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The complement system plays a central role in inflammation and immunity. Among the
complement activation products, C5a is one of the most potent inflammatory peptides
with a broad spectrum of functions. There is strong evidence for complement activation
including elevated plasma level of C5a in humans and animals with sepsis. C5a exerts its
effects through the C5a receptors. Of the two receptors that bind C5a, the C5aR (CD88) is
known to mediate signaling activity, whereas the function of another C5a binding receptor,
C5L2, remains largely unknown. Here, we review the critical role of C5a in sepsis and
summarize evidence indicating that both C5aR and C5L2 act as regulating receptors for
C5a during sepsis.
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INTRODUCTION
The complement system is composed of more than 30 heat-
labile plasma proteins (Guo and Ward, 2005). Although com-
plement activation plays a key role in innate immune defenses
against invading bacteria, over-activation of complements leads
to many inflammatory diseases including sepsis (Huber-Lang
et al., 2001a,b, 2002a,b; Laudes et al., 2002b; Guo et al., 2004; Guo
and Ward, 2005; Rittirsch et al., 2008). The complement system
acts as an enzymatic cascade through a variety of protein-protein
interactions, and complement activation occurs after a variety
of different stimuli. Three well-known pathways are involved
in complement activation: classical pathway, mannose-binding
lectin (MBL) pathway, and alternative pathway (Guo et al., 2004;
Guo and Ward, 2005) (Figure 1). The classical pathway can be
activated by direct association of C1q with the microbial pathogen
surfaces. It can also be initiated by binding of C1q to antigen-
antibody complexes during an adaptive immune response. The
MBL pathway is trigged by binding of MBL to carbohydrate
structures containing mannose present on bacterium or virus
surfaces. The alternative pathway is activated by binding of spon-
taneously activated complement C3 protein (C3b fragment) to
pathogen surfaces. All the three pathways result in a series of
enzymatic cleavage reactions, leading to formation of C3 con-
vertase, at which the three pathways converge (Guo and Ward,
2005). C3 convertase can lead to the formation of C3a, C3b, C5a,
C5b, C6, C7, C8, and C9, among which C5b, C6, C7, C8, and
C9 form a membrane attack complex (C5b-9), which is used
by host to lyse gram-negative bacteria. Coagulation pathway was
recently suggested as a novel pathway of complement activa-
tion acting-independently of the formation of canonical C3/C5

convertases (Huber-Lang et al., 2006) (Figure 1). In this path-
way, thrombin functions as a C5 convertase in the absence of
C3, leading to the production of C5a and formation of C5b-9
(Huber-Lang et al., 2006). Moreover, in multiple trauma patients,
factor VII-activating protease (FASP), which was activated by cir-
culating nucleosomes released from necrotic cells, interacted with
complement proteins in plasma, and cleaved C3 and C5 to pro-
duce C3a and C5a (Kanse et al., 2012). However, the mechanistic
basis underlying the interaction between coagulation pathway
and complement pathway remains poorly understood.

Sepsis represents a spectrum of clinical symptoms charac-
terized by the inability of host to regulate the inflammatory
response (Riedemann et al., 2003b). In the United States, it affects
at least 600,000 persons per year, leading to around 250,000
annual deaths (Ward, 2010; Bosmann et al., 2011b). The systemic
inflammatory response syndrome (SIRS), sepsis, severe sepsis,
septic shock, and multiorgan failure (MOF) are currently used
to characterize the progressive stages of this very complex and
therapeutically challenging disorder of the immune and inflam-
matory systems (Hoesel et al., 2006). Bacterial infections can
progress to sepsis, but detection of bacteremia is not a prerequisite
for making the clinical diagnosis of sepsis. Sepsis can stimulate
complement activation in both humans and animals, resulting
in increased levels of C3a, C4a, and C5a in plasma (Bengtson
and Heideman, 1988; Smedegard et al., 1989; de Boer et al.,
1993; Nakae et al., 1994). It has been demonstrated that classi-
cal, MBL, and alternative pathways all participate in complement
system activation, and play important roles in sepsis (Celik et al.,
2001; Windbichler et al., 2004; Dahlke et al., 2011). Importantly,
a recent study using CLP-induced sepsis model in mice lacking
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FIGURE 1 | The various pathways of complement activation. Four major pathways are involved in complement activation: classical, lectin, alternative, and
coagulation pathways.

either the alternative (fD−/−) or classical (C1q−/−) comple-
ment activation pathway provides clear evidence that the classical
pathway and the alternative pathway exert distinctly different con-
tribution to the innate host response during sepsis by showing
that the classical pathway is important for clearing bacteria in the
early development of sepsis, whereas the alternative pathway may
play a more important role for the later phase of development
(Dahlke et al., 2011). During sepsis, over-activation of comple-
ment system causes multiple organ damage and compromised
immune responses (Guo et al., 2003). Among complement sys-
tem, C5a is the most powerful inflammatory mediator, which can
lead to adverse systemic consequences by a broad spectrum of
mechanisms in sepsis (Ward, 2004; Guo and Ward, 2005). C5a
exerts its effect through its receptors: C5aR and C5L2. The roles
of C5a signaling in inflammatory injury associated with sepsis are
becoming defined. Here, we review the recent data for the critical
roles of C5a, C5aR, and C5L2 during sepsis.

