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Virtual as compared with real human characters can elicit a sense of uneasiness in human

observers, characterized by lack of familiarity and even feelings of eeriness (the “uncanny

valley” hypothesis). Here we test the possibility that this alleged lack of familiarity is literal in

the sense that people have lesser perceptual expertise in processing virtual as compared

with real human faces. Sixty-four participants took part in a recognition memory study

in which they first learned a set of faces and were then asked to recognize them in a

testing session. We used real and virtual (computer-rendered) versions of the same faces,

presented in either upright or inverted orientation. Real and virtual faces were matched

for low-level visual features such as global luminosity and spatial frequency contents. Our

results demonstrated a higher response bias toward responding “seen before” for virtual

as compared with real faces, which was further explained by a higher false alarm rate

for the former. This finding resembles a similar effect for recognizing human faces from

other than one’s own ethnic groups (the “other race effect”). Virtual faces received clearly

higher subjective eeriness ratings than real faces. Our results did not provide evidence of

poorer overall recognition memory or lesser inversion effect for virtual faces, however. The

higher false alarm rate finding supports the notion that lesser perceptual expertise may

contribute to the lack of subjective familiarity with virtual faces. We discuss alternative

interpretations and provide suggestions for future research.

Keywords: artificial faces, face recognition, face memory, face inversion, uncanny valley hypothesis

INTRODUCTION

Virtual environments and augmented realities are not only changing the way we perceive “reality”
but also the way we perceive and interact with its real and virtual inhabitants. Even though many
individuals frequently encounter realistic virtual characters in video games and other media (e.g.,
animation films), most of our perceptual expertise is arguably still shaped by our interactions with
our biological companions. For example, parents’ faces are among the very first things newborns
encounter after being born, and an innate interest in human faces remains characteristic to typically
developing children. According to the “uncanny valley” hypothesis (Mori, 1970), artificial entities
bearing a near-identical resemblance to real humans elicit a sense of uneasiness, characterized
by lack of familiarity and even feelings of eeriness, even though increasingly realistic artificial
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characters in general tend to elicit more positive responses.
Although empirical evidence for the pronounced unfamiliarity
of near-human entities still appears inconsistent, the bulk of
studies support the overall positive association between realism
and familiarity (Kätsyri et al., 2015). Abundant exposure to
real human faces from an early life could possibly explain the
lack of subjective familiarity with virtual faces. In this case,
human observers should conversely possess lesser perceptual
expertise in processing virtual as compared with real faces. In
the present study, we investigate whether participants are indeed
impoverished in processing virtual faces—that is, faces that are
close yet distinguishable computer-generated approximations of
real faces.

Several lines of evidence suggest that the human visual system
possesses perceptual expertise with faces that is shaped by
exposure (even though social-cognitive motivational factors may
also play a role; e.g., Bernstein et al., 2007). One of the earliest
and best documented examples is the tendency for perceivers
to have more accurate recognition memory for faces from one’s
own ethnic group in comparison to faces from other ethnicities
(Meissner and Brigham, 2001; Young et al., 2012). Algorithmic
analysis of three-dimensional head scans has provided support
for one prerequisite of this effect, the existence of ethnicity-
characteristic facial features (O’Toole et al., 1991; Salah et al.,
2008). More accurate recognition of own-ethnicity faces has
become widely known as the other-race effect, own-race bias, or
cross-race effect. Such terms may be misleading, however, given
that this effect is not only biologically determined. For example,
individuals from one country who were adopted into another
country at an early age showed a reversal of the effect such that
they recognized faces originating from their adoption country
better than faces originating from their birth country (Sangrigoli
et al., 2005). In a similar vein, training has been shown to reduce
the recognition disadvantage for other-ethnicity faces (e.g., Hills
and Lewis, 2006; Tanaka and Pierce, 2009). Guiding participant’s
attention to features that are characteristic of other-ethnicity
faces can also eliminate the effect (Hills et al., 2013). Such
findings both exemplify the malleability of the other-ethnicity
effect and argue against its biologically or racially determined
origins. Furthermore, the term “race” itself has been called into
question both in biology and neuroscience because of its inexact
and prejudiced nature (Yudell et al., 2016; Cubelli and Della Sala,
2017). Hence, following Valentine et al. (2016), we refer to this
phenomenon as the own-ethnicity bias (OEB). Biases resembling
the OEB have been demonstrated also for other variables besides
ethnicity—for example, men have better recognition memory
for male than female faces, whereas the opposite holds true for
women (Wright and Sladden, 2003). This suggests that also the
processing of own-gender faces may be fine-tuned by possibly
greater exposure to same-gender individuals.

Most studies documenting the OEB effect have used a
standard old-new recognition memory paradigm in which
participants are first asked to memorize a set of faces and then
tested for their ability to discriminate between previously seen
(target) and previously unseen (distractor) faces (Meissner and
Brigham, 2001). Typical findings show a “mirror effect” in which
own-ethnicity faces yield a higher proportion of hits (targets

identified as previously seen) and a lower proportion of false
alarms (distractors identified as previously seen) as compared
to other-ethnicity faces (e.g., Meissner et al., 2005). Inflated
false alarm rate for other-ethnicity faces means that people
tend to confuse individuals from other ethnic groups readily
with one another—a phenomenon which could be characterized
anecdotally with the statement “They all look the same to me”
(e.g., Ackerman et al., 2006).

The finding that ethnicity modulates not only the proportion
of hit rates but the proportion of false alarms as well has been
previously explained in the framework of the face-space coding
model of Valentine (Valentine, 1991; Valentine et al., 2016).
Generally speaking, this model suggests that faces are represented
mentally in a multidimensional space. These dimensions can
correspond to any features that serve to discriminate between
individuals (e.g., mouth shape or inter-ocular distance); however,
they are not explicitly defined by the model. Face-space model
posits that these dimensions are selected and scaled to optimize
discrimination of frequently encountered faces. Hence, these
dimensions are optimized for own-ethnicity faces that are
by definition encountered frequently but, assuming infrequent
encounters with other ethnic groups, they are less efficient for
encoding differences between other-ethnicity faces (cf. Valentine,
1991). As a result, different other-ethnicity faces can share
identical values on several dimensions, which means that they
end up being clustered more densely in the face-space than own-
ethnicity faces. Conversely, encountering an other-ethnicity face
activates more exemplars in the face-space, which makes it more
difficult to determine whether that face was in fact encountered
previously or whether it is merely similar to other previously seen
faces. According to the model, this ultimately generates a higher
proportion of false alarms for other-ethnicity faces as compared
with own-ethnicity faces.

