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Abstract

Proteins contributing to a complex disease are often members of the same functional pathways. Elucidation of such
pathways may provide increased knowledge about functional mechanisms underlying disease. By combining genetic
interactions in Type 1 Diabetes (T1D) with protein interaction data we have previously identified sets of genes, likely to
represent distinct cellular pathways involved in T1D risk. Here we evaluate the candidate genes involved in these putative
interaction networks not only at the single gene level, but also in the context of the networks of which they form an integral
part. mRNA expression levels for each gene were evaluated and profiling was performed by measuring and comparing
constitutive expression in human islets versus cytokine-stimulated expression levels, and for lymphocytes by comparing
expression levels among controls and T1D individuals. We identified differential regulation of several genes. In one of the
networks four out of nine genes showed significant down regulation in human pancreatic islets after cytokine exposure
supporting our prediction that the interaction network as a whole is a risk factor. In addition, we measured the enrichment
of T1D associated SNPs in each of the four interaction networks to evaluate evidence of significant association at network
level. This method provided additional support, in an independent data set, that two of the interaction networks could be
involved in T1D and highlights the following processes as risk factors: oxidative stress, regulation of transcription and
apoptosis. To understand biological systems, integration of genetic and functional information is necessary, and the current
study has used this approach to improve understanding of T1D and the underlying biological mechanisms.
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Introduction

Currently, genome-wide association studies in complex diseases

are producing an unprecedented amount of genetic data. Complex

traits like Type 1 Diabetes (T1D) are influenced by multiple genes

interacting with each other to confer susceptibility and/or

protection. However, identifying the individual components can

be difficult because each only contributes weakly to the pathology.

Alternatively, identification of entire cellular systems involved in a

particular disease could be attempted. Such a strategy should be

feasible in many different complex diseases since most genes exert

their function as members of molecular machines where groups of

proteins contributing to disease can be expected to be members of

the same functional pathways [1,2,3,4,5,6]. Analysis of an entire

disease-related system might provide insight to the molecular

etiology of the disease that would not emerge from isolated

functional studies of single genes.

We have previously in a large T1D linkage data set

demonstrated statistical evidence for gene-gene interactions [7].

The data set comprised data from 1,321 affected sib pairs

genotyped for 298 microsatellite markers [7,8]. By an integrative

approach combining genetic data and high-confidence (human)

protein interaction networks, we identified four protein interaction

networks significantly enriched in proteins from the predicted

genetic interactions. This supported interaction in biological

pathways. For each of these networks the identified protein or

proteins were viewed in a biological context [7].

However, further functional and genetic evaluation is necessary

to confirm the involvement of these interactions in T1D, elucidate

the biological mechanisms of these networks and to identify the

strongest risk factors amongst the network members. If several

members of the same network can be shown to be likely risk

factors in independent data this would support that the interaction

networks as such are risk factors and serve as a validation of the

genetic interactions previously identified. In the current study we

use independent approaches for evaluating interaction networks

and identifying the strongest risk factors amongst network

members. We have used available T1D genome-wide association
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scan data for evaluation of whether entire interaction networks

could be significantly associated with T1D. Furthermore, we

performed expression profiling of identified genes. The hypothesis

behind this is that expression levels may act as intermediate

phenotypes between DNA sequence variation and more complex

disease phenotypes and that evaluation of the expression of

candidate genes in relevant tissue and/or disease models may

provide a means for identifying those with a functional implication

in T1D pathogenesis.

Results and Discussion

We have evaluated expression levels of candidate genes

previously identified through genetic and protein interaction

analyses [7]. The selected candidate genes originate from linkage

regions predicted to genetically interact, and are functionally

supported by evidence for physical interaction at the level of

protein complexes. Four functional interaction networks (A–D)

containing 30 proteins presumed to be responsible for the genetic

interactions were previously obtained [7], and these four putative

pathways and their 30 members were further evaluated in the

present study.

In a model of T1D, expression levels were evaluated in human

islet preparations, representing the target organ, as well as in

human lymphocytes representing the effector cells in T1D.

Expression profiling in human islets was performed by comparing

the constitutive expression versus cytokine-stimulated expression

levels. Gene expression levels in lymphocytes were compared

among controls and T1D individuals.

