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Genetic susceptibility to autoimmune liver diseases is conferred mainly by

polymorphisms of genes encoding for the human leukocyte antigens (HLA).

The strongest predisposition to autoimmune hepatitis type 1 (AIH-1) is linked to

the allele DRB1*03:01, possession of which is associated with earlier disease

onset andmore severe course. In populations where this allele is very rare, such

as in Asia, and in DRB1*03-negative patients, risk of AIH-1 is conferred by

DRB1*04, which is associated with later disease onset and milder phenotype.

AIH type 2 (AIH-2) is associated with DRB1*07. The pediatric condition referred

to as autoimmune sclerosing cholangitis (ASC), is associated with the DRB1*13

in populations of Northern European ancestry. DRB1*1501 is protective from

AIH-1, AIH-2 and ASC in Northern European populations. Possession of the

DRB1*08 allele is associated with an increased risk of primary biliary cholangitis

(PBC) across different populations. DRB1*03:01 and B*08:01 confer

susceptibility to primary sclerosing cholangitis (PSC), as well as DRB1*13 and

DRB1*15 in Europe. The hepatic blood supply is largely derived from the

splanchnic circulation, suggesting a pathophysiological role of the gut

microbiome. AIH appears to be associated with dysbiosis, increased gut

permeability, and translocation of intestinal microbial products into the

circulation; molecular mimicry between microbial and host antigens may

trigger an autoaggressive response in genetically-predisposed individuals. In

PBC an altered enteric microbiome may affect intestinal motility,

immunological function and bile secretion. Patients with PSC have a gut

microbial profile different from health as well as from patients with

inflammatory bowel disease without PSC.
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Introduction

Autoimmune liver diseases, including autoimmune hepatitis

(AIH), primary biliary cholangitis (PBC) and primary sclerosing

cholangitis (PSC) are believed to be triggered by as yet poorly

characterized environmental factors that lead to loss of tolerance

to self-antigens in genetically predisposed individuals. Among

genetic factors, the most relevant lie within the human leukocyte

antigen (HLA) region on chromosome 6. Among environmental

factors, infections, drug/toxins and microbiome have been

suggested to be involved. A recent animal model of AIH, using

transgenic mice on the non-obese diabetic (NOD) background

carrying human HLA-DR3 and immunized with a DNA plasmid

coding for a fusion protein of human CYP2D6/FTCD – the

autoantigens targeted in AIH type 2 -, showed

that not only did the human HLA-DR3 predispose the animals

to AIH, but also influenced the microbiome composition compared

to the HLA-DR3 negative controls (1), suggesting a direct link

between HLA and microbiome. The present short review

recapitulates current knowledge on HLA associations and

microbiome changes in autoimmune liver disease.
The human leukocyte antigen

HLA are proteins expressed on the surface of a variety of cell

types involved in antigen recognition by T cells. HLA molecules

physiologically create a groove which embeds a short antigenic

peptide to be presented to the T cell receptor. The genes

encoding for the HLA proteins, located on the short arm of

chromosome 6, are highly polymorphic, ensuring that different

individuals are able to recognize and respond to a wide range of

different antigenic peptides. Genetic predisposition to

autoimmune diseases is often conferred by HLA alleles, and

autoimmune liver diseases are no exception. Class I HLA

proteins, expressed on all nucleated cells and recognized by

CD8 T cells, display peptides derived from cytosolic proteins;

class II HLA molecules, expressed on B cells, dendritic cells and

macrophages, and recognized by CD4 T cells, display peptides

derived from extracellular proteins, upon endocytosis. The HLA

genes are characterized also by linkage disequilibrium extending

over a large number of genes, meaning that certain alleles are

inherited together with higher frequency than expected by

random recombination during meiosis. This feature may make

it difficult to assess the impact of a specific allele on the

pathophysiology of diseases associated with HLA alleles.