ROLE OF C5a IN SEPSIS
Human C5a is composed of 74 amino acids, which is a gly-
cosylated peptide. NMR spectroscopy demonstrated that C5a
contains four helices, which are connected by loops. The helical
structures are cross-linked by disulfide bonds, which make the
molecule quite stable in the presence of oxidative stress (Ward,
2010). It has been well established that C5a production could
be due to plasma complement activation pathways. In addi-
tion, studies indicated that C5a could also be generated through
cleavage of C5 by phagocytic cell-derived serine proteases that
have C5 convertase activity (Huber-Lang et al., 2002c). These
cells include alveolar macrophages and neutrophils (Huber-Lang
et al., 2002c). Interestingly, a recent study shows that M-ficolin,
a pattern-recognition molecule which activates the complement

system in a manner similar to MBL pathway, was released by
phagocytes during bacterial sepsis, and its cord blood level was
positively related to circulating phagocytes and early-onset sepsis
in neonates (Schlapbach et al., 2012).

The roles of C5a in sepsis have been investigated in subhu-
man primate model of sepsis-induced by intravenous injection of
Escherichia coli (E. coli) into monkeys. In this model, C5a neutral-
izing antibody reduced several septic parameters (Stevens et al.,
1986; Hangen et al., 1987). As a result, all septic animals treated
with anti-C5a antibody survived, and did not developed severe
lung edema and decreased oxygenation (Stevens et al., 1986;
Hangen et al., 1987). In contrast, 75% of animals treated with
control IgG died with decreased oxygenation, increased extravas-
cular lung water, and profound hypotension (Stevens et al., 1986;
Hangen et al., 1987).

The molecular mechanisms underlying the harmful effects of
excessive C5a on innate immune functions during sepsis are being
defined. C5a inhibited phagocytic activity of normal blood neu-
trophil in a dose-dependent manner (Huber-Lang et al., 2002b).
Furthermore, blood neutrophils from septic rats showed defect
in phagocytosis (Huber-Lang et al., 2002b). In contrast, neu-
trophils from cecal ligation and puncture (CLP) rats treated with
antibody to C5a preserved the phagocytic activity. C5a treat-
ments also led to suppression of p47phox phosphorylation, and
its subsequent translocation to the cell membrane and assemble
of NADPH oxidase, which resulted in inhibition of respiratory
burst in neutrophils (Huber-Lang et al., 2002b). C5a-induced
defects in phagocytosis and NADPH oxidase assembly caused
defective bactericidal activity of neutrophils, leading to increased
bacterial counts (Huber-Lang et al., 2002b). In CLP-induced sep-
sis model, 50% of rats receiving anti-C5a antibody treatment
survived during a 10-day survival study, while the survival rate
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was only 9.5% in the septic group treated with normal IgG
(Czermak et al., 1999). The improved survival was linked to
reduced bacterial colony forming-units (CFU) in blood, spleen,
and liver, and improved H2O2-generating ability of neutrophils
by C5a blockade (Czermak et al., 1999).

Complement activation occurs during sepsis in human, lead-
ing to the generation of anaphylatoxins including C3a, C4a, and
C5a (Nakae et al., 1996). Appearance of high levels of anaphy-
latoxins was correlated with MOF that is a key factor resulting
in death, and lower anaphylatoxin levels could only be identi-
fied in surviving septic patients but not non-surviving persons
(Bengtson and Heideman, 1986; Nakae et al., 1996). In addition,
in vitro experiment demonstrated that neutrophils in patients
surviving from sepsis-induced MOF had defect in chemotactic
response to C5a, which might be related with inability of C5a
to bind to neutrophils (Solomkin et al., 1981; Goya et al., 1994).
In experimental sepsis, C5a blockade attenuated the param-
eters of MOF, and maintained normal chemotactic function
of neutrophils (Huber-Lang et al., 2001a; Flierl et al., 2006).
Importantly, C5a blockade given at 12 h after the initiation of sep-
sis has protective effects against detrimental influence of septic
shock (Huber-Lang et al., 2001b). However, it remains to be deter-
mined whether, in human beings with sepsis, there may be a
similar “time window” during which anti-C5a treatment can be
an effective method to improve survival.