Additional support for individual genes and genetic interactions

in the networks comes from evidence for genetic association. The

Wellcome Trust Case Control Consortium (WTCCC) has made the

results of their large genome-wide association study of T1D and

other diseases publicly available (www.wtccc.org) [9]. In this data set

we searched for T1D associated SNPs in the 30 candidate genes

located in the four interaction networks. To test for combined

evidence for T1D association of the protein networks we measured

the over-representation (enrichment) of significant SNPs associated

with T1D in the four interaction networks, compared to randomly

generated networks with similar properties. For each network we

tested the enrichment of SNPs in the best 0.1 percentile, 1 percentile

and 5 percentile of the WTCCC data for T1D. A nominal P-value

and an adjusted P-value was determined for enrichment at each of

those thresholds by comparing to 1,000 randomly generated

networks with an equal number of proteins and proteins encoded

by genes of similar size to the actual test genes.

Interaction network A, table 1 and figure 1, represents genetic

interactions between the HLA region on chromosome 6 and a

region on chromosome 13, a region on chromosome 4, as well as

regions on chromosome 16 and 2. Based on validated protein-

protein interactions the proteins/genes responsible for these

interactions in network A are the four HLA region genes, BAT1

(Spliceosome RNA helicase, HLA-B associated transcript-I),

ITPR3 (Inositol 1,4,5-triphosphate receptor type 3), RPS18 (40S

ribosomal protein S18) and TUBB (Tubulin beta-2 chain)

interacting with the LMO7 (LIM domain only protein 7) gene

on chromosome 13, the WDR1 (WD repeat domain I) gene on

chromosome 4, the RPS15A (40S ribosomal protein S15a) on

chromosome 16 and the HNRPLL (Heterogeneous nuclear

ribonucleoprotein L-like, stromal RNA-regulating factor) on

chromosome 2, as well as two genes directly interacting from

other chromosomal regions, DNAJC14 (Nuclear protein Hcc-1,

proliferation associated cytokine-inducible protein CIP29) and

ELF5 (ETS-related transcription factor Elf-5). Network A is

significantly enriched, after correction for multiple testing, for

SNPs in the 0.1 percentile and the 1 percentile, and borderline

significant for SNPs in the best 5 percentile of the WTCCC study,

table 2, indicating that the interaction network as a whole is a risk

factor in T1D and further supporting the genetic interactions

observed in previous work. For genes in network A no significant

differences in expression levels between lymphocytes from eight

newly diagnosed T1D patients and nine control individuals was

identified. For the nine human islet preparations we found that

four of the genes demonstrated significant down-regulation upon

cytokine-stimulation. These were BAT1, RPS18 and TUBB from

the HLA-region and the WDR1 gene, on the short arm of

chromosome 4, a gene involved in actin binding, table 1 and

figure 1. This gives further support to these four genes as

functionally relevant in this model of T1D (human islets stimulated

with cytokines). Neither the RPS18 nor the TUBB gene has known

functional roles in relation to T1D. The BAT1 gene has been

designated HLA-B associated transcript and BAT1 is a negative

regulator of inflammation [10], probably affecting production of

TNFa, IL-1b and IL-6. WD-repeats are involved in protein-

protein interactions and have been shown to be involved in

regulation of transcription, mRNA modification and transmem-

brane signaling, and mutations in the Wdr1 gene has in a mouse

model been shown to be related to auto-inflammation [11,12].

Such effects may be relevant in T1D.

Interaction network B, table 1 and figure 2, consists of two HLA

region genes, RDBP (RD RNA-binding protein, MHC complex

gene RD) and GTF2H4 (General transcription factor II H)

interacting with two genes from a region on chromosome 16,

RRN3 (RNA polymerase I-specific transcription initiation factor)

and ERCC4 (DNA excision repair protein, DNA repair endonucle-

ase) and the TAF1A (TATA box binding protein (TBP)-associated

factor, RNA polymerase I) gene on chromosome 1. The ERCC4

gene furthermore directly interacts with the TYW3 (tRNA–yW

synthesizing protein 3 homolog) and the GUF1 (GTP-binding

protein GUF1 homolog, GTPase of unknown function) genes from

other regions. Comparing the constitutive expression level of these

genes in human pancreatic islets with the level after cytokine-

exposure of the islets did not identify significant differences. When

comparing expression levels between newly diagnosed T1D patients

and controls, we demonstrated a significantly higher expression

level of the TAF1A gene in the T1D patients, table 1 and figure 2.