Interestingly, the so called 8.1 ancestral genotype is a very long

haplotype containing alleles predisposing to AIH and PSC, as

well as to a host of autoimmune diseases in Caucasian

populations, including myositis syndromes, Sjögren syndrome,

myasthenia gravis, and celiac disease (2, 3). The clinical

observation of the frequent coexistence of hepatic and
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extrahepatic autoimmunity is possibly linked to a shared

genetic predisposition involving different autoantigens.
Autoimmune hepatitis

AIH is a rare chronic inflammatory liver disease affecting all

ages, characterized by positive autoantibodies, elevated

immunoglobulin G (IgG) serum levels, interface hepatitis at liver

histology, and swift response to immunosuppressive treatment (4).

Some 10-20% of AIH patients respond unsatisfactorily to

pharmacologic treatment and progress to liver failure, requiring

liver transplantation (5). AIH is subdivided into type 1 (AIH-1) and

type 2 (AIH-2) according to autoimmune serology, AIH-1 being

associated with positive anti-nuclear (ANA) and/or anti-smooth

muscle (SMA) antibodies, and AIH-2 being associated with anti-

liver kidney microsomal (LKM) and/or anti-liver cytosol type 1

(LC-1) antibodies (5). While AIH-1 affects all ages, AIH-2 affects

mainly children and adolescents. Autoimmune sclerosing

cholangitis (ASC) is a pediatric condition defined by AIH, almost

universally AIH-1, coexisting at diagnosis with abnormal

cholangiogram (6). It reportedly affects 40-50% of AIH-1

pediatric patients, and has a more aggressive course, requiring

liver transplantation more frequently than classical AIH (6, 7).

Although the aetiology of AIH and ASC remains unknown,

genetic and environmental risk factors have been described, the

latter including exposure to drugs and viruses (5). While non-

HLA polymorphisms have been reported to increase the risk of

AIH, the strongest genetic predisposition is conferred by

possession of certain HLA alleles: the high diagnostic value of

the predisposing HLA alleles is underscored by the inclusion of

HLA in the revised AIH diagnostic criteria (5, 8). The HLA

predisposing role to AIH, recognized already in 1977 by Opelz

et al. and in 1980 by Mackay and Tait, was confirmed in 1991 in

a landmark study from King’s College Hospital, London, UK,

which identified a significantly higher frequency of the

haplotype A1-B8-DR3 in a cohort including 96 Northern

European AIH adolescent and adult patients (three anti-LKM-

positive) as compared to healthy controls (9). Possession of this

haplotype was also associated to younger age at diagnosis, more

frequent relapse and need for liver transplantation (9) (Table 1).

In DR3-negative subjects, AIH susceptibility was conferred by

HLA DR4, which was associated with later disease onset and

milder phenotype. Recently, a large paediatric study from the

same centre confirmed the association of the A1-B8-DR3

haplotype with all types of paediatric autoimmune liver

diseases, DR3 homozygosity conferring the highest risk, being

also associated with fibrosis at disease onset (22). Possession of

the HLA-DRB1*03:01 allele and of the A1-B8-DRB1*0301

haplotype is associated with treatment failure and increased

risk of cirrhosis, suggesting a more aggressive phenotype in

DRB1*03-positive patients (10). Interestingly, this haplotype is

linked also to a polymorphism of the TNF-A gene, which leads to
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a higher production of tumour necrosis factor alpha (TNF-a)
(10). HLA-DRB1*03 and DRB1*04 encode the amino acid

sequences LLEQKR and LLEQRR at positions 67-72 of the

HLA b chain (11). HLA-DRB1*1501, which is protective from

AIH-1, AIH-2 and ASC in Northern European populations,

encodes alanine at position 71, implying that the amino acid at

this position is essential to confer susceptibility (22) (Table 2).

The strong association of AIH-1 with HLA polymorphisms

has been confirmed by the two genome-wide association studies

(GWAS) performed so far in AIH, both including only AIH-1

adult patients (12, 13). The first GWAS, carried out in a

Northern European population, identified the class II HLA-

DRB1*0301 as the allele with the strongest association with

AIH-1, and HLA-DRB1*0401 as the second most strongly

AIH-1- associated allele. The second GWAS study, carried out

in a Chinese population, identified a single nucletotide

polymorphism in the class I HLA-B locus as the strongest

association with AIH-1. The study also identified two non-

HLA loci associated with AIH-1, i.e. the CD28-CTLA4-ICOS

and the SYNPR loci, the first coding for proteins involved in T

cell activation, and the latter coding for a protein expressed on

synaptic membranes (13).