Inversion effect, or the slower and much less accurate
recognition of upside-down as compared with upright faces,
is considered one of the hallmarks of perceptual expertise
with faces or other well-learned objects (Maurer et al., 2002).
Allegedly, inversion has a greater effect on configural (or holistic;
perceiving relations among features) than featural (or piece-meal;
processing individual features) processing of faces. A possible
alternative explanation based on the face-space model could be
that face inversion, similarly as many other impairments (e.g.,
blurring, adding noise, or presenting photographic negatives),
simply introduces noise to face encoding (Valentine, 1991).
Although the interaction between the OEB and inversion is
not entirely uncontroversial (for a review, see Young et al.,
2012), evidence exists for a greater inversion effect in own-
ethnicity than other-ethnicity faces (e.g., Rhodes et al., 1989;
Vizioli et al., 2011). Such findings are consistent with the
notion that individuals possess more perceptual expertise with
own- as compared with other-ethnicity faces. Furthermore, they
contradict the notion that inversion would simply add noise to
face encoding because if this were the case, inversion should elicit
even greater impairment on the already impoverished encoding
of other-ethnicity faces. Hence, these findings also suggest that
other-ethnicity faces may be processed in a more featural or
piece-meal fashion than own-ethnicity faces.

Frontiers in Psychology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 1362

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kätsyri Recognition Memory for Virtual Faces

We next turn to the question of whether the processing
of virtual faces could be similar to other-ethnicity faces when
it comes to face encoding; or more specifically, mirror and
inversion effects in face recognition. First, however, we note that
contemporary computer-rendering methods do not yet tap face
processing expertise fully to the same extent than real human
faces. Arguably, FaceGen Modeler (Singular Inversions) is one
of the most versatile and most commonly used programs for
face perception experiments (e.g., Cook et al., 2012; MacDorman
et al., 2013; Balas and Pacella, 2015; Crookes et al., 2015). This
program can be used to create both reconstructions of real faces
and randomly generated novel faces in a parametric space derived
from a large number of three-dimensional face scans (Blanz
and Vetter, 1999). Recently, Crookes et al. (2015) contrasted
the OEB for real and FaceGen-generated virtual faces using face
recognition memory and perceptual discrimination tasks. Their
results demonstrated reduced accuracy for virtual faces in both
tasks, and an attenuated OEB for virtual as compared with real
faces in the recognition memory task. These findings hence show
that virtual faces based on FaceGen software are close but not
perfect reconstructions of real human faces, and that they elicit a
similar but weaker OEB effect than real faces. In a similar recent
study, Balas and Pacella (2015) contrasted recognition memory
and discrimination accuracy between virtual and real faces, where
the former were again generated by FaceGen. Their results
demonstrated that participants were less accurate in recognizing
virtual faces in comparison to real faces. Similarly, participants
were less accurate in matching two faces to an immediately
preceding face image in an ABX matching task.

Even though these two studies demonstrate that FaceGen-
generated virtual face stimuli perform less efficiently than
real human faces, it is questionable whether their results can
be generalized to other virtual faces as well. An important
distinction between other-ethnicity faces and virtual faces is that
whereas other-ethnicity faces may possess genuine ethnicity-
characteristic features (cf. O’Toole et al., 1991; Salah et al., 2008),
virtual faces are recognized as “virtual” only when they fail
to replicate some characteristics of their reference stimuli (real
faces). For example, it is possible that FaceGen-generated virtual
faces are artifactual or less detailed replications of real faces, or
that they differ from real faces in terms of brightness, contrast,
or colors. The extent to which such trivial low-level differences
could explain previously observed differences between real and
virtual faces is presently not known.

An unfortunate characteristic of all virtual faces is that they
can in fact have very little in common. This raises the question of
whether it is at all justifiable to consider virtual faces as a unified
category of research stimuli. Previous studies investigating
continua from virtual to real faces have, however, shown that
virtual faces are perceived categorically; that is, equally spaced
image pairs are discriminated better when they straddle the
virtual–real category boundary than when they reside on the
same side of it (Looser and Wheatley, 2010; Cheetham et al.,
2011). Changes in virtual–real category in sequentially presented
faces are also known to elicit fMRI responses in category
learning and uncertainty related neural networks (Cheetham
et al., 2011). These findings suggest that virtual and real faces

are typically perceived as distinct categories, similarly as faces
of different species (Campbell et al., 1997) or faces of different
ethnic groups (Levin and Angelone, 2002). Furthermore,
exposure may also modulate categorization and evaluation of
virtual faces. Burleigh and Schoenherr (2015) demonstrated
that more frequent exposure to specific morph levels between
two computer-generated faces improves categorization accuracy
for these levels. Frequency-based exposure was also found to
modulate participants’ subjective ratings, albeit at a statistically
non-significant level.

In the present investigation, we operationalize virtual faces
using FaceGen but also correct them for most obvious artifacts,
and match real and virtual faces with respect to specific low-
level visual features. The purpose of this procedure is to increase
the generalizability of present results beyond that of a specific
computer-rendering method. A justifiable concern after such
matching procedure, however, is whether real and virtual faces
can still be discriminated from each other. Trivially, if computer-
generated images were sufficiently similar to real images, the two
would be indistinguishable from each other even by experts (cf.
Lehmuskallio et al., 2018).