C5a REGULATION OF INFLAMMATORY MEDIATORS
C5a promotes proinflammatory mediators’ production in many
cell types (Table 1). For example, C5a stimulated the synthesis
and release of cytokines such as TNF-α, IL-1β, and IL-6 by human
peripheral blood mononuclear cells (Schindler et al., 1990; Scholz
et al., 1990). In addition, C5a promoted generation of IL-8, IL-1β,
and RANTES at mRNA level in human umbilical cord endothe-
lial cells (HUVEC) (Monsinjon et al., 2003). A recent study
found that IL-17F production in mouse peritoneal macrophages
was significantly induced by LPS at both mRNA and protein
levels (Bosmann et al., 2011a). Interestingly, C5a amplified LPS-
stimulated IL-17F generation by enhancing Akt phosphorlation
in a MyD88-dependent manner (Bosmann et al., 2011a). C5a
can also exert in vivo immunoregulatory functions (Table 2). For
example, plasma level of IL-17F was dramatically elevated in
both LPS- and CLP-induced septic mice, which correlated with
C5a concentration (Bosmann et al., 2011a). Furthermore, IL-17F
level was greatly decreased in septic mice receiving C5a blocking
antibody, suggesting that IL-17F production was positively reg-
ulated by C5a during sepsis. C5a can also synergistically induce
the production of cytokines and chemokines with LPS in var-
ious cells. These include IL-1 and TNF from mouse peritoneal
macrophages and human monocytes (Cavaillon et al., 1990), IL-
8 from human neutrophils (Strieter et al., 1992), and TNF-α,
macrophage inflammatory protein-2 (MIP-2), cytokine-induced
neutrophil chemoattractant-1 (CINC), and IL-1β from rat alveo-
lar epithelial cells (Riedemann et al., 2002c). Similarly, exposure
of mouse dermal microvascular endothelial cells to LPS or IL-6,
followed by exposure to C5a, resulted in a synergistic effect on
the generation of MIP-2 and monocyte chemoattractant protein-
1 (MCP-1) (Laudes et al., 2002a). Our recent study demonstrated

that C5a increased IgG immune complex-stimulated TNF-α,
MIP-2, and MIP-1α expression by enhancing phosphorylation
of both p38 and p44/42 MAPKs in a Fcγ receptor-dependent
manner (Yan et al., 2012). C5a also plays a pivotal role in lym-
phocyte inflammatory responses. For example, C5a modulated
IL-22 and IL-17 expressions by human CD4+ T cells (Gerard
et al., 2005). Moreover, C5a-induced a robust Th1 polarization,
while inhibited Th2 response in trinitrobenzene sulfonic acid-
induced model of colitis, which contributed to the exacerbation
of intestinal damage (Chen et al., 2011). The role of C5a in innate
lymphocyte activation during E. coli-induced sepsis was recently
reported (Fusakio et al., 2011). In this study, using C5aR+/C5aR−
mixed bone marrow chimeras, the cognate C5a/C5aR interac-
tion on NKT cells was identified as a critical factor for NKT cell
activation and the recruitment during sepsis. Furthermore, there
is a synergistic interaction between C5a/C5aR and TLRs, which
enhances the production of TNF-α and IFN-γ from NKT and
NK cells in co-cultures with dendritic cells (DC) (Fusakio et al.,
2011). DC are bridges linking innate and adaptive immunity, their
functions are affected by C5a. When cultured with Mycobacterium
bovis Bacillus Calmette-Guerin (BCG), DCs from C5-deficient
mice secreted much less IL-12 in comparison with those from
C5-sufficient animals (Moulton et al., 2007). Furthermore, C5-
deficient DCs fully restored the IL-12 generating capacity when
incubated with BCG in presence of C5a (Moulton et al., 2007),
suggesting that C5a may contribute to the generation of acquired
immune responses in mice by modulating Th1 response.