There are geographical and ethnic differences in HLA allele

frequencies, mirrored by differences in HLA associated to AIH
Frontiers in Immunology 03
in different populations. In Japan, China, South Korea and

Taiwan, adult AIH-1 is associated with DRB1*04, DRB1*03

being very rare in the general population, thus potentially

explaining the different AIH phenotype in East Asia, which is

characterised by later onset and milder disease (14–16, 18, 23)

(Table 1). However, in Thailand AIH-1 is associated with HLA-

DRB1*03:01, and HLA-DQA1*01:01 (19). In India, a study

including both children and adults, identified DRB1*04 and

DRB1*08 as risk alleles for AIH-1, and HLA-DRB1*04 as risk

factor for paediatric AIH, in contrast to its protective role in

paediatric Northern European populations, and in line with

Japanese data (16, 20). Similarly, a small paediatric study from

Iraq, not distinguishing between AIH and ASC, reported

DRB1*03, DRB1*04 and DRB1*13 being all associated to AIH-

1 (17). DRB1*13 was also found to be associated with paediatric

AIH-1 in the above-mentioned study from India, which also

found an association of AIH-2 with HLA-DRB1*14 (20).

Interestingly, a large study from Argentina found that

DRB1*13:01 confers susceptibility for paediatric AIH-1,

whereas DRB1*13:02, which differs only in one amino acid,

confers protection (24) (Table 1).

Genetic studies in AIH-2 have been limited by the rarity of

the disease. The largest cohort investigated so far is the above-

mentioned study by the King’s College Hospital including only
TABLE 1 Main HLA alleles and haplotypes predisposing to autoimmune hepatitis.

HLA allele or haplotype Ancestry Disease Population age Reference

A1-B8-DR3 Northern Europe AIH-1 and AIH-2 Adolescent and adults (5)

HLA DR4 Northern Europe, Japan, China, South Korea, India, Iraq, Iran AIH-1 Adults and children* (5, 9–17)

A1-B8-DRB1*03:01 Northern Europe AIH-1, AIH-2 and ASC Children (6)

HLA-DRB1*03:01
HLA-DRB1*03

Northern Europe, Thailand, Iraq, Iran, Brazil AIH-1 Adults and children (5, 6, 9, 16–19)

HLA-DRB1*07 Northern Europe, Iraq AIH-2 Children (6, 16)

HLA-DRB1*08 India, Iran AIH-1 Adults (15, 20, 21)

HLA B China AIH-1 Adults (22)

HLA-DQA1*01:01 Thailand AIH-1 Adults (18)

HLA-DRB1*13 India, Iraq, Northern Europe, Brazil, Iran AIH-1 and ASC Adults** and children (6, 15–17, 19)

HLA-DRB1*13:01 Argentina AIH-1 Children (23)

HLA-DRB1*14 India AIH-2 Adults and children (15)
f

*in India, Japan and Iraq.
**in Iran.
AIH-1, type 1 autoimmune hepatitis; AIH-2, type 2 autoimmune hepatitis; ASC, autoimmune sclerosing cholangitis.
TABLE 2 HLA alleles protective from autoimmune hepatitis.

HLA allele or haplotype Ancestry Disease Population age Reference

HLA-DRB1*11 Iraq, Iran AIH-1 Adults (16, 17)

HLA-DRB1*13:02 Argentina AIH-1 Children (23)

HLA DRB1*15:01 Northern Europe, Iraq, Iran AIH-1, AIH-2 and ASC Children (6, 16, 17)

HLA DRB1*04 Northern Europe AIH-1, AIH-2 and ASC Children (6)

HLA DRB5 Iran AIH-1 Adults (17)
ro
AIH-1, type 1 autoimmune hepatitis; AIH-2, type 2 autoimmune hepatitis; ASC, autoimmune sclerosing cholangitis.
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children of European ancestry, which reported an association of

AIH-2 with HLA-DRB1*07 , whereas HLA-DRB1*15 is

protective, as it is for AIH-1 and ASC (22). These results have

been confirmed by a smaller study from Iraq (17). The

predisposing role of DRB1*07 for AIH-2 has been shown also

in Brazil (25). The literature on genetic associations of ASC is

also scant, since the differentiation of AIH-1 from ASC is not

systematically done in paediatric studies. The association of ASC

with DRB1*13 reported in the King’s College Hospital study was

confirmed by a small study from Brazil (26); this allele was found

to be associated to AIH-2 in Iran (27).

