respect to its host plant A. artemisiifolia. The wider
tolerance for low temperatures and precipitation variability offers this plant a considerable advantage
in potentially occupying territories in the European area of the secondary range. The highly suitable
areas for O. communa seem to be not enough to stem the corresponding areas of A. artemisiifolia, as
also reported by Sun, Brönnimann, Roderick, Poltavsky, Lommen, and Müller-Schärer [50] for Asian
areas. Indeed, suitable climatic conditions are spread throughout Europe in all time frames considered,
even though with an evident prevalence of higher suitable classes of A. artemisiifolia intersecting (i.e.,
not potentially controlled by) the ones of O. communa. The control that this leaf beetle exerts over
the invasive plant is of primary importance because of the problems that A. artemisiifolia causes to
agriculture and human health [81–83].

A general increase in the higher class of climatic suitability for this species is predicted to occur in
both target croplands and urbanized areas in future scenarios, which is predicted to happen to the
exclusion of the low and medium classes (1 and 2, respectively) (Figures 5a and 6a). The increase of
these areas goes along, for both of these land cover/land use categories, with the increase of greenhouse
gas emissions (i.e., the growing radiative forcing of the RCPs), indirectly confirming that the increase
of CO2 favors the spread of this invasive plant [43].

The high suitable area of A. artemisiifolia intersecting the medium suitable areas of O. communa
is a remarkable trend resulting from our analyses. These possible future assets would then result in
a more efficient spread of A. artemisiifolia coupled with an increasing difficulty in the biocontrol by
O. communa, confirming the results obtained in other invaded areas [36]. This trend is mainly observable
in Germany, Netherland, Denmark, southern Sweden and Finland, Czech Republic, Slovakia, Poland,
Lithuania, Latvia, Estonia, and part of the U.K., France, and Portugal. These countries will face a wide
potential spread of A. artemisiifolia on which O. communa will not be able to exert control. The future
scenario predicted for Romania, Bulgaria, France, Italy, Croatia, Serbia, Albania, and Greece reveals the
possibility of strong biocontrol. These countries could start massive rearing of O. communa for this
purpose, considering the high climatic suitability of their territories, thus encouraging this biocontrol
practice as a management action going along with the other ones (e.g., mowing, herbicide treatments)
suggested in the literature. Indeed, this practice should consider the genetic variation in performance
traits [84,85], which could cause different population feedbacks in response to environmental conditions
of the current and future colonized areas.

Considering our analyses, the use of O. communa as a control agent is desirable, even though some
other A. artemisiifolia biological control agents were identified [29,39,50]; further research is needed
in terms of coupled ENMs and SRS data to obtain more accurate estimates of the current and future
assets, especially for in-detail territorial strategies. Finally, the use of land cover future projections
would further improve the methodological framework we proposed in this paper, to more accurately
address decision makers’ policies.

5. Conclusions

The integrated use of ecological niche modelling and satellite remote-sensing techniques in the
GIS environment, as performed in our study, was shown to offer some advantages in the study of the
potential distribution of IAS. This approach permits assessment of the potential biocontrol exerted
by a target species before practical managing actions’ start, focusing economical efforts on strategies
for specific areas. The categorization of climatic preferences helps to highlight land cover patches
of particular interest for invasive species, reducing the uncertainties of a sole SDM approach. The
use of SRS permits an accurate post-modelling analysis to be performed at relatively low costs (given
the increased availability of open source data). Furthermore, this approach allows detection and
quantification of the possible land cover patches affected by the invasion of a target IAS so as to better
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address management actions, especially in consideration of the social and economic issues that IAS
may bring.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/18/3416/s1,
Table S1: Table reporting localities used for the analyses, with the corresponding coordinates in decimal
degrees, rounded to three decimal places (datum: WGS84). Table S2: Correlation matrix calculated for the
19 candidate predictors.
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