On the other hand, C5a can also limit the pro-inflammatory
mediators’ production. For example, in an experimental aller-
gic model, C5a suppressed DC-derived IL-23 production, which
led to inhibition of Th17 cell differentiation and proliferation,
and limited the severe airway hyper-responsiveness (Lajoie et al.,
2010). C5a can also suppress many other pro-inflammatory
mediators’ expression. For example, Mycobacterium tuberculo-
sis (MTB)-infected macrophages from C5-deficient mice showed
enhanced growth of MTB coinciding with a reduced secretion of
both cytokines (TNF-α, IL-1β, IL-6, and IL-12) and chemokines
(KC, MIP-2, and MIP-1α) (Jagannath et al., 2000). Both LPS and
IFN-γ-induced IL-12 expression were markedly suppressed by
C5a in human monocytes (Wittmann et al., 1999). IL-6 expres-
sion was significantly reduced by C5a in HUVECs (Monsinjon
et al., 2003). Moreover, C5a significantly suppressed LPS-induced
TNF-α expression by increasing the expression of cytosolic IκBα,
an inhibitor of NF-κB activation, in neutrophils (Riedemann
et al., 2003a). Interestingly, a recent study showed that C5a exhib-
ited anti-inflammatory effect during endotoxic shock by sup-
pressing IL-17A and IL-23 production from CD11b(+)F4/80(+)
macrophages (Bosmann et al., 2012). Mechanistically, endotoxin-
induced generation of C5a resulted in activation of the PI3-K-Akt
and MEK1/2-ERK1/2 pathways, leading to IL-10 production, fol-
lowed by suppression of IL-17A and IL-23 expressions (Bosmann
et al., 2012).

Complement system is activated at early time during sep-
sis, causing C5a production, which may play a central role
in generation of “inflammatory cytokine storm.” During sep-
sis, there is an increase of both pro-inflammatory mediators
in blood including IL-6, TNF-α, IL-1β, IL-8, and IFN-γ, and
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anti-inflammatory factors such as IL-10, IL-13, IL-4, and TGF-β
(Wolkow, 1998; Titheradge, 1999; Le Tulzo et al., 2002; Guo et al.,
2004; Flierl et al., 2008b). Sepsis-induced imbalance between pro-
inflammatory and anti-inflammatory responses leads to apopto-
sis, immunosuppression, and multiple organ dysfunction (Guo
et al., 2004). Neutrophils are generally regarded as driving force
for acute inflammation. The role of C5a in sepsis is best studied
by its effects on neutrophil inflammatory responses. For example,
a recent study demonstrated that elevated serum IL-6 level during
CLP-induced sepsis was due to increased level of C5a (Riedemann
et al., 2004). Importantly, neutrophil depletion resulted in a more
than 50% decrease of IL-6 level, suggesting that neutrophils are
the major contributor of C5a-regulated IL-6 production dur-
ing sepsis (Riedemann et al., 2004). In another study, anti-C5a
monoclonal antibody led to an over 75% decrease in serum IL-
6 bioactivity in septic pigs receiving intravenous injection of
E. coli when compared with control group (Hopken et al., 1996).
In vitro, either LPS or C5a significantly induced IL-6 expres-
sion in neutrophils (Riedemann et al., 2004). Importantly, C5a
enhanced LPS-stimulated IL-6 generation by rapidly inducing
phosphorylation of p38 and p44/42 MAPKs (Riedemann et al.,
2004). In human neutrophils, C5a significantly boosted TLR-4-
dependent generation of IL-1β and IL-8, which was controlled
in an inhibitory fashion by the PI3K pathway (Wrann et al.,
2007). Furthermore, PI3K signaling pathway exerts an overall
protective role during the onset of sepsis in rodents by limiting
C5a-mediated effects on neutrophil cytokine generation, and pro-
moting oxidative burst and phagocytosis (Wrann et al., 2007).
Thus, these studies suggest a leading role of C5a in the imbalance
of inflammatory network during sepsis. However, whether other
cell populations such as monocytes and NKT cells are respon-
sible for the cytokine storm in vivo during sepsis and how the
complex interactions between these cells contribute to the acute
inflammatory processes in sepsis remains a puzzle.

C5a REGULATION OF COAGULATION PATHWAYS DURING
SEPSIS
During sepsis, blood monocytes, tissue macrophage, and
endothelial cells serve as sensors of invading microorganisms by
using pattern recognition receptors. The interactions between the
host receptors and the conserved structures of pathogens lead to
activation of inflammatory and coagulation pathways. It is well
known that coagulation cascade is activated in septic patients.
There are two pathways involved in blood coagulation: extrin-
sic and intrinsic pathways. Extrinsic pathway is responsible for
initiation of blood clotting, and intrinsic pathway is the initiator
of blood coagulation amplification (Aird, 2003). During sepsis,
elevated expression of tissue factor (TF) was found on the sur-
faces of tissue macrophages and circulating monocytes, which
led to initiation of extrinsic clotting cascade, thrombin produc-
tion, and fibrin formation (Aird, 2003). At the same time, sepsis
suppresses natural anti-coagulant responses, which results in
increased thrombin production, fibrin formation and consump-
tion of clotting factors, and decreased protein C in blood (Aird,
2003). Injection of exogenous protein C inhibited initiation of
coagulation pathway, reduced organ dysfunction, and improved
survival rate in a sepsis model performed in baboon, while in vivo
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Table 2 | In vivo immunoregulatory properties of the C5a/C5aR system.