A Japanese study reported a role for class I HLA and killer

cell immunoglobulin like receptors (KIR) in association in the

predisposition to AIH-1 (15). Natural killer (NK) cells express

KIR inhibitory receptors on their surface, which recognize self

MHC class I molecules, expressed on all nucleated cells:

engagement of these inhibitory receptors protects healthy cells

from destruction by NK cells. The investigators, besides

confirming that HLA-DRB1*04 confers an increased risk of

AIH-1 in Japanese adults, found a strong protective role of the

combination KIR3DL1/HLA-B Bw4-80Thr, suggesting a role for

NK cells in the pathophysiology of AIH-1 (15).

Attempts have been made to investigate the link between

HLA alleles and AIH-1 sub-phenotypes, besides the mentioned

association of DRB3 with more severe disease. According to a

retrospective Japanese study, the frequency of DRB1*04 is not

different in adult AIH-1 patients presenting with acute severe

disease as compared to those presenting with chronic AIH (14).

Similar results have been reported by a small Greek study (28). A

large German study reported that absence of HLA B8 and

presence of HLA DR7 are associated with an increased risk of

AIH-induced acute liver failure (29).
Primary biliary cholangitis

PBC, previously referred to as primary biliary cirrhosis, is an

uncommon autoimmune liver disease characterized by

inflammation and destruction of the small- and medium-sized

intrahepatic bile ducts (21). It affects mainly middle-aged

women and is associated with anti-mitochondrial antibody

and/or PBC-specific ANA, i.e. ANA displaying a rim-like or a

multiple dots nuclear staining pattern on HEp2 cells. Similarly to

AIH, despite unknown aetiology, predisposing genetic

background and environmental triggers have been reported

(21, 30). The important predisposition conferred by genetics is

reflected by the high PBC concordance rate of 63% in identical

twins, being the highest among a host of autoimmune diseases

(31). The unique genealogic database of Iceland offered the

opportunity to investigate the familial risk of PBC: Ornolfsson

et al. not only did confirm an increased risk in first-degree

relatives, but also showed that the risk is increased up to fifth-

degree relatives (32). Owing to the strong autoimmune features
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of PBC, HLA polymorphisms have been investigated, leading to

the demonstration that DRB1*08 confers predisposition across

different populations (33, 34). In a study including a population

from the UK and one from Northern Italy, DRB1*08:01, was

associated with increased PBC risk, whereas DRB1*13 was

protective; DRB1*11 was protective only in the Italian

population (35, 36). In China and Japan, the strongest

predisposition has been linked to possession of the

DRB1*08:03, which is only one amino acid different from

DRB1*08:01 and may have a similar role in antigen

presentation (37–39). DRB1*11 (in Italy and Japan but not in

the UK) and DRB1*13 (in the UK, Northern Italy and Japan) are

protective (35, 38, 40). In Japan, HLA-DQB1*06:04 and HLA-

DQB1*03:01 have been reported to be protective, the latter being

protective also in China, Europe and North America (37, 39, 41,

42). Due to linkage disequilibrium with HLA-DRB1*08:03,

DQA1*01:03 and DQB1*06:01 have also been associated to

PBC in Japan and China (38, 39). A distinctive HLA

association with the haplotype DRB1*0301-DQB1*02:01 has

been reported in Sardinia, known for its genetic isolation (43).

Associations have been reported also for HLA DP alleles,

including HLA DPB1*03:01 in a German study and

DPB1*17:01 in a Chinese study (37, 44).

