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Abstract

The tumor mutational burden (TMB) is increasingly recognized as an emerging biomarker

that predicts improved outcomes or response to immune checkpoint inhibitors in cancer. A

multitude of technical and biological factors make it difficult to compare TMB values across

platforms, histologies, and treatments. Here, we present a mechanistic model that explains

the association between panel size, histology, and TMB threshold with panel performance

and survival outcome and demonstrate the limitations of existing methods utilized to harmo-

nize TMB across platforms.

Author summary

An increasing number of studies have demonstrated the benefit of tumor mutation bur-

den (TMB), the number of non-silent mutations in the genome, as a predictive biomarker

in a clinical setting. Most clinical trials utilize a smaller panel, instead of whole exome

sequencing (WES), to estimate the exome-wide mutational load. However, the use of pan-

els introduces panel size dependent sampling noise that could affect the performance of

the TMB biomarker. In this work we create a mathematical model of the cancer histology,

treatment response, and TMB device system to assess the interplay between cancer type,

panel size and tumor mutational burden threshold in patient selection for cancer

immunotherapy.

Introduction

Recent trials have demonstrated the utility of TMB as a potential predictive biomarker in clini-

cal settings [1–4]. Lung cancer patients with elevated TMB treated with Nivolumab and Ipilu-

mab, for example, were found to have a 3-fold higher likelihood of one-year progression free

survival compared to an unstratified control group receiving chemotherapy [1]. However, the

question of what numerical TMB value constitutes an ‘elevated’ mutation burden turns out to

be surprisingly complex. A multitude of factors including technical details of the TMB assay,

pre-analytical choices, cancer tissue of origin, or the disease specific outcome achieved with

standard of care inform this choice [5, 6]. Friends of Cancer Research (FRIENDS) and the
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Quality Assurance Initiative Pathology (QuIP) have initiated an international collaborative

TMB harmonization effort based on both in silico and wet-lab experiments. These efforts led

to critical insight [7] into how well distinct technical platforms compare. This work builds on

these efforts by creating a mathematical framework that allows us to analyze how different

technical factors interact. The mathematical framework presented here allows us to pinpoint

certain technical limitations in the numerical methods currently used in harmonization efforts

with the hope that these insights contribute to the development of improved pan-cancer algo-

rithms for assay harmonization efforts.

Most clinical trials employ a panel design, instead of the “gold standard”, whole exome

sequencing (WES), to estimate the exome-wide mutational load. The use of panels introduces

panel size dependent sampling noise [8] that could affect the performance of the TMB bio-

marker: patients with a relatively low TMB may be incorrectly classified as high TMB and vice

versa. But by how much? Could this be compensated by choosing a different threshold? We

show that the answer depends not only on the amount of noise, but is intimately linked to

other factors, such as the biology of the drug/ tumor interaction or the cancer tissue of origin

(via the distribution of TMB in the intention to treat population).

Results

Statistical mechanics were originally developed to provide a first-principle explanation of ther-

modynamics [9] but were soon applied in a diverse field of seemingly unrelated problems,

including the strong interaction that keeps atomic nuclei together [10], quantitative stock anal-

ysis [11], hurricane prediction [12], and the dynamics of artificial neural networks [13]. In this

work we borrow methods from statistical mechanics to create a mathematical model of the

cancer histology, treatment response, and TMB device system. Within this framework, the

individual components of the system are described as probability distributions, specifically,

the histology- dependent distribution P(T) models the probability that the cancer of a patient

has a “true” or “noiseless” TMB (T). The assay may or may not correctly classify the patient as

TMB high, and the probability distribution Θ(T,τ,σ) describes the resulting uncertainty that a

TMB assay (with noise parameter σ and TMB threshold τ) classifies the patient as TMB high.

Finally, response to treatment with checkpoint inhibitors (now on referred to as treatment),

while dependent on TMB, is not guaranteed, and C(T) expresses the probability that a patient

with a “true” TMB of T will respond to treatment.

With these definitions it is now possible to estimate “observable” properties of the bio-

marker, such as Presponse(τ,σ), the fraction of cancer patients that respond to treatment (overall

response rate or ORR) when stratified with a noisy biomarker:

Presponse t; sð Þ ¼
1

Zðt; sÞ

Z

dTPðTÞCðTÞYðT; t; sÞ; ð1Þ

We first tested the accuracy of our panel size-dependent sampling noise model (see Meth-

ods). To this end, we predicted the outcome of the in-silico re-sampling experiment performed

by FRIENDS [14]. That experiment utilized WES data from The Cancer Genome Atlas

(TCGA) to generate in silico TMB measurements for a specific panel by intersecting WES

reads with the targets of that panel (see Methods). We initially focused on validating our noise

model underlying Θ(T,τ,σ) (see Methods) by comparing the TMB values generated with our

content-agnostic, statistical model with the FRIENDS re-sampling method, hereinafter called

in silico TruSight Oncology 500 (TSO500)–a research use assay. Utilizing the empirical WES

distribution in TCGA as a starting point, we observed no significant difference between the

observed distribution of TMB measurements reported by in silico TSO500 relative to WES and
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the distribution predicted by the model (Cramer test P = 0.88, and 0.77 for lung squamous cell

carcinoma [LUSC] and lung adenocarcinoma [LUAD], Fig 1A and 1B). Likewise, comparing

the quantiles as well as the density of data points belonging to each percentile demonstrated a

high agreement between the predicted and observed data (Fig 1D, 1E, 1G and 1H).

Subsequently, we performed paired WES and panel (TSO500) sequencing on an indepen-

dent cohort of NSCLC (which includes both LUSC and LUAD subtypes, n = 98, see Methods

Fig 1. The model estimates TMB recordings by TSO500 panel and predicts the panel classification performance

accurately. a and b, the model predictions are in agreement with training set (TCGA) for two subtypes of lung cancer.

Data points represent TMB measurements using WES and the corresponding TMB values from in silico TSO500.

Contours illustrate the predicted distributions of TMB by the model. Contour colors show the density of data points

per contour. d and e show an agreement between the quantiles of recorded TMB values using in silico TSO500 and the

predicted values by the model. g and h, comparison between the number of data points that lay within each percentile

in a and b in TCGA and the model. c,f, and i show a striking agreement between the model predictions on test set (in-

house generated TMB values using WES and TSO500 for NSCLC). j-k, linear regression relates TMB measurements

differently for different panels and histologies. j, the model predicts the same regression offset as observed in TCGA by

different sources of noise. k, regression coefficients depend on the histology as shown by both the model and TCGA.

Histologies are ordered by increasing median TMB. Low TMB tissues in TCGA demonstrate a higher variability in

regression slopes in agreement with the model predictions (Pearson‘s R between the regression variability of TCGA

and the model = 0.9, P = 1e-9). l-n, the model predicts the classification performance of different panels for different

subtypes of lung cancer. NPA: negative percent agreement, PPA: positive percent agreement, OPA: overall percent

agreement.

https://doi.org/10.1371/journal.pcbi.1008332.g001
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and S1 Table) to test the accuracy of our model. We determined the TMB of each tumor sam-

ple using both TSO500 and WES assays and observed a striking concordance between the

TSO500 TMB measurements and the model predictions (Cramer test for difference: P = 0.4,

Fig 1C, 1F and 1I). Moreover, our model was able to estimate and compare the noise content

of panels of various sizes with high accuracy (S1A Fig). The comparison between the observed

panel noise for this cohort and the theoretical noise content further validated the model’s accu-

racy (model Rtest
2 = 0.9 vs. observed Rtest

2 = 0.87).

One of the results of the FRIENDS analysis was an apparent histology dependence of how

WES TMB values map to smaller panels [14]. This observation has a potential to complicate

the development of diagnostic TMB applications as the expensive work of mapping of thresh-

olds between assay platforms might have to be repeated for each histology. For pan-cancer

applications, how should a common threshold be determined, and when mapping different

assay, would it still be a single common threshold for all histologies? Our numerical model

allows us to investigate this further. We used data synthesized by our statistical model that is

explicitly designed to be histology agnostic. In our setup, the ground truth map is solely deter-

mined by panel size (tpanel ≔ tWES . Lpanel/LWES) and therefore histology agnostic. With this

setup, we synthesized panel TMB values from WES data and subsequently executed the same

regression analysis that is typically performed for real world data. To our surprise, executing

this procedure for 23 cancer types (TCGA data for cohorts larger than 100 subjects) quite

closely reproduced the histology dependence of the regression coefficients found in the

FRIENDS in silico panel mapping experiments (Fig 1J and 1K and S1B Fig). Given that the

built-in ground truth in these experiments was histology independent, the counterintuitive

observation of apparent histology dependence indicates that the method that is broadly used

to map WES versus panel TMB is flawed. We speculate that the non-symmetric nature of

small TMB values (negative TMB values are forbidden) is one contributing factor. Indeed, Fig

1K shows a higher variability of regression coefficients for tissue types with lower TMB as sug-

gested by the model in agreement with TCGA observations. For further exploration, we next

reduced various noise sources (e.g. sampling noise, driver mutations, germline mutations, etc.,

see Methods), and eventually achieved a tissue-independent mapping from TMB measure-

ments of a panel to WES (no offset; Fig 1J). An additional factor may be the discrete nature of

TMB, in particular on smaller panels that makes the noise distribution very non-normal. The

tissue type dependency of regression coefficients can also be seen when TMB values from a

panel (size 1 Mbp) are mapped to a larger panel (size 2 Mbp) (S1C Fig). Likewise, the model

demonstrated that this effect is accentuated in smaller panels (i.e. higher noise content) (S1B

Fig).