Model Treatment Outcomes References

E. coli-induced

C5a neutralizing
antibody

Increased survival rate, decreased lung edema and oxygenation Stevens et al., 1986;
Hangen et al., 1987

sepsis
anti-C5a antibody Decreased IL-6 level in serum Hopken et al., 1996

C5aR knockout

Attenuation of NK and NKT cell activation
Reduced TNF-alpha and IFN-gamma release by NK and NKT cells
Impaired recruitment of NK and NKT cells to the site of infection
Increased survival rate

Fusakio et al., 2011

LPS-induced

C5a neutralizing
antibody

Attenuated septic parameters Smedegard et al., 1989

endotoxic shock C5aR knockout
Increased circulating IL-23 and IL-17A level
Increased resistance to endotoxic shock

Van Epps et al., 1990;
Bosmann et al., 2012

C5L2 knockout Increased serum IL-1beta while decreased survival rate Han et al., 2011

CLP-induced sepsis

anti-C5a antibody

Reduced bacterial colony forming-units while improved respiratory burst
Reduced IL-17F level in serum
Attenuated coagulant paremeters
Reduced apoptosis of adrenal medulla cell
Ameliorated septic encephalopathy
Restoration of neutrophil to spontaneous apoptosis Reduced inflammatory
mediators’ production by cardiomyocytes while attenuation of cardiac
dysfunction
Restoration of C5aR content on neutrophils

Czermak et al., 1999;
Laudes et al., 2002b;
Guo et al., 2003, 2006;
Flierl et al., 2008a,
2009; Atefi et al., 2011;
Bosmann et al., 2011a

C5aR knockout Decreased plasma levels of IL-1beta, IL-6, MIP-2, and MIP-1alpha while
increased survival rate

Rittirsch et al., 2008

C5aR antagonist Improved survival Huber-Lang et al., 2002a

C5aR antibody Reduced IL-6 and TNF-alpha production in serum, and bacterial burden
while improved survival

Zahedi et al., 2000

anti-C5L2
antibody

Increased serum IL-6 level

C5L2 knockout

Decreased serum levels of IL-1beta, MIP-2, MIP-1alpha, and HMGB1 while
improved survival
Increased pro-inflammatory mediators’ production from cardiomyocytes

Rittirsch et al., 2008;
Atefi et al., 2011

House dust
C5/C5aR

Increased IL-23 production by dendritic cells and Th17 cell differentiation Lajoie et al., 2010

mite-induced
knockout

and proliferation

allergic asthma
Enhanced airway hyperresponsiveness

C5L2 knockout Attenuated asthmatic phenotye Johswich et al., 2006

IgG IC-induced
acute lung injury

C5L2 knockout Reduced lung inflammation Gerard et al., 2005

blockade of protein C activation by using anti-protein C anti-
body worsened E. coli-induced septic shock (Taylor et al., 1987).
However, due to risk of serious bleeding in 35% patients receiving
rhAPC (recombinant human activated protein C), the FDA and
European Medicines Agency (EMEA) have recently withdrawn
their support and recommends not using the product, and the
manufacturer has withdrawn the product from the market (Kylat
and Ohlsson, 2012).

A number of evidences indicate the involvement of C5a in
coagulation pathway. The recombinant human C5a stimulated

TF expression in a dose-dependent fashion in HUVECs (Ikeda
et al., 1997). In addition, C5a-induced TF production in
human leukocytes (Muhlfelder et al., 1979). In the CLP-induced
sepsis model, C5a neutralizing antibody ameliorated coagula-
tion/fibrinolytic protein changes in rats, thus preventing dis-
semination of intravascular coagulation (Laudes et al., 2002b).
In septic rats receiving anti-C5a antibody, coagulant parame-
ters were greatly attenuated (Laudes et al., 2002b). Additionally,
C5a markedly induced IL-8 generation in HUVECs (Monsinjon
et al., 2003), which could in turn induce the fibrin deposition and
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promote thrombogenesis as well as proliferation and structural
reorganization of endothelial cell (Guo et al., 2004). Therefore,
the involvement of C5a in activation of coagulation pathways
seems to be mediated by up-regulated expression of IL-8 in
human beings, and C5a neutralizing antibody treatment may
be an effective approach to prevent coagulation-induced organ
damage during sepsis. The coagulation system also has pro-
found effects on the complement activation. It has been shown
that thrombin is capable of generating C5a in the absence of
C3 (Huber-Lang et al., 2006). A most recent study provided
novel insights into the complex interaction between the coagu-
lation/fibrinolysis cascades and the complement system in vitro
and ex vivo (Amara et al., 2010). This study established multiple
links between various factors of the coagulation and fibrinolysis
cascades and the central complement components C3 and C5 by
demonstrating that thrombin, human coagulation factors (F) XIa,
Xa, and IXa, and plasmin were all found to effectively cleave C3
and C5 (Amara et al., 2010). Thus, it is possible that C5a pathway
and coagulation/fibrinolysis cascades during sepsis can regulate
each other by positive-feedback mechanisms.