STUDY 1

In this study, we first investigate whether real and virtual face
images can be differentiated from each other even after they have
been matched for the following low-level visual features: spatial
frequency contents (level of details), brightness, contrast, and
colors. Most obvious artifacts are also removed from the virtual
faces. Importantly, this matching is done for whole images, that
is, at global level. It is possible that even after such global-level
matching, local features such as the shapes of individual features
may serve to differentiate between real and virtual faces. Subtle
artifacts may also remain in the local features of virtual faces.
Furthermore, it is possible that low-level visual features still vary
at the local level after they have been matched globally. For
example, it is possible that nose and eye region brightness might
differ in two images even though their averages remained the
same. Conversely, we predict that real and virtual faces can still
be differentiated from each other based on any of such local
differences. Hence, wemake the following hypothesis for Study 1:

H1: Real and virtual faces can be differentiated from each other,

even after global-level matching for spatial frequency contents,

brightness, contrast, and colors.

In practical terms, colors add extra complications to
psychophysical experiments given that one has to consider
matching three color channels between images instead of only
one luminosity channel. Hence, our secondary research question
is whether colors truly contribute to differentiating virtual from
real faces. Previous studies suggest that real and virtual faces are
easier to discriminate from color than grayscale images (Fan
et al., 2012, 2014; Farid and Bravo, 2012). However, given that
these studies used different image sets for real and virtual faces, it
is conceivable that these results would reflect differences between
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the employed image samples. Hence, we also aim to test the
following secondary hypothesis.

H2: Real and virtual faces are discriminated better from color than

grayscale images.

Methods
Participants
Participants were 48 (29 women) university students whose age
ranged from 18 to 30 years (M = 20.9 years). All participants
identified themselves as Caucasian in ethnic origin. Participants
signed to the study anonymously using the SONA system
(http://www.sona-systems.com) of Maastricht University, and
received course credit in compensation for their participation.
All participants gave written informed consent in accordance
with the Declaration of Helsinki. The present studies were
reviewed and approved by the ethics committee of the Faculty
of Psychology and Neuroscience.

Design
The study had a 2 (face type: real, virtual) × 2 (spatial frequency
matching: strict, lenient) × 2 (colors: grayscale, color) within-
subjects design.

Stimuli
Research stimulus samples are shown in Figure 1. Real face
stimuli were 12 neutral face images (half female) from Glasgow
(Burton et al., 2010) and Radboud (Langner et al., 2010) face
image sets. Virtual face stimuli were created using FaceGen
Modeler (Singular Inversions; Version 3.13). Real faces (frontal
images only) were imported into FaceGen, and an initial
alignment was provided using a number of feature points.
Reconstructed and original faces were aligned and matched with
each other to the extent possible with respect to small variations
in head position, gaze direction, and facial expression. Major
artifacts (in particular, black line between the lips) were corrected
in Photoshop (Adobe; Version CS6). All images were oval-
masked to conceal external features (ears and hair), which would
otherwise have been clearly unrealistic in the virtual stimuli. Final
images were 246× 326 pixels in size.

All further image manipulations were carried out in Matlab
(The Mathworks Inc.; Version R2016a). Grayscale images
were produced by weighting original RGB channel values.
Inhouse functions based on SHINE toolbox (Willenbockel
et al., 2010) were used for standardizing images. Two methods
were used for matching energy at different spatial frequencies
across the images: matching the whole Fourier spectra (“strict
matching”) and matching only the rotational average of the
Fourier spectra (“lenient matching”)—for details, please refer
to Willenbockel et al. (2010). We used the latter matching
procedure in place of original (non-matched) images, given
that leniently matched and original images were practically
identical and led to similar results in pilot tests. Prior to
spatial frequency matching, image backgrounds were substituted
by the average pixel intensity values within the masked face
regions to reduce sharp transitions in the images. Mean and
standard deviations for the pixel values within the masked

region were standardized across images, and backgrounds in
the final images were substituted with a constant gray color.
For color images, image matching was carried out separately
for each RGB channel (cf. Kobayashi et al., 2012; Railo et al.,
2016).

Procedure
This study was carried out as an online evaluation, which was
programmed and hosted through Qualtrics platform (http://
www.qualtrics.com). Only participants using a laptop or a
desktop computer with a sufficiently large display (minimum
12”) were included. A total of 96 stimuli (8 conditions ×

12 actors) were presented in a pseudo-randomized order.
Participants were asked to identify whether each stimulus
portrayed a human or a virtual face in a one-interval forced
choice task with two response alternatives. Participants were also
asked to indicate how confident they were of their choice using
a 5-step Likert scale (1—uncertain, 2—somewhat uncertain,
3—somewhat certain, 4—certain, 5—absolutely certain). The
questionnaire was self-paced, but participants were instructed to
answer each question as quickly and as accurately as possible.
Participants were required to carry out the questionnaire in a
single session without breaks.

Preprocessing
Hit and false alarm rates for the identification task were
transformed into sensitivity index d’ and response bias index
c, calculated according to signal detection theory using the
following standard formulae (Stanislaw and Todorov, 1999;
Chapter 2 in Stevens and Pashler, 2002).

d′ = z (H) − z (F)

c = −
1

2
(z (H) + z (F))

Here, hit rate (H) refers to the proportion of real faces identified
correctly as human, and false alarm rate (F) refers to the
proportion of virtual faces identified incorrectly as human.
Following the guidelines of Stanislaw and Todorov (1999), H and
F were corrected using log-linear method to avoid incalculable
values. In the present study, d′ reflects the extent to which
participants were able to differentiate between real and virtual
faces. Theoretically, c can be understood as the difference
between participants’ response criterion and neutral point where
neither response alternative is favored. In the present one-
interval task, response criterion can be interpreted in terms of
“human” responses. Positive values refer to more conservative
response criterion or a tendency to respond “virtual,” whereas
negative values refer to more liberal response criterion or
tendency toward responding “human” for all faces.