The first GWAS in PBC published in 2009 and performed

in a Nort American population, identified HLA-DQB1 has

having the strongest association (45). All subsequent GWAS

confirmed the prominent association of HLA with PBC (42,

46–54).
Primary sclerosing cholangitis

PSC is a rare cholestatic liver disease leading to fibrosis and

strictures of the bile ducts, associated with inflammatory bowel

disease (IBD) in 80% of patients of Northern European origin,

and showing a male preponderance (55). IBD comorbidity is

lower in Southern European and Asiatic subjects (55). Affected

patients are at increased risk of cholangiocarcinoma, colorectal

cancer , ga l lb ladder carc inoma and hepatoce l lu lar

carcinoma (56).

Although the cause of PSC remains unknown, there is a

genetic predisposition, mirrored by a nearly 10-times higher

disease risk in first-degree relatives of affected patients (55).

S imi lar ly to AIH and PBC, the st ronges t genet ic

predisposition is conferred by HLA alleles, i.e. DRB1*03:01

and B*08:01, both being part of the above-mentioned 8.1

ancestral phenotype, which is associated with a host of

autoimmune diseases, including AIH and ASC (2, 57–59). A

European study, later confirmed by a study including

European Americans, Hispanics and African Americans,

identified also DRB1*13 as a risk allele, which is included in

the haplotype HLA-DRB1*13:01-DQA1*01:03-DQB1*06:03

(60, 61). Since HLA-DRB1*03:01 is also associated to AIH
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and ASC, and HLA-DRB1*13 is also associated to ASC, these

alleles predispose to AIH, ASC and PSC: whether PSC

represents a late stage phenotype of ASC, remains an open

question; of note, both diseases lack female preponderance

(62). However, the HLA-DRB1*15:01, reported to represent a

risk allele in PSC (60), was found to be protective to all forms

of paediatric autoimmune diseases in an ethnically similar

population, suggesting that HLA polymorphisms are only a

component of the complex etiopathogenesis of AIH, ASC

and PSC.

The PSC-associated haplotypes A*01-C*07-B*08-

DRB1*0301-DQB1*0201 and A*03-C*07-B*07 -DRB1*1501-

DQB1*0602 share class I antigens with the same binding

properties to KIR: these haplotypes do not carry the HLA-Bw4

and HLA-C2 alleles, which are ligands for the inhibitory KIRs

3DL1 and 2DL1 (63). This observation suggests a role for NK

cells in the pathophysiology of PSC (57).

The GWAS studies carried out so far in PSC confirm that

HLA has the strongest association with PSC (55, 56). This

observation supports the notion that PSC is an autoimmune

disease, despite the paradox of lack of response to

immunosuppression, a feature shared with the other

cholestatic autoimmune liver disease, namely PBC.

Main HLA alleles and haplotypes predisposing to or

protecting from PBC and PSC are summarized in Table 3.
Frontiers in Immunology 05
Potential treatment implications

Though the predisposition conferred by HLA points towards

a prominent pathophysiological role of the adaptive immune

system in autoimmune liver diseases, the target antigens of the

autoimmune attack in PSC, AIH-1 and ASC remain largely

unknown. A precise knowledge of the antigenic peptides binding

to the HLA proteins of an individual patient would pave the way

to peptide-based therapies, by using modified peptides which

block autoreactive T cells upon binding to the HLA groove,

forming an HLA peptide inhibitory complex. Therefore, future

research should focus on identifying autoantigenic proteins and

their immunodominant epitopes.

Whether HLA can be included in an interactome-based

approach to identify new drugs needs to be investigated

(54, 64).
Gut microbiome

The human microbiome has been implicated in the

occurrence of several immune-mediated diseases, ranging from

rheumatoid arthritis, type 1 diabetes, IBD, and multiple sclerosis

(65). Intestinal microbiome may be involved also in the

pathogenesis of autoimmune liver disease (66, 67). The blood
TABLE 3 Main HLA alleles and haplotypes predisposing to or protecting from primary biliary cholangitis and primary sclerosing cholangitis.