ROLE OF C5a IN CELL APOPTOSIS DURING SEPSIS
Immunosuppression occurs in humans and rodents during sep-
sis, which is due to reduced number of T and B lymphocytes in
lymphoid tissues and in circulation (Guo et al., 2000; Riedemann
et al., 2002a; Hotchkiss and Nicholson, 2006; Ward, 2008).
Apoptosis appears to be the predominant factor that is responsi-
ble for lymphoid cell loss and the associated pathogenesis during
sepsis (Song et al., 2000). It has been reported that early lym-
phocyte apoptosis in blood stimulated by sepsis in human being
was associated with low survival rate (Le Tulzo et al., 2002).
Apoptosis can be induced via both the extrinsic (TNF-α, Fas lig-
and) and intrinsic pathways (mitochondrial) during sepsis (Ward,
2010), and prevention of lymphoid cell apoptosis could markedly
attenuate parameters of sepsis and improve survival (Hotchkiss
et al., 2000; Oberholzer et al., 2001). In vitro experiments demon-
strated that when exposed to C5a, thymocytes from septic rats
showed increased apoptotic rate, which was attributable to the
increased caspase-3, -6, and -9 activities (Riedemann et al.,
2002a). However, C5a exposure alone could not stimulate nor-
mal thymocyte apoptosis (Guo et al., 2004), suggesting that
other factors such as TNF-α and Fas ligand-induced by sepsis
were indispensible for C5-indued apoptotic death of thymocytes.
Furthermore, in vivo experimental data showed that thymocyte
apoptosis was induced in a time-dependent fashion during sep-
sis, leading to around 50% loss of thymus weight 24 h after onset
of sepsis (Guo et al., 2000). Thymocyte apoptosis was due to ele-
vated ratio of apoptotic accelerators to anti-apoptotic proteins,
because the activities of caspase-3, -6, -9 and cytochrome c-level
in cytosol were significantly increased 12 h after CLP induction
of sepsis, while Bcl-XL content was greatly reduced (Guo et al.,
2000). Importantly, C5a neutralizing antibody treatment main-
tained caspase-3, -6, and -9 activities at basal levels, prevented
increase of ctyosolic cytochrome c concentration and decrease of
Bcl-XL level (Guo et al., 2000). These studies indicated that intrin-
sic pathway participated in sepsis-induced thymocyte apoptosis,
which could be intervened by C5a blockade (Figure 2).

C5a can also contribute to apoptosis of other cell types
(Figure 2). Recent study showed that C5a treatment caused sig-
nificant apoptosis of adrenal medulla cells (PC12), leading to
impaired generation of catecholamines in a dose- and time-
dependent manner (Flierl et al., 2008a). In vivo, apoptosis of
adrenal medulla cells was markedly increased after CLP-induced
sepsis, which was greatly reversed by C5a blockade (Flierl et al.,
2008a). Furthermore, pan-caspase inhibitor treatment prevented
C5a-induced PC12 cell apoptosis during sepsis (Flierl et al.,
2008a), suggesting that elevated caspase activities are critical for
C5a-induced adrenal medulla cell apoptosis. Septic encephalopa-
thy secondary to a breakdown of the blood-brain barrier (BBB)
is a known complication of sepsis. Using CLP-induced sepsis
model, a recent study demonstrated that the neutralization of
C5a greatly ameliorated pathophysiological changes associated
with septic encephalopathy (Flierl et al., 2009). Furthermore,
C5a/C5aR signaling was also linked to increased caspase 3 activity
and apoptosis in mouse brain endothelial cells (Jacob et al., 2011).