Results and Discussion
Results for different conditions are illustrated in Figure 2.
For testing H1, we first compared d′ scores to zero using
one-sample T-tests. Test results showed that d′ scores were
significantly above zero in all conditions, T(47) > 10.01,
p < 0.001, Cohen’s d > 1.44, which indicates that real
and virtual faces were clearly differentiated from each other
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FIGURE 1 | Sample images for one actor extracted from the Glasgow face set (Burton et al., 2010). Upper row: color images, bottom row: grayscale images. From

left to right: real face after lenient spatial frequency matching, virtual face after lenient matching, real face after strict matching, and virtual face after strict matching.

Only strictly matched color images (surrounded by dark-yellow square on the top-right corner) were used in Study 2.

FIGURE 2 | Mean (and SEM) values for d’ sensitivity index, c response bias index, hit rate, and false alarm rate for the identification task by color and spatial frequency

matching conditions. Statistically significant differences between color and grayscale images are denoted with an asterisk (“*”).

in all experimental conditions. Next, a 2×2 within-subjects
ANOVA was used to assess the influence of color and
spatial frequency matching on d′ scores. Significant main
effects were observed for spatial frequency matching, F(1, 47)
= 26.08, p < 0.001, np

2
= 0.36, and color, F(1, 47) = 25.34,

p < 0.001, np
2

= 0.35. Strict matching elicited lower d′

sensitivity scores than lenient matching (Figure 2). As predicted
by H2, color images elicited higher d′ scores than grayscale
images.

For completeness, we also analyzed response bias values
using similar analysis. We observed a significant main effect for
color, F(1, 47) = 25.17, p < 0.001, np

2
= 0.35, and a significant

interaction between spatial frequency matching and color, F(1, 47)
= 5.25, p = 0.027, np

2
= 0.10. Specifically, color images elicited

higher c values (bias toward responding “virtual”) than grayscale
images. This effect was weaker for strictly than leniently filtered
images (Figure 2), which may suggest that it was partly obscured
by the strict filtering procedure (however, similar effect was
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not observed for false alarm rates; see below). To understand
these results better, we next analyzed hit and false alarm rates
individually. Color images elicited a lower proportion of false
alarms than grayscale images, F(1, 47) = 30.38, p < 0.001, np

2

= 0.39. In other words, when shown in color, virtual faces
were mistaken less frequently for real faces. There was also
a non-significant tendency toward a higher false alarm rate
for strictly rather than leniently filtered faces, F(1, 47) = 3.91,
p = 0.054, np

2
= 0.08. Interaction between spatial frequency

matching and color was not significant, F(1, 47) < 1, p =

0.432, np
2
= 0.01. No significant effects were observed for hit

rates, which suggests that both sensitivity and response bias
findings were driven mainly by changes in false alarm rates.
We interpret these results to mean that colors are particularly
important for recognizing virtual faces as artificial but have
a smaller role for the correct recognition of real faces as
human.

Confidence ratings were additionally analyzed using a 2
(color) × 2 (spatial frequency matching) × 2 (face type) within-
subjects ANOVA. The results showed a significant main effect for
spatial frequencymatching, F(1, 47) = 75.30, p< 0.001, ηp

2
= 0.62,

and a significant interaction effect for color and face type, F(1, 47)
= 7.19, p = 0.010, np

2
= 0.13. Strict as compared with lenient

spatial frequency matching elicited generally lower confidence
ratings regardless of face type (M = 3.47 and 3.77, SD = 0.48
and 0.49). Simple effect tests showed that confidence ratings for
color and grayscale images differed only for virtual faces (p =

0.003). Specifically, participants rated higher confidence when
categorizing virtual faces from color rather than grayscale images
(M = 3.81 and 3.56, SD = 0.49 and 0.55). This finding further
corroborates the importance of colors for recognizing virtual
faces.

Not surprisingly, the present results showed that the
“strict” spatial frequency matching procedure elicited lower
discrimination performance and lower confidence ratings than
the “lenient” procedure, which we considered analogous to
unmatched stimuli. At the same time, our results confirmed
that highly realistic virtual faces (cf. Figure 1) could still be
differentiated from real human faces relatively easily even after
the strict matching procedure. Given that any experimental
comparison between unmatched real and virtual faces would be
confounded by differences in spatial frequency contents (e.g.,
overall lack of details in virtual faces), we hence decided to adopt
the strict matching procedure for our second experiment. Our
other findings replicate the previous finding (Fan et al., 2012,
2014; Farid and Bravo, 2012), with slightly better controlled
stimuli, that real and virtual faces are differentiated better
and with higher confidence from color as compared with
grayscale images. A closer inspection of false alarm rates as
well as participants’ confidence ratings suggested that colors are
particularly important for the correct recognition of virtual faces.
Interestingly, visual inspection of Figure 2 would suggest that
color has a roughly similar effect on discrimination accuracy
than the present choice of spatial frequency matching. Hence, we
conclude that adopting color rather than grayscale images can be
used to compensate for the loss of discrimination accuracy caused
by strict spatial frequency matching.

STUDY 2

In the second study, we continue to investigate whether our
rigorouslymatched virtual faces tap perceptual expertise similarly
as real human faces. We expect to observe a similar mirror
pattern as in previous OEB studies in which other-ethnicity faces
elicited both a lower proportion of hits and a higher proportion of
false alarms than own-ethnicity faces (e.g., Meissner et al., 2005).
Following this pattern, aggregatemeasures based on hits and false
alarms have previously indicated lower discrimination accuracy
(discrimination between previously seen and novel faces) and
lower response bias (overall tendency to respond “previously
seen” to all faces) for other-ethnicity faces. We predict analogous
effects for virtual faces. That is,

H1: Virtual faces will elicit lower discrimination accuracy than

real faces.

H2: Virtual faces will elicit lower response bias than real faces.

Previous findings suggest that inflated false alarm rate for
other-ethnicity faces—or the “They all look the same to me”
phenomenon—is a major factor driving the OEB effect. One
explanation for this is that facial encoding dimensions in the
face-space model of Valentine (Valentine, 1991; Valentine et al.,
2016) are optimized for discriminating frequently seen own-
ethnicity faces but that they are suboptimal when it comes to
the discrimination of other-ethnicity faces. Assuming that virtual
faces contain sufficiently different or distorted features with
respect to real human faces, we predict a similar effect for virtual
faces as well. That is, we predict that:

H3: Virtual faces will elicit a higher proportion of false alarms than

real faces.