Predisposing HLA allele or haplotype Ancestry Disease Reference

HLA-DRB1*08 Italy PBC (34)

HLA-DRB1*08:01 UK, Italy PBC (35)

HLA-DRB1*08:03 China, Japan PBC (37, 38)

HLA-DQB1*06:01 China, Japan PBC (39, 40)

HLA-DRB1*08:03- HLA-DQB1*06:01 Japan PBC (40)

HLA-DRB1*03 Europe PSC (58, 60)

HLA-B*08:01 Europe PSC (59)

HLA-DRB1*13 Europe, European Americans, African Americans, Hispanics PSC (60, 61)

HLA-DRB1*15:01 Europe PSC (60)

HLA-DQB1:02 Europe PSC (60)

HLA-DQA1*05:01 Europe PSC (60)

Protective HLA alleles

HLA-DRB1*13 UK, Italy, Japan PBC (35)

HLA-DRB1*11 Italy, Japan PBC (35, 40)

HLA-DQB1*03:01 Japan, China, Europe, North America PBC (35, 39, 40)

HLA-DQB1*06:04 Japan PBC (40)

DRB1*13:02-DQB1*06:04 Japan PBC (40)

HLA-DRB1*04 Europe, European Americans, African Americans, Hispanics PSC (60, 61)

HLA-DQB1*03:02 Europe PSC (60)
fro
PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis.
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supply to the liver derives in large amount from the splanchnic

circulation, making it exposed to bacteria and bacterial products

from the intestinal microbiome. Alterations in the intestinal

microbiome might lead to liver damage.
Autoimmune hepatitis

Changes in the intestinal microbiome have been

documented in an experimental model of AIH (1) employing

HLA-DR3 transgenic mice on the non-obese diabetic (NOD)

background. AIH was induced by immunization with a DNA

plasmid coding for a fusion protein of human CYP2D6/FTCD,

the autoantigens targeted in AIH-2. HLA-DR3, as mentioned

above, is strongly linked to AIH. Not only the HLA-DR3 positive

mice that were immunized did develop chronic liver injury

recapitulating AIH, but they also had a different microbiome

composition compared to the HLA-DR3 negative mice. Mice

that developed AIH displayed a reduced diversity of their

microbiota. Another experimental model using Tet2DDVAV

mice, which are deficient in the epigenetic regulator Tet

methylcytosine dioxygenase 2 (TET2), shows a key role of

microbiome and cytotoxic T lymphocytes in inducing a liver

disease closely resembling AIH (68). Moreover, a compound of

15 probiotics has been reported to decrease hepatic

inflammation, serum transaminase levels, Th1 and Th17 cells,

and increase the number of regulatory T cells in a murine model

of AIH, while protecting intestinal barrier integrity, blocking

lipopolysaccharide (LPS) translocation, inhibiting the toll-like

receptor 4/nuclear factor kB (TLR4/NF-kB) pathway activation

and the production of inflammatory cytokines in both liver and

ileum (69).

Also in humans, AIH appears to be associated with

dysbiosis, increased gut permeability, and translocation of

intestinal microbial products into the systemic circulation (70).

Changes in the microbiome in association to a leakier mucosal

barrier might permit translocation of bacteria and their products

promoting an inflammatory response. Moreover, molecular

mimicry between microbial and host antigens may trigger or

intensify an autoaggressive response in genetically-predisposed

individuals (71, 72).

Zona occludens 1 and occludin, structural proteins that

function in the binding of intestinal epithelial cells, are

decreased in patients with AIH compared to health (70), and

this decrease worsens with progression of liver disease.

Moreover, AIH patients display a reduced number of

anaerobes (bifidobacterium and lactobacillus species) within the

enteric microbiome. The concept of bacterial translocation is

supported by the observed increase in plasma levels of lipo-

polysaccharide (LPS) in AIH (70), which worsens with more

advanced liver damage. Plasma LPS produced from bacterial

translocation can reach the liver through the portal vein. LPS

binds to toll-like receptors (TLR) on liver cells, including
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hepatocytes, stellate cells, Kupffer cells, and sinusoidal

epithelial cells, leading to their activation and resulting in an

inflammatory milieu predisposing to autoimmunity and fibrosis.

The bacterial colonization may also favour the secretion of IL-10

by regulatory T cells (73, 74).