The TAF1A gene on chromosome 1 encodes a transcription factor

involved in RNA synthesis. It has not been implicated in T1D

before and the effect of different expression levels in relation to

disease state in human lymphocytes is not clear, neither is the

putative functional effect on the other network B genes by this

difference. No enrichment of T1D associated SNPs in this

interaction network could be demonstrated, providing no further

genetic support to this network.

Interaction network C contains only three genes and originates

from an identified gene-gene interaction between the HLA-region

and a region on chromosome 11. Genes predicted to be

responsible for this interaction is the MOG (Myelin-oligodendro-

cyte glycoprotein precursor) gene on chromosome 6 and the

APLP2 (Amyloid-like protein 2 precursor (APPH)) and NTRI

(Neurotrimin precursor (hNT)) genes on chromosome 11, table 1.

No significant differences in either of the tissues/model systems

were demonstrated for these genes, not providing any functional

support from expression studies for the network C genes, also no

enrichment of T1D associated SNPs was observed in this network.

Interaction network D, table 1 and figure 3, originates from

predicted genetic interactions among a region on chromosome 17,

and markers on chromosomes 5, 1 and 2. Candidate genes
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presumed to be responsible for the interactions are DDX52

(Probable ATP-dependent RNA helicase DDX52, DEAD box

protein 52) and RPL23A (60S ribosomal protein L23a) on

chromosome 17, NPM1 (Nucleophosmin, nucleolar phosphopro-

tein B23) and RPL26L1 (60S ribosomal protein L26-like I) on

chromosome 5, PRDX1 (Natural killer cell-enhancing factor A,

Peroxiredoxin-I) on chromosome 1 and RPS7 (40S ribosomal

protein S7) on chromosome 2. The PRDX1 gene additionally

interacts with the SESN2 (Sestrin 2, hypoxia induced gene 95) and

SESN1 (Sestrin 1, p53-regulated protein PA26) genes, of which the

latter further interacts with the FLOT1 (Flotillin I, integral

membrane component of caveolae) gene from the HLA region.

Interaction network D is significantly enriched for SNPs in the best

0.1 percentile, table 2, indicating that genetic variations in this

network could also contribute to T1D susceptibility. No differences

in the lymphocyte expression studies were demonstrated. Com-

paring human islets expression profiles, we demonstrated that

NPM1, a gene involved in ribosomal protein assembly and

transport was significantly down-regulated upon stimulation of

islets with a mixture of cytokines and the PRDX1 gene, encoding a

natural killer cell enhancing factor, to be significantly up-regulated

after such stimulation, when compared to constitutive expression,

table 1 and figure 3. Natural killer cell enhancing factors have

been described as important for different cells in their defense

against oxidants/oxidative stress [13,14]. An up-regulation of the

PRDX1 encoded protein could be part of a defense mechanism in

Table 1. Expressional profiling of thirty candidate genes divided into four interaction networks (A–D) demonstrating genetic and
protein interactions.

Gene symbol Chr.position Gene name P-value

Network A.

BAT1 6p21.33 Spliceosome RNA helicase BAT1 HLA-B associated transcript-1 P = 0.008

ITPR3 6p21.31 Inositol 1,4,5-trisphosphate receptor type 3 NS

RPS18 6p21.32 40S ribosomal protein S18 Ke-3 P = 0.0004

TUBB 6p21.33 Tubulin beta-2 chain P = 0.03

HNRPLL 2p22.1 Heterogeneous nuclear ribonucleoprotein L-like Stromal RNA-regulating factor NS

LMO7 13q22.2 LIM domain only protein 7 LOMP F-box only protein 20 NS

WDR1 4p16.1 WD repeat domain 1 WDR1, transcript variant 1 P = 0.03

RPS15A 16p12.3 40S ribosomal protein S15a NS

DNAJC14 12q13.2 Nuclear protein Hcc-1 Proliferation associated cytokine-inducible protein CIP29 NS

ELF5 11p13 ETS-related transcription factor Elf-5 E74-like factor 5 NS

Network B.