In the present study, we also investigate the effect of inversion
on the recognition of virtual faces. In their previous study,
Balas and Pacella (2015) observed an equally large inversion
effect for virtual and real faces in a perceptual discrimination
task. Performance was close to ceiling level for both upright
and inverted faces, however, which leaves open the possibility
that a more difficult task might be more sensitive to differential
inversion effects in real and virtual faces. A diminished inversion
effect for virtual faces could be taken as evidence that virtual faces
are processed in a more piece-meal and less “face-like” manner
than real faces. Here we test the following prediction:

H4: Real faces will elicit a greater inversion effect asmeasuredwith

discrimination accuracy than virtual faces.

Previous factor-analytic research on participants’ self-reports
have demonstrated that the typicality (or distinctiveness) of
faces is composed of two orthogonal components: memorability
and general or context-free familiarity (Vokey and Read, 1992;
Meissner et al., 2005). For the present context, it is interesting
that the latter factor combines familiarity with attractiveness
and likability. That is, faces resembling frequently encountered
faces evoke not only a heightened sense of familiarity, but more
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favorable evaluations as well (Vokey and Read, 1992). Even
more interestingly, own-ethnicity faces are known to receive
higher ratings in terms of these items than other-ethnicity
faces (Meissner et al., 2005). One way to interpret this is that
familiarity with specific kinds of faces breeds more positive
affects, which could also explain why all virtual faces appear more
strange and unpleasant—or even eerie—than real human faces
(Kätsyri et al., 2015). Another line of research has demonstrated
that inversion can eliminate grotesqueness caused by distorted
configural features. In particular, this seems to be the case for
the so-called Thatcher illusion, in which eyes and mouth are
flipped vertically (Stürzel and Spillmann, 2000). If typical human
features are distorted in virtual faces, virtual faces should elicit
less favorable evaluations than real human faces. Furthermore, if
these features are at least partly configural in nature, inversion
should reduce their effects. These two hypotheses are stated
explicitly below.

H5: Virtual faces receive higher eeriness ratings than real faces.

H6: Inversion decreases the eeriness of virtual as compared with

real faces.

Methods
Participants
Participants were 64 (32 men and 32 women) university
students or university graduates in the age range 18 to 36 years
(M = 22.6 years). Participants were recruited via the SONA
system of Maastricht University, flyers placed in the campus,
and social media. Two original participants who scored high
on PI20 prosopagnosia self-report questionnaire (Shah et al.,
2015) and additionally received low overall scores in the present
recognition memory task were excluded and replaced with
new participants. Male and female participants did not differ
statistically significantly on PI20 scores (M = 39.1 and 40.7,
SD = 8.1 and 7.7), T(62) = 0.84, p = 0.407. The majority (89%)
of participants reported having played video games with realistic
human-like characters at most once per month during the last
year. That is, most participants had little experience with realistic
virtual characters. All participants identified themselves as
Caucasian in ethnic origin. Participants received a 7.5 e voucher
in compensation for their participation. All participants gave
written informed consent in accordance with the Declaration of
Helsinki. The present studies were reviewed and approved by the
ethics committee of the Faculty of Psychology and Neuroscience.

Stimuli
Research stimuli were 80 neutral face images (half female) from
Glasgow (Burton et al., 2010) and Radboud (Langner et al., 2010)
face image sets, replicated both as real and virtual versions. Face
images were selected on the basis of distinctiveness preratings
(cf. Valentine, 1991; McKone et al., 2007) from a larger set of
100 face images. These initial images were oval-masked and
matched for luminance, contrast and colors but not for spatial
frequency contents. Twenty-five participants who did not take
part in the actual study rated the images for distinctiveness
on a 7-step semantic differential scale ranging from “very
typical/very difficult to recognize” to “very distinctive/very easy

to recognize.” Twenty images were dropped on the basis of
individual consideration and the remaining 80 images were
divided evenly into eight stimulus sets based on their mean
ratings. Finally, the selected images were replicated as real and
virtual versions and matched for low-level features similarly as
the strictly matched color images in Study 1 (Figure 1).

Procedure
The present study design was adapted from two previous OEB
studies that included both face ethnicity and inversion as factors
(Rhodes et al., 1989; Vizioli et al., 2011). In particular, participants
completed standard recognition memory tasks separately for real
and virtual faces, with the task order counterbalanced across
participants. Recognition memory tasks for real and virtual faces
were separated by a 2-min break. Both tasks consisted of a
study and a test phase. During the study phase, participants were
asked to view and memorize 20 faces presented in a pseudo-
randomized order. Each face was presented for 5 s and preceded
by a fixation cross for 2 s. All study faces were shown in upright
orientation.

In the test phase, the 20 old faces (seen during the study phase)
were interleaved with 20 new faces, and all faces were presented
in a pseudo-randomized order. Half of the images were shown in
upright orientation and the other half in inverted (rotated 180◦)
orientation. Participants were instructed to answer as quickly
and as accurately as possible whether they had seen each face
during the study phase or not using response buttons “S” and
“L” on the keyboard. The assignment of response buttons was
counterbalanced across participants. Each image remained on the
screen until a response was received from the participant, and
images were separated by 2-s fixation cross trials. Participants saw
only real or virtual faces during the same study-test cycle. The
eight stimulus sets were counterbalanced with the face type, trial
type, and orientation conditions. Male and female participants
were assigned evenly into counterbalancing conditions. Prior to
the actual recognition memory tasks, participants practiced the
study-test procedure with 20 faces which were not included in
the actual study.