While C5a stimulated apoptosis of several cell types during
sepsis, it provides anti-apoptotic signals to neutrophils (Figure 2).
In vitro experiments showed that C5a inhibited spontaneous
human neutrophil apoptosis by activating PI3-K/Akt signaling
pathway (Perianayagam et al., 2002). In addition, C5a stimula-
tion could lead to activation of ERK1/2 (Suvorova et al., 2008)
and protein kinase C (PKC) (Simon, 2003). Both ERK1/2 and
PKC can provide neutrophils with anti-apoptotic signals (Simon,
2003). Thus, C5a might be involved in delayed neutrophil apop-
tosis through multiple signaling pathways. It is noteworthy that
C5a plays a key role in generation of inflammatory mediators
such as IL-1β, IL-6, and IL-8 in humans (Strieter et al., 1992;
Hopken et al., 1996), all of which can stimulate anti-apoptotic sig-
nals in neutrophils (Simon, 2003). We have previously observed
that neutrophils from septic rats showed delayed spontaneous
apoptosis when compared with those from normal animals (Guo
et al., 2006). In contrast to normal serum, septic sera treatment
led to significant resistance of neutrophils isolated from normal
rats to apoptotic death, which was due to activation of both Akt
and ERK1/2 (Guo et al., 2006). In sharp contrast, septic sera from
rats receiving anti-C5a antibody restored the sensitivity of neu-
trophils to spontaneous apoptosis (Guo et al., 2006). C5a-induecd
resistance of neutrophils to apoptosis was due to enhanced phos-
phorylation of Akt and ERK1/2, and increased expression of
X-linked inhibitor of apoptosis and Bcl-XL(Guo et al., 2006).
These studies together suggest that the distinct effects of C5a on
apoptosis in various cell types may induce different pathophys-
iology in sepsis. Increased apoptotic death of lymphocytes and
adrenal medulla cells led to immunosuppression during sepsis,
while decreased apoptotic rate caused release of more toxic cel-
lular products from activated neutrophils (Figure 1). Together,
these events may result in delayed pathogen elimination, normal
tissue damages, and finally MOF.

EFFECT OF C5a ON CARDIAC DYSFUNCTION DURING SEPSIS
Defect in cardiac function is often induced in septic patients
and has been referred to as “cardiomyopathy of sepsis.” “Septic
cardiomyopathy” has been characterized by in vitro defective
cardiomyocyte (CM) function. During sepsis, left ventricular
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FIGURE 2 | Effects of C5a signals on apoptosis during sepsis. C5a have
both anti- and pro-apoptotic activities depending on cell types. In neutrophils,
C5a activates PI3K and ERK1/2 pathways, leading to phosphorylation of Akt
and subsequent phosphorylation of Bad. Phosphorylated Bad inhibits
cytochrome C release from mitochondria to prevent the formation of the
apoptosome, thereby inhibiting neutrophil apoptosis. C5a together with LPS

induces XIAP production, which can inhibit the formation of the apoptosome.
Sepsis enhances Bcl-xL expression and reduces Bim expression. C5a and
LPS can also enhance Bcl-xL expression. All of these events are in favor of
maintaining the integrity of mitochondria and preventing neutrophil apoptosis.
In thymocyes, adrenal medulla cells, and endothelial cells, C5a can induce
apoptosis by enhancing caspase activities or inhibiting Bcl-xL expression.

pressures were greatly reduced, and CMs isolated from septic rats
exhibited defective contractility and relaxation (Niederbichler
et al., 2006). Importantly, when incubated with C5a, CMs iso-
lated from both sham and CLP animals developed defective
contractility and relaxation (Niederbichler et al., 2006). These
defects were attenuated in septic rodents receiving anti-C5a
antibody treatment, indicating that C5a might play a central
role in cardiac dysfunction during sepsis. “Cardiosuppressive
cytokines,” the definition of which is based on their ability
to disrupt normal contractile function of normal CMs, have
been described in patients with sepsis, and include IL-6, TNF-
α, and IL-1β (Cain et al., 1999; Joulin et al., 2007; Ward, 2010).
Furthermore, a recent study showed that polymicrobial sepsis
greatly induced generation of inflammatory mediators in hearts,
and CMs isolated from septic rodents spontaneously secreted

cytokines and chemokines (IL-6, TNF-α, IL-1β, MIP-1α, MIP-
2, MCP-1, KC, and IL-10) in a time-dependent manner (Atefi
et al., 2011). In contrast, CMs obtained from septic rodents
receiving neutralizing antibody to C5a produced significant less
amount of the inflammatory mediators. Thus, C5a production
during sepsis resulted in increased expressions of cytokines and
chemokines in CMs, leading to cardiac dysfunction (Atefi et al.,
2011) (Figure 3). The role of IL-10 in CM function during sep-
sis is unclear. IL-10 is considered to have anti-inflammatory
effect and may be protective of septic heart by antagoniz-
ing other inflammatory mediators’ effects, which represents a
negative feedback mechanism regulated by C5a (Figure 3). In
line with this hypothesis, a recent study shows that IL-10 pre-
vents TNF-α induced cardiomyocyte apoptosis (Dhingra et al.,
2011).
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FIGURE 3 | Role of C5a signaling in cardiac dysfunction in sepsis. In
cecal ligation and puncture (CLP)-induced sepsis, expression of C5aR, but
not C5L2, on CMs is increased. C5a increased production of inflammatory
mediators (IL-6, TNF-α, etc.,) and anti-inflammatory mediator (IL-10) from
CMs in a C5aR-, C5L2-, and IL-17-dependent mechanism. The resulting
cytokine storm impaired CM contractility leading to “septic
myocardiopathy.” C5a-dependent IL-10 may function as a negative feedback
regulator of CM function during sepsis.