Earlier studies demonstrated a promising association between TMB and response to treat-

ment with immune checkpoint inhibitors [3, 15, 16]. But subsequent prospective trials stratify-

ing patients in TMB low and high groups, while generally confirmatory, did not always meet

the high expectations of TMB as a clinical biomarker as demonstrated in KEYNOTE-021 C

and G (nonsquamous; NCT02039674), 189 (nonsquamous; NCT02578680), and 407 (squa-

mous; NCT02775435) [17]. In practice it would be difficult to delineate experimentally how

much purely technical factors may affect the predictive performance of TMB, as opposed to

intrinsic limitations of the biomarker itself [18]. With the help of the mathematical model pre-

sented here (Eq 1), it is straightforward to approximate how different factors such as panel

size, threshold, and cancer type can affect the sensitivity and specificity of TMB classification.

Initially, we focused on NSCLC as an example. As intuitively expected, we found that the panel

size affected classification accuracy. Classification accuracy also depends on cancer type.

Namely, LUSC subtype tends to render less accurate classification compared to LUAD origi-

nating from different TMB distributions. We hypothesized that this may be due to the fact that

PLOS COMPUTATIONAL BIOLOGY The interplay between cancer type, panel size and tumor mutational burden threshold

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008332 November 9, 2020 4 / 13

https://doi.org/10.1371/journal.pcbi.1008332


LUSC subtype is enriched for smokers who have a tendency to present with a higher number

of mutations, while LUAD subtype displays a long tail distribution facilitating easier classifica-

tion (as seen in TMB distributions of LUAD and LUSC cohorts of TCGA). Similar analysis

can guide drug/companion diagnostics (CDx) co-developers to accurately account for the

impact of heterogeneity of distinct cohorts in clinical trials (e.g. CheckMate227 [1], Fig 1L–1N,

and S2A–S2O Fig).

Furthermore, our analysis demonstrates the threshold selection not only affects classifica-

tion accuracy, but it also accentuates how strongly performance depends on panel size (S2A–

S2O Fig). Tissue type is another factor that can influence classification accuracy. For example,

even assuming a tissue agnostic threshold, classification accuracy of TMB using the same

panel strongly depends on tissue type due to distinct TMB distribution of each particular his-

tology. Notably, the model illustrates that histologies with low TMB (e.g. prostate adenocarci-

noma, PRAD or breast cancer, BRCA) suffer from low positive predictive value (PPV) while

leading to superior overall predictive agreement (OPA) compared to histologies with high

TMB. This observation is even more pronounced when smaller panels are used, suggesting the

value of comparatively larger panels such as TSO500 and WES for future clinical trials in pros-

tate, breast cancer or other histologies with low TMB (S2A–S2O Fig). Our model concludes

that the performance of panels plateaus around ~1 Mbp for most thresholds and cancer types

in agreement with others [19].

We seek to elucidate how the inaccuracies arising from the use of panels as CDx devices

can impact the likelihood of success in a clinical trial. To start, we model TMB as a pan-cancer

predictor of response to immunotherapy treatment, where drug response is modeled as inde-

pendent of histology (i.e. identical response function for all cancer types, see Methods and Fig

2A). Note that the choice of the specific response function in Fig 2A models TMB as an ideal-

ized perfect predictor of ORR that in this case converges to PPV (see Methods). Importantly,

the pan-cancer predictive value of TMB would have been difficult to detected in wet-lab exper-

iments because panel size affects the predictive performance of TMB in a histology dependent

way. The observed drug-response in the high TMB group is significantly dependent on histol-

ogy when using small panels (Fig 2D). Lower TMB in certain cancer types can exacerbate the

overall poor clinical outcome of the entire selected cohort for immunotherapy treatment.

As discussed earlier, linear regression relates TMB measurements from a panel to WES dif-

ferently for different panels and histologies and is an inappropriate tool to standardize TMB

measurements. Consequently, we evaluated alternative potential TMB standardization

approaches. One might argue that the response function (i.e. threshold setting) depends on the

cancer type. Samstein et al. [2] suggested that using the top 20% of TMB distributions for each

cancer type as threshold can standardize TMB measurements. Our model suggests that setting

the threshold based on the top 20% of the entire population does not resolve the tissue depen-

dency of clinical outcome, and both tissue type and panel size can affect ORR (Fig 2G). Con-

versely, our model implies that ORR is independent of histology if and only if WES (with

minimal noise) is used (Fig 2D and 2G). Notably, assuming a perfect response function, a

breast cancer cohort in which patients are selected to enroll in treatment using a panel of size 1

Mbp tends to demonstrate only a 35% chance of response compared to a 20% chance of

response of a cohort in which TMB is not used as CDx. On the contrary, assuming WES is

noiseless, the response with a WES based assay in the treatment group would be 100% (Fig

2D).