Breech of the intestinal mucosal barrier allows migration of

gut-derived bacteria and bacterial products from the intestinal

lumen to extra-intestinal sites including the liver. Once the

translocated bacterial products, including LPS and

unmethylated cytosine–phosphate–guanine (CpG), potent

stimulators of the innate immune system, reach the liver they

activate TLRs and non-obese diabetes (NOD)-like receptors

(NLRs). Migration of activated T lymphocytes from the gut to

the liver, including those expressing gut-specific homing

receptor alpha4beta7-integrin, has also been implicated in the

pathogenesis of autoimmune liver damage within a ‘gut/liver

axis’ framework (75), though they can also be found in other

forms of liver disease (76).
Primary biliary cholangitis

In PBC an altered enteric microbiome may affect intestinal

motility, immunological function and bile secretion (77–79).

PBC patients have fewer Acidobacteria, Lachnobacterium,

Bacteroides, and Ruminococcus species than healthy individuals

and a higher number of opportunistic microbes, such as Y-

Pro teobac te r ia , Enterobac te r iaceae , Ne i s se r iaceae ,

Spirochaetaceae, Veillonella, Streptococcus, Klebsiella, and

Actinol species. In addition, PBC patients have elevated plasma

levels of a variety of cytokines including IL-1b, IL-6,IL-8, IL-18,
IL-16, IP-10, MIG, IL-2RA, TNF-a, and macrophage migration

inhibitory factor; the lower the levels of microbes normally

present in health the higher the levels of inflammatory

cytokines (80).

These findings suggest that alterations within the

microbiome in PBC have an impact on immune function.

PBC has also been associated with abnormal accumulation of

LPS in biliary epithelial cells (81, 82), which might activate host

immune response. Polymorphisms in the gene coding for TLR 4,

which binds to LPS, have been demonstrated in PBC and might

favour LPS accumulation in biliary epithelial cells (BEC)

triggering host immune responses, further supporting a link

between microbial products, the immune system, and PBC (83–

85). In addition to LPS, other intestinal microbial components,

such as flagellin and cytosine-phosphorothioate-guanine

oligonucleotide, concur in eliciting BEC-destructive immune

responses (65).

Several studies have investigated the role of infectious agents

as triggers of the immune attack on BEC in PBC (86). Anti-

mitochondrial antibodies exhibit cross-reactivity with antigens

of Escherichia coli and Novosphingobium aromaticivorans (87,

88). Escherichia coli or N. aromaticivorans infection might
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provoke, in genetically susceptible individuals, the production of

anti-mitochondrial antibodies that target pyruvate

dehydrogenase complex-E2 (PDC-E2) through a process of

molecular mimicry (83, 87, 89–92). This theory is supported

by an animal model where mice inoculated with N.

Aromaticivorans develop PBC-like disease (93), and by the

observation that PDC-E2 shares sequence homologies with

intestinal Escherichia coli (83, 87, 89–92). Recently, it has been

shown that exposure to Escherichia coli elicits specific antibody

to Escherichia coli PDC-E2 that leads to epitope spreading and

production of the classical human anti-PDC-E2 autoantibody,

possibly being the first step to development of human PBC (30).

In addition to Escherichia coli, Klebsiella species have been

implicated in the development of PBC through a mechanism of

molecular mimicry (94).
Primary sclerosing cholangitis

The frequent association of PSC with IBD strengthen the

notion of a link between the gut microbiome and the liver.

Owing to intestinal inflammation allowing translocation of

enteric pathogens through the mucosal barrier, enteric

microbial components may reach the liver through the portal

circulation and provoke damage to cholangiocytes (95).

Alternatively, gut activated T cells may home on to the liver

and trigger immune-mediated damage (75, 96). However, as

mentioned above, presence of gut-derived activated T cells is not

confined to PSC and other autoimmune liver diseases (76).

Patients with PSC have a gut microbial profile different from

health as well as from patients with IBD without PSC (97–99).