After the recognition memory tasks, participants were asked
to evaluate how human-like and eerie the faces appeared on
a 7-step Likert scale ranging from total disagreement to total
agreement. Eeriness was defined as “being so mysterious, strange,
or unexpected as to send a chill up the spine.” Participants
rated the same 80 faces they had seen during the memory tasks,
each with the same face type (real or virtual) and orientation
(upright or inverted). To test whether the order of human-
likeness and eeriness ratings would bias the results, participants
gave these ratings in either separate blocks beginning from
human-likeness (16 participants), in separate blocks beginning
from eeriness (16 participants), or simultaneously in the same
block (32 participants). In the former two conditions, human-
likeness and eeriness were only explained prior to the beginning
of their respective blocks. Male and female participants were
assigned evenly into these conditions. All tasks were programmed
and presented using E-Prime 2.0 (Psychology Software Tools,
Pittsburgh, PA), and displayed on a 24” Asus VG248QEmonitor.
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Preprocessing
Hit and false alarm rates were transformed into d′ sensitivity
and c response bias indices similarly as in Study 1. In this study
sensitivity d′ reflects the extent to which participants were able
to differentiate between old (seen during the study phase) and
new (not seen) faces, whereas response bias c refers to the general
tendency to respond “seen” or “not seen.” Positive c values refer
to more conservative response criterion or a tendency to respond
“not seen” for all faces, whereas negative values refer to more
liberal response criterion or tendency toward responding “seen”
for all faces.

Results
Recognition of Real and Virtual Faces
We used 2×2 within-subjects ANOVAs to analyze the effects of
face type and orientation on sensitivity (d′) and response bias
(c) indices on the one hand, and hit and false alarm rates on
the other. We also tested whether any of these indices were
influenced by the order of real and virtual face blocks but failed
to observe any significant effects for block order or its interaction
with face type (p > 0.270, η2p < 0.02). This suggests that block
order did not exert substantial generic or face type specific effects
in the present study. Given that we had clear a priori predictions
for our results, we did not adopt multiple-comparison correction
in further analyses.

Recognition memory results are illustrated in Figure 3.
Although visual inspection of this figure suggests that sensitivity
scores were slightly higher for real as compared with virtual
faces, as predicted by H1, this effect failed to reach statistical
significance, F(1, 63) = 2.75, p= 0.102, η2p = 0.04.

Hypothesis H2 predicted a more lenient response bias (i.e.,
lower c scores) for virtual faces. Figure 3 suggests that response
bias may have been less conservative for virtual than for real
faces, but only in the upright condition. Given that face inversion
exerted a considerable impairment on the processing of faces (see
below), stronger response bias effects should in fact have been
expected particularly for upright faces. In support, we observed
a borderline significant interaction effect between face type and
inversion, F(1, 63) = 3.94, p = 0.052, η2p = 0.059. Consequently,
we decided to test H2 specifically for upright faces. This analysis
confirmed a statistically significant and moderately large (Cohen,
1992) effect for face type in upright faces, F(1, 63) = 4.40,
p = 0.040, η2p = 0.650, but not in inverted faces, F(1, 63) = 0.78,

p= 0.381, η2p = 0.012.
Following the above logic, we next tested the effect of face

type on false alarm rates in upright condition. In support of H3,
our results demonstrated a significantly higher false alarm rate
with a moderate effect size for virtual rather than real faces in
upright orientation (see Figure 3), F(1, 63) = 6.14, p = 0.016,
η2p = 0.089, but not in inverted orientation, F(1, 63) = 0.00,

p = 1.000, η2p = 0.00. For hit rate, the effect of face type was
not significant in either upright orientation, F(1, 63) = 0.33,
p = 0.568, η2p = 0.005, or in inverted orientation, F(1, 63) = 1.75,

p = 0.191, η2p = 0.027. These findings suggest that the more
lenient response bias for upright virtual faces was driven mainly
by false alarm responses, that is, participants’ higher tendency

to answer “seen before” to novel virtual faces. The 95% CI for
the false alarm rate difference between virtual and real faces was
[0.01, 0.10].

Inversion had a statistically significant and large effect on
sensitivity, F(1, 63) = 94.73, p < 0.001, η2p = 0.601, and response

bias, F(1, 63) = 15.39, p < 0.001, η2p = 0.196. As can be seen
in Figure 3, inverted faces received lower sensitivity scores and
more liberal response criterion (lower c scores). Looking at this
the other way, inverted faces received moderately lower hit rates,
F(1, 63) = 5.58, p= 0.021, η2p = 0.081, andmuch higher false alarm

rates, F(1, 63) = 78.67, p < 0.001, η2p = 0.555, than upright faces
(Figure 3, lower panels). For inverted and upright faces, the 95%
CI for the false alarm rate difference was [0.15, 0.24].

Contrary to H4, the interaction effect between face type and
inversion on d′ was not statistically significant, F(1, 63) = 0.15,
p = 0.700, η2p = 0.002. Conversely, simple tests confirmed a
significant and large inversion effect for both real, F(1, 63) = 70.69,
p < 0.001, η2p = 0.529, and virtual faces, F(1, 63) = 41.63, p <

0.001, η2p = 0.398.

Self-Report Ratings
We first tested whether rating order (human-likeness first,
eeriness first, or both together) had significant main or
interaction effects for face type at a lenient significance threshold
of p < 0.100. Because no significant effects were observed for
either human-likeness (p > 0.128) or eeriness (p > 0.440), this
confound variable was dropped from further analyses. Hence,
self-report ratings were analyzed using a 2 (face type) × 2
(inversion) within-subjects ANOVA.

Human-likeness and eeriness ratings are illustrated in
Figure 4. Real as compared with virtual faces received
significantly higher human-likeness ratings with a large effect
size, F(1, 63) = 78.41, p < 0.001, η2p = 0.554. That is, similarly
as in our pretest, participants were clearly able to discriminate
virtual from real faces. There was also a significant interaction
between face type and inversion such that inversion decreased
the human-likeness difference between real and virtual faces (cf.
Figure 4), F(1, 63) = 31.25, p < 0.001, η2p = 0.332. Looking at this
the other way, real faces received lower human-likeness ratings
when inverted (p < 0.001), whereas inversion did not have a
statistically significant effect on virtual faces (p= 0.083).