RDBP 6p21.3 RD RNA-binding protein, major histocompatibility complex gene RD NS

GTF2H4 6p21.3 Basic transcription factor 2 89 kDa subunit, DNA excision repair protein ERCC-3 NS

RRN3 16p13.11 RNA polymerase I-specific transcription initiation factor NS

ERCC4 16p13.12 DNA excision repair protein, DNA repair endonuclease NS

TAF1A 1q41 TATA box binding protein TBP-associated factor, RNA polymerase I P = 0.04

TYW3 1p31.1 tRNA-yW synthesizing protein 3 homolog NS

GUF1 4p13 GTP-binding protein GUF1 homolog, GTPase of unknown function NS

Network C.

MOG 6p22.1 Myelin-oligodendrocyte glycoprotein precursor NS

APLP2 11q24.3 Amyloid-like protein 2 precursor APPH NS

NTRI 11q25 Neurotrimin precursor hNT NS

Network D.

DDX52 17q12 Probable ATP-dependent RNA helicase DDX52 DEAD box protein 52 NS

RPL23A 17q11.2 60S ribosomal protein L23a NS

NPM1 5q35.1 Nucleophosmin NPM Nucleolar phosphoprotein B23 P = 0.004

RPL26L1 5q35.1 60S ribosomal protein L26-like 1 NS

PRDX1 1p34.1 Natural killer cell-enhancing factor A, Peroxiredoxin-1 P = 0.003

RPS7 2p25.3 40S ribosomal protein S7 NS

NGB 14q24.3 Neuroglobin NS

FLOT1 6p21.33 Flotillin 1, integral membrane component of caveolae NS

SESN1 6q21 Sestrin-1 p53-regulated protein PA26 NS

SESN2 1p35.3 Sestrin-2, hypoxia induced gene 95 Hi95 NS

Only p-values below 0.05 are considered statistically significant and are included in the table. Non-significant is indicated by NS. TAF1A in module B demonstrated
differential expression in lymphocytes (T1D vs. controls) whereas the other significant p-values correspond to comparisons of un-stimulated vs. cytokine-stimulated
human pancreatic islets.
doi:10.1371/journal.pone.0006250.t001
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the beta cell against oxidative stress. The NPM1 gene has been

shown to be important in certain cancer forms, and it has been

described that inhibition of the expression of this gene may cause

other proteins, e.g. STAT5A to act as a tumor suppressor [15].

This network, build on genetic interactions between chromosome

17 and chromosomes 5, 1 and 2, may be interesting in individuals

with a low HLA risk, even though a second order interaction with

a gene from the HLA region was found in the protein interactions.

The network could point at underlying mechanisms and putatively

important combinations of genes responsible for T1D in such

individuals. A stronger effect of non-HLA genes could be expected

in individuals carrying a lower HLA risk, as indicated by a recent

T1D genome-wide association scan and meta-analysis [16].

In three out of four interaction networks our attempts to

functionally characterize the candidate genes by expressional

profiling have identified novel genes for further analysis. The third

interaction network, network C, did not reveal any differentially

expressed genes. Genetic support by evaluation of whether

networks were enriched in T1D associated SNPs was obtained

for network A and to a lesser degree for network D, highlighting

these two interaction networks as the most important.

A recently published study evaluated changes at the proteome

level after cytokine stimulation of INS-1E cells (a rat tumor beta-

cell line serving as an in vitro model for T1D) [17]. Among the

proteins that changed expression levels after 4 hours of stimulation

with IL-1b and IFN-c were the rat gene products of the WDR1

and NPM1 genes and after 24 hours the PRDX1 protein was highly

up-regulated. In that study a large protein interaction network

containing many of the differentially expressed proteins including

WDR1, NPM1 and PRDX1 was identified [17]. Despite use of

different species and model systems and unknown dynamic

differences in the transcriptome and proteome we find it of

interest that these three genes were pin-pointed as functionally

relevant in the current study as well as in the study by D’Hertog

Figure 1. Overview of predicted interactions in network A. Protein-protein interactions in this network originates from predicted genetic
interactions between the HLA-region on chromosome 6 (BAT1, ITPR3, RPS18 and TUBB) and chromosomal regions on chromosome 2 (around D2S177,
HNRPL), chromosome 13 (D13S170, LMO7), chromosome 4 (D4S403, WDR1) and chromosome 16 (D16S287, RPS15A), respectively. The ELF5 gene is
positioned on chromosome 11. Red arrows and corresponding plots refer to four genes that were demonstrated significantly down-regulated in
human pancreatic islets upon cytokine-stimulation. In the plots nodes to the left represent expression levels for all nine donors in un-stimulated
condition, whereas nodes to the right represent cytokine-stimulated expression levels.
doi:10.1371/journal.pone.0006250.g001
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[17]. The likelihood of an overlap between three genes in these

two studies has a P-value of,0.05, as calculated using hypergeo-

metric statistics.