One might attempt to harmonize TMB measurements across different panels using alterna-

tive normalization methods (e.g. Z-score normalization, quantile normalization, etc.) [20].

However, it should be noted that any linear transformation of TMB distributions will lead to

the same conclusion (since the pre-transformed TMB values that are above a certain quantile
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remain above that quantile after any linear transformation). Alternatively, the model suggests

that designing panels to capture only non-cancer driver mutations and improved germline fil-

tering can result in a superior performance (OPA); however, ORR of the selected population

still continue to rely on panel size, cancer type, and the TMB threshold (S3 Fig). The depen-

dency of ORR on histology persists but is alleviated if a response function predicts 80% ORR

for patients with high TMB compared to 20% ORR for low TMB patients (Fig 2B, 2E and 2H).

This observation inspired us to investigate clinical outcome using a more realistic response

function.

Due to lack of adequate experimental data, obtaining an accurate response function that

thoroughly captures all underlining biological features of the immune response is not trivial.

Nevertheless, we pursued a mechanistic approach by first demonstrating that an incomplete

gamma function can roughly encompass the underling biological machinery responsible for

various stages of the immune response from gene expression to neoepitope presentation (see

Methods). We followed a fitting strategy based on the available experimental data for NSCLC

[21] to determine the shape and rate parameters. We reasoned that the shape parameter is

associated with the number of epitopes required for immune cell activation. Consistent with

the notion of immunodominance [22], our fitting approach resulted in a shape parameter of

one. Following a tissue-agnostic assumption of the response function, we first estimated the

clinical outcome of different cancer types, using the fitted response function (Fig 2C). Consis-

tent with other discussed response functions, ORR varies significantly for different panels and

Fig 2. The model predicts the clinical outcome of a treatment group for different cancer types, thresholds, and

panels. a-c, different response functions are assumed to predict the clinical outcome. Dotted lines are the schematic

representations of each response function, when the threshold is set based on the top 20% of TMB distribution for each

histology. d-f, histology and panel size impact the ORR for a fixed threshold. Smaller panels (higher noise content) are

associated with poor clinical outcome. g-i, ORR when a threshold is selected based on the top 20% of the TMB

distribution for each cancer type. PPV: positive predictive value.

https://doi.org/10.1371/journal.pcbi.1008332.g002
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tissue types (Fig 2F). Finally, these observations persist upon setting the rate parameter such

that the top 20% of TMB population for each histology leads to 50% chance of response (the

shape parameter remains unchanged, see Methods and Fig 2I). ORR of lung cancer patients

for shape = 1, 2, and 3 for different panel sizes and thresholds are provided in S4B–S4D Fig.

Here we aimed to study the impact of the choice of response function by comparing the

survival outcome given different response functions and how they can affect the clinical out-

come as shown in Fig 2A–2C. Most studies focus on TMB high/low classification accuracy as a

proxy for survival. This converges to the assumption that the response function is indeed what

is depicted in Fig 2A (as well as Fig 2D and 2G). Note that assuming WES CDx could achieve

100% response rate is not justified. Therefore, we assessed the performance of different panels

(and WES) assuming 80% response rate for high TMB patients as opposed to 20% response

rate for low TMB patients (Fig 2B, 2E and 2H). Moreover, we utilized the empirical response

data by Rizvi et al. [21] (S4A Fig) and obtained an empirical response function using a fitting

strategy to demonstrate the importance of a priori knowledge of the response function (see

Methods). In Fig 2B, 2E and 2H, we used a threshold of 6 as a choice to facilitate a graphical

representation of the clinical outcome. However, the choice of the threshold can vary from

cohort to cohort and therefore, we also provided a heatmap of the clinical outcome using

empirically generated response functions (Rizvi et al. [21]) for different thresholds and differ-

ent panel sizes (S4B–S4D Fig).

This model can also estimate how different factors (e.g. panel size) may influence the frac-

tion of patient population stratified as potential responders when a targeted panel is employed

as a CDx. Interestingly, the model suggests that at a constant threshold, smaller panels overes-

timate the number of potential responders (treatment population) which can jeopardize the

likelihood of success of a clinical trial (e.g. a ~10% larger LUAD cohort may be chosen using a

panel with L = 1 Mbp compared to WES, S5 Fig).