PSC patients have a reduction of intestinal bacterial diversity,

with an increased presence of Veillonella, Rothia, Enterococcus,

Streptococcus, Clostridium, Lactobacillus, Fusobacterium and

Haemophilus species. In particular, Enterococcus, Lactobacillus,

and Fusobacterium species are associated with PSC

independently of IBD, probiotic use, cirrhosis, liver

transplantation, ursodeoxycholic acid or antibiotic treatment

(97–99).

The use of ant ib iot ics , inc luding vancomycin ,

metronidazole, tetracycline, sulfasalazine, azithromycin, and

minocycline has been reported to improve laboratory indices

in PSC, but not the progression of liver disease (100). The

improvement observed with the use of antibiotics may derive

from modifications in the microbiome that results in a decreased

production of inflammatory molecules.

Faecal microbiota transplantation (FMT), which alters

the host microbiome, has been attempted as a therapeutic

measure for PSC in a small pilot study. Microbial diversity

increased and the alkaline phosphatase levels decreased in

treated patients, though it is unclear whether this was

associated with a clinical benefit (101). In this pilot study

FMT was applied through the colonic route, but a small bowel
Frontiers in Immunology 07
route might be more appropriate based on animal studies

showing that small bowel, but not colonic, dysbiosis is

associated with hepatobiliary inflammation, and that small

bowel bacterial overgrowth results in a PSC-like disease (102).

Larger clinical trials are needed to investigate the role of FMT

in PSC.

Both PSC and, to a lesser extent, AIH are associated with

positivity for the autoantibody referred to as atypical peripheral

anti-neutrophil cytoplasmic antibody (pANCA), also known as

peripheral anti-nuclear neutrophil antibody (pANNA). This

antibody is reportedly directed to Beta-tubulin and cross-

reacts with a bacterial antigen, FtsZ (103), an evolutionary

precursor protein of Beta-tubulin present in almost all

intestinal bacteria, suggesting that molecular mimicry to

bacterial products may also play a role in the development of

PSC and AIH.
Conclusions

The strongest genetic predisposition to all autoimmune liver

diseases is conferred by HLA alleles, suggesting a preponderant

role of adaptive immunity and particularly of T cells in their

pathophysiology. Therefore, knowledge of the autoantigens

recognized by T cells is key to advance our understanding of

the immunopathogenesis of these diseases. Even in the diseases

where the autoantigens are known (AIH-2 and PBC), little is

known about the T cells autoantigenic peptides, knowledge of

which could pave the way to novel therapeutic approaches. The

role of the intestinal microbiome in shaping the phenotype of

autoimmune liver disease is currently under investigation.

Though most microbiome studies were conducted in wealthy

countries in North America and Europe, skewing our

understanding of human-microbe interactions, preliminary

findings highlight the potential importance of its manipulation

in therapeutic interventions.
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64. Guney E, Menche J, Vidal M, Barábasi A-L. Network-based in silico drug
efficacy screening. Nat Commun (2016) 7:10331. doi: 10.1038/ncomms10331

65. Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of
autoimmune hepatitis. World J Gastroenterol (2016) 22:9257–78. doi: 10.3748/
wjg.v22.i42.9257

66. Zheng Y, Ran Y, Zhang H, Wang B, Zhou L. The microbiome in
autoimmune liver diseases: Metagenomic and metabolomic changes. Front
Physiol (2021) 12:715852. doi: 10.3389/fphys.2021.715852

67. Qian Q, HeW, Tang R, Ma X. Implications of gut microbiota in autoimmune
liver diseases. Minerva Gastroenterol (Torino) (2021). doi: 10.23736/S2724-
5985.21.02860-9

68. Pandey SP, Bender MJ, McPherson AC, Phelps CM, Sanchez LM, Rana M,
et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell
autoimmune hepatitis. Cell Host Microbe (2022) 30(7): 1003–19. doi: 10.1016/
j.chom.2022.05.006

69. Liu Q, Tian H, Kang Y, Tian Y, Li L, Kang X, et al. Probiotics alleviate
autoimmune hepatitis in mice through modulation of gut microbiota and intestinal
permeability. J Nutr Biochem (2021) 98:108863. doi: 10.1016/j.jnutbio.2021.108863

70. Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and
microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol (2015)
8:5153–60.
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