In H5, we predicted that virtual faces would receive higher
eeriness ratings than real faces. This prediction was confirmed,
given that the difference between virtual and real faces was
statistically significant and large, F(1, 63) = 40.34, p < 0.001,
η2p = 0.390. Finally, in H6 we predicted that inversion would
reduce or eliminate the eeriness of virtual faces. At first sight, this
hypothesis appeared to receive support, given that the interaction
between face type and inversion was significant with a moderate
effect size, F(1, 63) = 5.50, p = 0.022, η2p = 0.080. However, as
can be seen in Figure 4, inversion in fact increased rather than
decreased eeriness for both virtual (p= 0.009) and real faces (p<

0.001). Apparently, the interaction effect was significant because
this increase was greater for real rather than virtual faces and
not because inversion decreased the eeriness of virtual faces in
particular.
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FIGURE 3 | Mean (and SEM) values for d′ sensitivity index, c response bias index, hit rate, and false alarm rate for the recognition memory task. Statistically significant

differences between virtual and human faces are denoted with an asterisk (“*”).

FIGURE 4 | Mean (and SEM) human-likeness and eeriness ratings for upright

and inverted, real and virtual faces.

GENERAL DISCUSSION

In the present investigation, we set to find out whether highly-
realistic virtual faces tap perceptual expertise similarly as real
human faces. Unlike faces of different ethnic groups in humans,
virtual, and real faces tend to differ with respect to low-level visual
features, which might contribute to differences in perceptual
processing. In Study 1, we demonstrated that virtual faces can still
be differentiated from real faces even after these two types of faces
have been matched for spatial frequency contents, brightness,
contrast, and colors. We interpret this to mean that individuals
are able to use local features or their configurations to decipher
whether a face is real or virtual. In Study 2, we showed that in
a recognition memory task, virtual as compared with real faces
elicit a less conservative response bias and a higher proportion
of false alarms. Virtual and real faces did not differ with respect
to discrimination accuracy or the magnitude of inversion effect,
however.

The present findings resemble OEB findings in recognition
memory studies with real human faces. Such studies have,
however, typically identified a mirror pattern in which other-
ethnicity faces receive both a lower proportion of hits and
a higher proportion of false alarms than own-ethnicity faces
(Meissner and Brigham, 2001). This mirror pattern has also
been seen as lower discrimination sensitivity in the aggregate
index that pits hits against false alarms. In contrast, we
observed a difference in response bias but not in discrimination
sensitivity. Given that the aggregate response bias measure
depends positively on both hits and false alarms, and virtual as
compared with human faces elicited a higher proportion of false
alarms with a slight tendency toward higher proportion of hits as
well (cf. Figure 3), this pattern of results is not surprising.
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Importantly, the higher proportion of false alarms for virtual
faces was predicted on the basis of the highly influential face-
space model (Valentine, 1991; Valentine et al., 2016). Here
the reasoning was that individuals’ hypothetical face-space
representation is optimized for real human faces, and that this
representation is not necessarily appropriate for encoding virtual
faces whose features or feature configurations differ from those
of real faces. Similarly as for other- vs. own-ethnicity faces,
differences between virtual faces are hence encoded imperfectly,
which leads to a denser representation in the face-space. When
individuals are making judgments in a recognition memory task,
virtual faces then allegedly activate more face exemplars than
equivalent real faces, which leads to a false sense of familiarity
and a higher proportion of false alarms. The present study hence
suggests that, similarly as other- vs. own-ethnicity faces, virtual
faces tap perceptual expertise less efficiently than real faces. This
effect is particularly evident in false alarm choices. The present
study hence makes a contribution to existing research literature
by demonstrating this theoretically predicted false alarm effect
for virtual faces.

The present investigation is similar to that of Balas and Pacella
(2015), given that both they (in their Experiment 1) and we (in
Study 2) carried out a recognition memory task for real and
virtual faces. The major difference between these studies is that
we used stimuli that were matched for low-level features, spatial
frequency contents in particular. The present results suggest that
such matching eliminates the discrimination advantage for real
faces observed by Balas and Pacella. In contrast, their results did
not support different response bias or false alarm effects for real
and virtual faces. We suggest that this difference originated from
other methodological differences. First of all, the present study
may have had higher statistical power for detecting a response
bias effect because of a higher number of participants (64 against
18) and a within- rather than between-subjects design. Second,
the response bias effect may have been more pronounced in the
present study because of the less demanding recognitionmemory
task (with 40 instead of 90 faces). The present investigation also
differed from the study by Balas and Pacella because we studied
inversion effects in a recognition memory task and considered
the subjective evaluations of virtual and real faces.

Previous research evidence gives reason to believe that
inversion effect is a hallmark of perceptual expertise for faces
and other well-learned stimuli (Maurer et al., 2002), and that this
effect is stronger for own- as compared with other-ethnicity faces
(e.g., Rhodes et al., 1989). Unexpectedly, Balas and Pacella (2015;
Experiment 2) demonstrated a similar inversion effect for real
and virtual faces in a perceptual discrimination task, possibly due
to ceiling effects in their results. The present study replicates this
finding in a more difficult and different (recognition memory)
task. If inversion effect is a hallmark of perceptual expertise,
why did inversion then elicit roughly equal degradation on real
and virtual faces? Similarly as Balas and Pacella (2015), we
suggest that the human visual system processes virtual faces in
a highly face-like manner. This statement is perhaps particularly
uncontroversial for such highly realistic virtual stimuli as those
used in the present study (cf. Figure 1). Inversion had a drastic
overall effect on the proportion of false alarms (lower 95% CL
for the difference 15 percentage units), which was clearly larger

than the effect of face type in upright faces (upper 95% CL for the
difference 10 percentage units). Hence, we suggest that inversion
compromised face processing to the extent of concealing the
more subtle processing differences between real and virtual faces.