Discussion

This study conveys an important message tackling the main challenge in measuring TMB: how

can one harmonize TMB across different panels, thresholds, and histologies? As discussed thor-

oughly throughout this study, TMB harmonization can only be achieved if the exact response

function is known. Inspired by our model, one can obtain a threshold that results in either iden-

tical fractions of treated patients across different panels and histologies or identical ORR in a

given cohort but not both (Fig 3). Thus, it is critical to clarify the scope of TMB harmonization

when different panels or histologies are compared. One would expect that a small panel and an

exome panel TMB thresholds are matched in such a way that the same percentage of the popu-

lation is classified as “TMB high”. However, as shown in Fig 3B and 3E, one should expect a

worse clinical outcome (as high as 20% reduction in ORR) if the TMB threshold is selected in

such manner (Fig 3B and 3E). Alternatively, one could select the threshold such that a clinical

trial in which a small panel is used achieves a similar ORR as an exome panel. However, this

results in a smaller selected population for immunotherapy treatment some patients of which

were true responders (Fig 3C and 3F). Nevertheless, a TMB threshold that leads to the same

selected population and the same ORR between the two clinical trials does not exist.

Namely, given a known response function, our model can efficiently identify the proper

threshold that stratifies the top 20% of patients as responders; however, the ORR varies

depending on panel size and threshold. Likewise, when a threshold is aimed to yield a 50%

ORR, the treatment fraction remains variable for different panels or histologies. Notably, WES

entails ~10–20% larger treated population compared to a panel of size 1 Mbp depending on

the response function.
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In summary, we presented a mechanistic model that explains the association between panel

size, histology, and TMB threshold with panel performance and survival outcome (S2P–S2R

Fig). Our study suggests that TMB classification and threshold setting are only meaningful

when all factors (i.e. noise characteristic of a panel due to varying panel sizes and TMB distri-

bution per tumor type) are considered. This model can effectively be recruited to evaluate

other potential TMB standardization approaches. Finally, the likelihood of a favorable clinical

outcome can be predicted by our proposed model facilitating the design of future clinical trials

[3]. Future studies based on larger cohorts can provide a more confident representation of the

response function which assists us to achieve a more precise estimate of the influence of the

aforementioned factors in predicting clinical outcome.

Methods

Model description

Assuming there exists a response function C(T) defined as the probability of a patient with

exact TMB (T) to respond to treatment, the probability of treatment response (the hazard ratio

Fig 3. Proposed TMB harmonization strategy. TMB harmonization would only be possible if the exact response

function is known and only when it is aimed to obtain identical fractions of treated patients or to obtain identical ORR

in a given cohort but not both. a and d are two example response functions obtained using an incomplete gamma

function which recognizes 1 and 10 neoepitopes, respectively. b and e, ORR when threshold is set to keep treatment

fractions constant at 20%. c and f, treatment fractions for thresholds that keep ORR constant at 50% for the response

functions shown in a and b.

https://doi.org/10.1371/journal.pcbi.1008332.g003
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(HR)) of the entire selected patient cohort is

Presponse t; sð Þ ¼
1

Zðt; sÞ

Z

dTPðTÞCðTÞYðT; t; sÞ ð2Þ

and the fraction of patients selected for treatment (market size) is

Zðt; sÞ ¼
Z

dTPðTÞYðT; t; sÞ ð3Þ

In these equations, P(T) is the (cancer type dependent) distribution of mutation load in the

intended use population. Θ(T,τ,σ) is a (noisy) biomarker model for a given CDx device and

encodes the probability that a patient with true TMB (T) is selected for treatment based on a

threshold τ and can be defined as

YðT; t; sÞ ¼ Pð~t=L > tÞ ð4Þ

where ~t is the number of mutations recorded by a panel of size L and can be estimated as

~t ¼ Kt þN ð0; sÞ þ PoissðlÞ ð5Þ

where K = L/L0 and L0 is the size of human exome (approximately 35.6 Mbp) such that T =

t/L0. Eq (5), contains two noise terms: a centered gaussian noise source that represents the

noise characteristic of a panel and is defined as

s ¼ C0 þ
ffiffiffiffiffi
Kt
p

ð6Þ

Note that σ is a function of panel size and mutational burden, and mutational burden is

related to cancer type. Therefore, Presponse(τ,σ) in Eq (1) can also be written as a function of

cancer type and panel size as Presponse(τ,L,histology). Moreover, we introduced a second Poisson

noise term to recapitulate the biases due to cancer driver mutations, germline mutations, etc. λ
and C0 are two tissue invariant constants on which together with P(T) the model will be fitted.