To understand biological systems integration of genetic and

functional information is necessary. This includes studies of gene-

gene and protein-protein interactions and transcriptional or

proteome profiling. In a previous study we identified genetic

interactions observed in T1D and explained their functionality by

using an approach for integrating protein-protein interactions

generating protein interaction networks. In this work we validated

the discovered networks and analyzed their functionality by

expressional profiling in relevant target tissue and by using SNP

association data. Protein interaction data generally are noisy and

databases probably contain many false positives. The system used

in the current study is, however, rigorously quality controlled to

only include interactions that have been replicated in independent

screens [18].

GO (gene ontology) terms (www.geneontology.org) for molecular

function and biological processes of interaction networks A and D

and the differentially expressed genes in particular support that

oxidative stress and regulation of transcription and apoptosis are of

relevance for beta-cell destruction in T1D pathogenesis, and points

directly at these pathways as the most important. Despite the overall

impression from recent genome-wide association studies [9,19,20]

that genes of importance in T1D are mainly immune system genes

Table 2. The enrichment of the four interaction networks for
significant SNPs associated with T1D in the WTCCC study is
measured.

0.1 Percentile 1 Percentile 5 Percentile

Network A

P-value ,0.001 ,0.001 0.005

Adjusted P-value ,0.012 ,0.012 0.06

Network B

P-value 0.024 0.193 0.648

Adjusted P-value 0.28 1.0 1.0

Network C

P-value 1.0 0.591 0.301

Adjusted P-value 1.0 1.0 1.0

Network D

P-value 0.003 0.121 0.172

Adjusted P-value 0.036 1.0 1.0

P-values refer to a comparison with randomly generated modules with similar
properties. P-values and adjusted p-values corrected for multiple testing are
provided for all three percentiles of SNPs in each network.
doi:10.1371/journal.pone.0006250.t002

Figure 2. Protein-protein interactions in network B, originating from predicted genetic interactions between the HLA region on
chromosome 6 (RDBP and GTF2H4) and chromosomal regions on chromosome 16 (D16S287, RRN3 and ERCC4)) and chromosome 1
(D1S229, TAF1A). The TAF1A gene demonstrated significantly higher expression in lymphocytes from T1D patients compared to lymphocytes from
control individuals. The TYW3 and GUF1 are positioned on chromosome 1p31.1 and 4p13, respectively.
doi:10.1371/journal.pone.0006250.g002
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and not beta-cell genes, it seems that by integrative genomics also

genes involved in the genetic disposition to e.g. cytokine induced

beta-cell death by apoptosis can be identified.

Only few studies have addressed genetic interaction in T1D and

focused on interactions between classical disease loci [21,22,23],

and in the case of high risk HLA class II genotypes and PTPN22 a

less than multiplicative association has been demonstrated in T1D

and rheumatoid arthritis [16,24,25]. The general impression is

that interactions may exist, even though they have been difficult to

identify. Attempts to identify gene-gene interactions in T1D in

previous studies, e.g. in the recent T1D genome wide association

studies [9,19,26] have not been fruitful, however, stratifying for

known T1D loci while searching for dependent effects at other

known or unknown loci may not be the best method. Studies using

simulated data have shown that the power to detect risk variants

can be increased when allowing for epistasis in addition to single

marker effects in e.g. genome-wide association studies [27]. Novel

methods taking multiple loci at a time into account may offer

possibilities of detecting interactions not detectable by classical

methods. Evaluation of suggested interactions is necessary to

support novel methods, and by no doubt replication of genetic

interactions is important, even though it is currently not obvious

how this should be done.