Given that face inversion is thought to influence configural
processing more than featural processing, the observed findings
do not support the suggestion that virtual faces would be
processed in a less configural manner than real faces. However,
although this was not a specific aim in the present study, the
human-likeness ratings from Study 2 suggest that configural and
featural information may have played a different role on the
recognition of human-likeness in the case of real and virtual
faces. Specifically, our results showed that inversion elicited
decreased human-likeness ratings for real faces but had lesser
or no influence on virtual faces. This suggests that configural
processing, which was impaired by inversion, was important for
identifying real faces as human. On the other hand, virtual faces
were still recognizable as non-human after inversion, plausibly
because this judgement was mainly based on individual features.
There is some previous evidence suggesting that eyes could be a
particularly important feature for differentiating real from virtual
faces (Looser and Wheatley, 2010).

Overall, the present self-report findings from Study 2 confirm
the previous observation that virtual faces are always considered
more eerie than real faces. The results also demonstrated that
this difference is smaller for inverted than for upright faces.
At first sight, this seemed to support the prediction that
inversion can eliminate the eeriness of virtual faces similarly
as with “Thatcherized” faces (Stürzel and Spillmann, 2000).
However, a closer inspection of our results showed that inversion
elicited increased eeriness for both real and virtual faces but
that this increase was larger for real faces. It is plausible
that the overall heightened eeriness for inverted faces reflected
more effortful processing caused by increased encoding error
(Valentine et al., 2016). Furthermore, human-likeness ratings
suggested that inversion had a larger effect on the categorization
of real as compared with virtual faces. Given that eeriness ratings
closely parallel these findings, it is possible that inversion had a
differential effect on real and virtual faces simply because inverted
real faces were more difficult to recognize as human than upright
real faces. Hence, the present findings cannot be taken as support
for the prediction that inversion would eliminate the eeriness of
virtual faces by reducing configural differences between virtual
and real faces.

We want to address some potential limitations of the present
investigation and to suggest directions for future research. First,
similarly as Balas and Pacella (2015) and Crookes et al. (2015),
we used FaceGen software as the basis for our virtual stimuli.
However, unlike them, we additionally matched virtual and
real faces with respect to various low-level visual features. It
could be argued that after this matching, the present virtual
stimuli were no longer representative of typical virtual faces. We
want to emphasize, however, that the above two studies have
already demonstrated the limits of typically used stimuli (e.g.,
those generated by FaceGen), and that our aim was instead to
test whether real and virtual faces are still processed differently
after they have been matched for most obvious low-level visual
confounds. Hence, the important question is not whether our
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stimuli were high in mundane realism (i.e., whether they were
similar to modern computer-rendered faces) but whether they
were high in psychological realism (i.e., whether they tapped
psychological processes relevant for perceiving animacy in faces)
(cf. Shadish et al., 2002). This question was addressed in Study
1, which clearly showed that the present stimuli were perceived
distinctly as human and non-human stimuli.

Nevertheless, we want to acknowledge other confounds that
could still have influenced the present stimuli even after the
matching procedure. Because virtual stimuli were generated by
replicating real faces in the FaceGen software’s parametric space,
it is possible that virtual faces or some of their features (e.g., nose
shapes) might have been more similar to each other than was the
case for original faces. This reduced variability could then trivially
explain the inflated false alarm rate for virtual faces. We also note
that featural matching was only done at the global level, that is,
across whole images. After such global matching, local features
might still have had for example varying brightness levels (for
example, darker nose region in one image and darker skin region
in the other). With more detailed local-level matching, however,
maintaining whole-image consistency would have become a
practical impossibility. Given these shortcomings, we cannot fully
exclude the possibility that the present results were still specific to
the present stimuli. We suggest that this problem in fact applies
to all studies using virtual stimuli, given the obvious impossibility
of creating virtual faces that are visually identical to real faces yet
at the same time discriminable from them. Future studies might
want to consider using more than one method for producing
virtual stimuli to increase the generalizability of their results;
however, even this approach does little to solve the fundamental
problem related to the lack of unequivocal operationalization of
“virtual” or “artificial” stimuli.

An ideal solution to this problem might be to keep the stimuli
constant but to present them in varying contexts. We give some
suggestions for future research, which at the same time refine
the present research questions. First, the effect of perceptual
expertise could be tested directly by training participants with
either virtual or real faces before the experimental task, for
example by adopting a similar training paradigm as Burleigh
and Schoenherr (2015). Second, perceptual expertise could also
be tested by preselecting participants with high or low exposure
to realistic virtual faces in video games and other digital media.
Third, future studies could test whether the processing of virtual
faces is prone to similar social-cognitive and motivational factors
as other-ethnicity and out-group faces (see Young et al., 2012).
For example, Bernstein et al. (2007) demonstrated that merely

assigning other people as in-group vs. out-group members—
for example, members of the same or other universities—elicits

higher discrimination sensitivity in a recognition memory task.
Similarly, labeling the same ambiguous real/virtual faces (cf.
Cheetham et al., 2011) or even the same human faces as either
real or virtual might provoke different processing strategies in
individuals. Importantly, all of these hypotheses can be tested by
holding the same stimuli constant, which eliminates the influence
of visual differences on obtained results.

We would also like to note that performing recognition
memory task separately for real and virtual faces could possibly
have elicited different processing strategies, which could then
have inflated existing response bias differences between them.
This effect would in fact resemble the effect of arbitrary labeling as
hypothesized above, and it would mean that the present response
bias finding was relatedmore to social-cognitive processes than to
visual differences between the stimuli. Future studies are required
to explore this possibility, however. In particular, the present
study could be replicated by interleaving virtual and real faces
within the same blocks.

To summarize, the present findings show that virtual faces
evoke a higher proportion of false alarms than real faces
in a recognition memory task, which suggests that virtual
faces do not tap face processing expertise to the same extent
than real faces. Furthermore, the present findings suggest that
this literal lack of familiarity might then contribute to the
uneasiness or even eeriness virtual faces trigger in human
observers, which was also observed in the present investigation.
The present investigation makes a significant contribution to
previous literature by considering low-level visual confounds in
the stimuli, by demonstrating that the differential processing of
virtual and real faces is particularly evident in false alarm choices,
and by linking this result to the qualitative evaluation of virtual
faces.
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