Here, C0 is a panel size independent noise source (such as germline subtraction noise), and λ is

the average number of “cancer driver mutations” detected by the panel. We assume C0 and λ
do not depend on the panel size and the tissue type since most commercial panels include can-

cer driver mutations regardless of the size of a panel. Such driver genes are biologically selected

throughout the clonal evolution of cancer and thus, have a substantially higher probability of

being observed on a targeted panel that is specifically designed to detect such variants rather

than the passenger mutations that dominate TMB. Previous studies [23, 24] have modeled the

panel intrinsic noise in measuring TMB by showing that the coefficient of variant of panel

based TMB is inversely proportional to the square root of TMB and the panel size similar to

this study. Moreover, J. Budczies et al. [24] have discussed a variety of confounders of panel

based TMB measurements. Namely, the number of false negatives of germline mutation filter-

ing, biological and technical panel based TMB error increase with the TMB level in a linear

manner and thus result in constant relative errors.

Since ~t , the number of mutations recorded by a panel, must be an integer, the righthand

side of Eq (5) is discretized and only ~t > 0 values are considered. This is consistent with in sil-
ico and the observed TSO500 measurements as shown in Fig 1A–1C–(left corner). Assume a

sample with true TMB T measured on a panel of size L. Then the expected number of non-

synomymous mutations observed on the panel is< ~t >¼ L� T. The statistics underlying this

is a Bernoulli process [with p = T / 106 per base] with the number ~t “successes”. This allows to

estimate the significance s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lpð1 � pÞ

p
�

ffiffi
~t
p

for small p. Again, using the normality

PLOS COMPUTATIONAL BIOLOGY The interplay between cancer type, panel size and tumor mutational burden threshold

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008332 November 9, 2020 9 / 13

https://doi.org/10.1371/journal.pcbi.1008332


assumption, we can conclude the 95% of measurement results are within two standard devia-

tions L� T � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
L� T
p

: Finally, we include C0 into Eq (6) to account for other sources of

noise (e.g. germline subtraction noise).

It is worth noting that a noiseless device could be described as

YðT; t; s ¼ 0Þ ¼
1 if T � t

0 otherwise
ð7Þ

(

Other quantities, such as sensitivity and specificity can be derived in a similar fashion.

Model fitting

The distribution of tumor mutation load P(T) for each tissue type can be estimated using

TCGA data. Due to heterogenous mutational landscape of different tumor types, identifying

an analytical pan-cancer probability density function forP(T) is not trivial. Hence, without

loss of generality, we fitted a kernel smoothing density function per cancer type.

Θ(T,τ,σ) includes various noise sources as a function of panel size and is also trained on

TCGA data with two degrees of freedom (λ and C0). To assess the performance of the model, we

first trained the model on two lung cancer subtypes (LUSC and LUAD) such that for any TMB

measurements using WES the model simulates the TMB measurements of any panel of length L.

The choice of λ and C0 did not dramatically influence the conclusions of this study for a range of

parameters. Using a grid search, we chose λ and C0 to achieve a TMB distribution predicted by

our model similar to TCGA i.e. Fig 1A and 1B. Specifically, λ = 1 and C0 = 0.5 showed a compa-

rable concordance to the observed TMB distribution and thus were selected for this study.

Response function

We studied three distinct response functions, but other response functions can easily be

included for future analysis (Fig 2A–2C). In Fig 2D, and e, a sharp transition occurs at a

selected tissue invariant threshold (e.g. 6 in Fig 2D and 2E) whereas the thresholds used in Fig

2G, and h are determined based on the top 20% for each cancer type (from TCGA). Next, we

discussed the behavior of different panels using a more realistic response function (i.e. an

incomplete gamma function).

Corollary. If a series of events occur according to a Poisson process with rate λ, the waiting

time to the occurrence of the nth event, Tn, follows a gamma distribution with the shape and

rate parameters of n and λ.

Therefore, assuming that the immune response depends on the presentation of n neoepi-

tope, the response function (cumulative hazard function) can be shown to follow a lower

incomplete gamma function with the shape and rate parameters n and λ. We found the best fit

by minimizing the ordinary least square (OLS) error of the response function and objective

response as a function of the exact TMB reported by Rizvi et al. [21]. Optimization demon-

strated that n = 1 minimizes the OLS error referring to the immunodominant neoepitope. We

assumed an incomplete gamma function in Fig 2F with a shape parameter of 1 and

rate = 0.044 (obtained by OLS minimization, S5A Fig). Likewise, in Fig 2I, the rate parameter

was determined such that 50% of ORR occurs at the top 20% per histology (assuming

shape = 1).

Whole exome and TSO500 TMB workflows

We followed the protocol described in [25] for all TMB calculations including alignment, vari-

ant calling, removing germline variants, mutational load measurement, etc.
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Supporting information

S1 Table. TMB data generated for a) WES samples form TCGA, b) in silico TSO500, c) WES

and TSO500 sequenced in house for this study for an independent NSCLC cohort.