In the current study we have integrated several approaches and

our findings support such methods as valuable in searching for yet

unidentified genetic and functional interactions involved in the

pathogenetic processes of T1D. Evaluation of functionality is by

this approach taken into account much earlier than in classical

analyses where evaluation of functional significance is typically not

performed before the end of a study. The exact consequence of the

up- and down-regulations of the proteins in the interaction

networks, permanently or transiently, and in relation to T1D,

remains to be resolved. Our approach of measuring the

enrichment in the interaction modules of T1D associated SNPs

is a novel way of seeking also genetic support for several

interacting genes eventually combined in biological pathways.

Figure 3. Overview of predicted interactions in network D. Protein-protein interactions originates from identified genetic interactions
between a region on chromosome 17 (around D17S798, DDX52 and RPL23A) and regions on chromosome 5 (D5S429, NPM1 and RPL26L1),
chromosome 1 (D1S197, PRDX1) and chromosome 2 (D2P25, RPS7), respectively. Through the PRDX1 gene in the D1S197 region the network is linked
to the FLOT1 gene in the HLA-region. The NGB, SESN1 and SESN2 genes are positioned on chromosomes 14q24.3, 6q21 and 1p35.3, respectively. No
differential expression in lymphocytes were identified, but the NPM1 gene was significantly down-regulated and the PRDX1 gene significantly up-
regulated by cytokine-stimulation of human pancreatic islets.
doi:10.1371/journal.pone.0006250.g003
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Materials and Methods

Ethics statement
Human pancreatic islets were obtained as samples from a

multicenter European Union-supported program on beta-cell

transplantation in diabetes directed by Professor D. Pipeleers. The

program has been approved by central and local ethical

committees. Studies including human lymphocytes were approved

by the local ethics committee of Copenhagen (KA 94020gm).

Human islet preparations were obtained from nine donors (aged

8–57 years), six were male donors, three were from female donors.

Each preparation was stimulated with a mixture of cytokines

(TNF-a (5000 U/ml), IFN-c (750 U/ml) and IL-1b (75 U/ml)) for

48 hours. Lymphocyte RNA was obtained from nine controls (all

males, aged 15–35 years and without diabetes) and eight newly

diagnosed T1D patients (all males, aged 15–30 years and with

duration of T1D,20 weeks from first insulin injection and with

continued insulin treatment since). cDNA from human pancreatic

islets with and without cytokine stimulation and cDNA from

human lymphocytes from controls as well as newly diagnosed T1D

patients was used for comparing expression levels. cDNA was

prepared from total RNA by oligo-dT-primed reverse transcrip-

tion, as described by the manufacturer (TaqMan RT reagents,

Applied Biosystems, Foster City, CA, USA). Relative expression

levels of selected genes were evaluated by use of TaqMan assays.

The Low Density Array system (Applied Biosystems) containing

assays for the individual genes as well as housekeeping genes was

used on TaqMan 7900HT (Applied Biosystems). For evaluation,

expression levels of genes were normalized against the average of

three human housekeeping genes, GAPDH, 18S-RNA and PPIA,

and evaluated using the delta-delta Ct method [28]. Relative

expression levels of genes were for un-stimulated vs. cytokine

stimulated islet preparations compared by use of paired t-tests.

Expression levels between control and T1D lymphocyte cDNA

were compared by f- and t-test. P-values,0.05 were considered

statistically significant.

SNPs were mapped to genes/proteins by identifying all SNPs

categorized as tagging each gene in the Wellcome Trust Case

Control Consortium (WTCCC) genome wide association scan

data [9]. We included SNPs 5 kb upstream and 1 kb downstream

of each gene, since these regions have been shown to be strongly

enriched for gene regulatory elements important for the function

of the particular genes [29]. For each gene only the SNP with the

lowest p-value was used, to avoid introducing a bias towards genes

with many low p-value SNPs in linkage disequilibrium with each

other. For each module the significance of the enrichment of SNPs

in the best 0.1, 1 and 5 percentile was compared to 1,000

randomly generated protein interaction networks with a similar

number of proteins. The random networks were composed of

proteins of similar size as the proteins in the actual network tested

to normalize against the fact that large genes will have a higher

chance of containing T1D associated SNPs in the best percentiles

of a study due to their size alone. P-values were adjusted for

multiple testing using Bonferroni correction by multiplying the

nominal p-values with 12, which is the total amount of tests used in

this study. The significance of overlap between genes identified in

our analysis and in a paper by D’Hertog et al. [17] was calculated

using hypergeometric statistics.
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