(XLS)

S1 Fig. The model predicts the noise behavior of different panels. a, noise characteristic of

different panels for different TMB values. Lowess smoothing used to illustrate the noise con-

tent of different panels. FMI: Foundation Medicine panel. TSO500 (model) and FMI (model)

are generated using the mathematical model described in this study with panel size length as

the input. b, contribution of different sources of noise to the regression offset for different pan-

els. c, tissue dependency of regression coefficients between two panels (1 Mbp vs. 2 Mbp).

(TIF)

S2 Fig. Classification accuracy for different panels, given different thresholds for different

histologies. a-c, negative percent agreement (NPA). d-f, positive percent agreement (PPA). g-

i, overall percent agreement (OPA). j-l, positive predictive value (PPV). m-o, negative predic-

tive value (NPV) for 3 thresholds (6,8, and 10). LUSC: lung squamous cell carcinoma, LUAD:

lung adenocarcinoma, PRAD: prostate adenocarcinoma, BRCA: breast invasive carcinoma. p-

r, ORR given a tissue agnostic response function (Fig 2C).

(TIF)

S3 Fig. The model predicts the classification performance of different panels for different

cancer types for TMB measurements using a panel empty of cancer driver mutations and

germline variants. a, removing germline variants and cancer driver mutations result in a

more efficient panel (smaller panel with identical performance); however, this approach can

not effectively reduce the intrinsic noisy behavior of panels and classification performance

remains to depend on panel size (b-d). Contour colors show the density of data points per con-

tour.

(TIF)

S4 Fig. ORR for lung cancer patients. a, data points represent response status for each patient

given the exact recorded TMB by WES (Rizvi et al.) and the response function is obtained by

fitting an inverse gamma function with the shape parameter = 1. b-d, heatmaps of ORR for

lung cancer patients obtained using the response function in a, for different shape parameters

(number of neoepitopes) for a range of thresholds and panels.

(TIF)

S5 Fig. Fraction of patients selected for treatment using different panels. smaller panels

overestimate the market size.

(TIF)
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8. Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar AL, Kirchner M, Leichsenring J,

Lier A, von Winterfeld M, Penzel R. Size matters: Dissecting key parameters for panel-based tumor

mutational burden analysis. International Journal of Cancer. 2019 Feb 15; 144(4):848–58. https://doi.

org/10.1002/ijc.31878 PMID: 30238975

9. Chandler D. Introduction to modern statistical mechanics. Oxford University Press. 2009 Sep.

10. Huang K. Introduction to statistical physics. Chapman and Hall/CRC. 2009 Sep.

11. Voit J. The statistical mechanics of financial markets. Springer Science & Business Media. 2005 Oct.

12. Tobias SM, Marston JB. Direct statistical simulation of out-of-equilibrium jets. Physical review letters.

2013 Mar 5; 110(10):104502. https://doi.org/10.1103/PhysRevLett.110.104502 PMID: 23521263

13. Mehta P, Schwab DJ. An exact mapping between the variational renormalization group and deep learn-

ing. arXiv preprint arXiv:1410.3831. 2014 Oct 14.

14. Merino DM, McShane LM, Fabrizio D, Funari V, Chen SJ, White JR, Wenz P, Baden J, Barrett JC,

Chaudhary R, Chen L. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico

PLOS COMPUTATIONAL BIOLOGY The interplay between cancer type, panel size and tumor mutational burden threshold

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008332 November 9, 2020 12 / 13

https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1056/NEJMoa1801946
http://www.ncbi.nlm.nih.gov/pubmed/29658845
https://doi.org/10.1038/s41588-018-0312-8
http://www.ncbi.nlm.nih.gov/pubmed/30643254
https://doi.org/10.1093/annonc/mdy495
http://www.ncbi.nlm.nih.gov/pubmed/30395155
https://doi.org/10.1038/s41568-019-0116-x
http://www.ncbi.nlm.nih.gov/pubmed/30755690
https://doi.org/10.21037/tlcr.2018.08.14
http://www.ncbi.nlm.nih.gov/pubmed/30505715
https://doi.org/10.1002/gcc.22733
http://www.ncbi.nlm.nih.gov/pubmed/30664300
https://doi.org/10.21037/tlcr.2018.10.10
https://doi.org/10.21037/tlcr.2018.10.10
http://www.ncbi.nlm.nih.gov/pubmed/30505712
https://doi.org/10.1002/ijc.31878
https://doi.org/10.1002/ijc.31878
http://www.ncbi.nlm.nih.gov/pubmed/30238975
https://doi.org/10.1103/PhysRevLett.110.104502
http://www.ncbi.nlm.nih.gov/pubmed/23521263
https://doi.org/10.1371/journal.pcbi.1008332


assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of

Cancer Research TMB Harmonization Project. Journal for Immunotherapy of Cancer. 2020; 8(1).

15. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. The

New England journal of medicine. 2017 Dec 21; 377(25):2500. https://doi.org/10.1056/NEJMc1713444

PMID: 29262275

16. Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay S. Mutational landscape

and sensitivity to immune checkpoint blockers. Clinical Cancer Research. 2016 Sep 1; 22(17):4309–21.

https://doi.org/10.1158/1078-0432.CCR-16-0903 PMID: 27390348

17. Paz-Ares L, Langer CJ, Novello S, Halmos B, Cheng Y, Gadgeel SM, Hui R, Sugawara S, Borghaei H,

Cristescu R, Aurora-Garg D. Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for

metastatic NSCLC: Tissue TMB (tTMB) and outcomes in KEYNOTE-021, 189, and 407. Annals of

Oncology. 2019 Oct 1; 30:v917–8.

18. Hendriks LE, Rouleau E, Besse B. Clinical utility of tumor mutational burden in patients with non-small

cell lung cancer treated with immunotherapy. Translational lung cancer research. 2018 Dec; 7(6):647.

https://doi.org/10.21037/tlcr.2018.09.22 PMID: 30505709

19. Endris V, Buchhalter I, Allgäuer M, Rempel E, Lier A, Volckmar AL, Kirchner M, von Winterfeld M, Leich-

senring J, Neumann O, Penzel R. Measurement of tumor mutational burden (TMB) in routine molecular

diagnostics: in silico and real-life analysis of three larger gene panels. International journal of cancer.

2019 May 1; 144(9):2303–12. https://doi.org/10.1002/ijc.32002 PMID: 30446996

20. Vokes NI, Liu D, Ricciuti B, Jimenez-Aguilar E, Rizvi H, Dietlein F, He MX, Margolis CA, Elmarakeby

HA, Girshman J, Adeni A. Harmonization of Tumor Mutational Burden Quantification and Association

With Response to Immune Checkpoint Blockade in Non–Small-Cell Lung Cancer. JCO precision oncol-

ogy. 2019 Nov; 3:1–2. https://doi.org/10.1200/PO.19.00171 PMID: 31832578

21. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS,

Miller ML. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer.

Science. 2015 Apr 3; 348(6230):124–8. https://doi.org/10.1126/science.aaa1348 PMID: 25765070

22. Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens. Annual review of immunology. 2019

Apr 26; 37:173–200. https://doi.org/10.1146/annurev-immunol-042617-053402 PMID: 30550719
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Thomas M, Peters S, Endris V. Quantifying potential confounders of panel-based tumor mutational bur-

den (TMB) measurement. Lung Cancer. 2020 Apr 1; 142:114–9. https://doi.org/10.1016/j.lungcan.

2020.01.019 PMID: 32143116

25. Zhao C. et al. TruSight Oncology 500: Enabling Comprehensive Genomic Profiling and Biomarker

Reporting with Targeted Sequencing. BioRxiv [Preprint]. 2020 bioRxiv [posted 2020 Oct 22]. Available

from: https://www.biorxiv.org/content/10.1101/2020.10.21.349100v1 https://doi.org/10.1101/2020.10.

21.349100

PLOS COMPUTATIONAL BIOLOGY The interplay between cancer type, panel size and tumor mutational burden threshold

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008332 November 9, 2020 13 / 13

https://doi.org/10.1056/NEJMc1713444
http://www.ncbi.nlm.nih.gov/pubmed/29262275
https://doi.org/10.1158/1078-0432.CCR-16-0903
http://www.ncbi.nlm.nih.gov/pubmed/27390348
https://doi.org/10.21037/tlcr.2018.09.22
http://www.ncbi.nlm.nih.gov/pubmed/30505709
https://doi.org/10.1002/ijc.32002
http://www.ncbi.nlm.nih.gov/pubmed/30446996
https://doi.org/10.1200/PO.19.00171
http://www.ncbi.nlm.nih.gov/pubmed/31832578
https://doi.org/10.1126/science.aaa1348
http://www.ncbi.nlm.nih.gov/pubmed/25765070
https://doi.org/10.1146/annurev-immunol-042617-053402
http://www.ncbi.nlm.nih.gov/pubmed/30550719
https://doi.org/10.1093/annonc/mdz205
http://www.ncbi.nlm.nih.gov/pubmed/31268125
https://doi.org/10.1016/j.lungcan.2020.01.019
https://doi.org/10.1016/j.lungcan.2020.01.019
http://www.ncbi.nlm.nih.gov/pubmed/32143116
https://www.biorxiv.org/content/10.1101/2020.10.21.349100v1
https://doi.org/10.1101/2020.10.21.349100
https://doi.org/10.1101/2020.10.21.349100
https://doi.org/10.1371/journal.pcbi.1008332