NEUTROPHILS AND COLLATERAL TISSUE DAMAGE IN
SEPSIS
During CLP-induced sepsis, multiple organ failure occurs. When
compared with control, CLP mice displayed higher level of
plasma urea level, which indicated that the filtrating function
of the kidneys was impaired (Dahlke et al., 2011). In addition,
renal vascular permeability was significantly induced by sep-
tic shock, which was demonstrated by increased extravascular
Evans blue leak (Benjamim et al., 2005). Liver cell damage and
abnormal liver function were also induced by CLP as proved
by elevated GOT/AST level—an indicator of liver cell injury,
and bilirubin level, which suggested impairment of normal liver
function (Dahlke et al., 2011). Moreover, CLP leads to pulmonary
dysfunction. Histological assay showed that CLP-induced lung
structural change such as alveolar swelling and inflammatory cell
accumulation (Dahlke et al., 2011). Impairment of other organs,
such as thymus, adrenal medulla, and heart, were also observed
during septic shock (Riedemann et al., 2002a; Niederbichler et al.,
2006; Flierl et al., 2008a). CLP-induced collateral tissue damages
might be due to bacterial accumulation in lungs, kidneys, livers,
and spleens (Riedemann et al., 2002b; Scott et al., 2003; Dahlke

et al., 2011). However, whether CLP could induce bacterial bur-
den in heart is still an open question. During sepsis-induced
systemic inflammation, neutrophil influx into lungs and livers
were elevated, as reflected by increased MPO activity in the
corresponding organs (Scott et al., 2003; Dahlke et al., 2011).
Transmigration of neutrophil from vascular vessels into collateral
tissues is indispensible for bacterial clearance; however, exces-
sive neutrophil accumulation could lead to tissue damages. It has
been demonstrated that during CLP-induced sepsis, rat receiv-
ing anti-C5 antibody showed decreased bacterial load in spleen
and liver compared with those receiving control IgG (Buras et al.,
2004). In addition, anti-C5 treatment attenuated lung injury by
reduced neutrophil influx (Buras et al., 2004), indicating that
CLP might stimulate inappropriate neutrophil accumulation in
tissues. Cardiac dysfunction-induced by CLP could be also alle-
viated by blocking C5a signaling (Niederbichler et al., 2006).
Moreover, CLP-induced bacterial influx into lungs, kidneys, and
livers could be reduced by disruption of C5aR (Riedemann et al.,
2002b). Furthermore, disruption of C5aR could prevent thymo-
cytes and adrenal medulla cells from apoptotic death (Riedemann
et al., 2002a; Flierl et al., 2008a). However, the effect of C5aR
on neutrophil accumulation in different organs and tissue (kid-
ney, liver, lung and spleen) damages remains largely unknown. In
addition, the role of C5L2 in bacterial dissemination, tissue accu-
mulation of neutrophils, and organ damages is still enigmatic,
though C5L2 deficient mice were resistant to CLP-induced sys-
tematic inflammatory reactions and subsequent death (Rittirsch
et al., 2008).

EXPRESSION AND FUNCTION OF C5aR IN SEPSIS
C5a can bind two receptors on the cells: C5aR and C5L2. C5aR
(CD88) is a G-protein-coupled receptor with seven transmem-
brane segments. C5aR has a molecular weight of 45 kDa, and
binds to C5a with high affinity, to a lesser extent, to C5a des
Arg. The expression and function of C5aR in neutrophils dur-
ing sepsis have been studied. After CLP in rats, C5aR content
on neutrophils gradually decreased, reached the nadir at 24 h
after onset of sepsis, and progressively increased thereafter (Guo
et al., 2003). Mechanistically, the dynamic change of C5aR on
neutrophil surface during sepsis might be due to internalization,
followed by reconstitution (Guo et al., 2003). The result was con-
sistent with the previous study that the association of C5a with
C5aR caused rapid internalization of the ligand-receptor com-
plex in neutrophils, followed by recycling of C5aR to the cell
surface (Van Epps et al., 1990; Naik et al., 1997; Gilbert et al.,
2001). Importantly, intravenous administration of neutralizing
antibody to C5a markedly prevented decrease of C5aR content
on neutrophils (Guo et al., 2003), suggesting that sepsis-induced
rapid internalization of C5aR was likely caused by systemic
appearance of C5a. Except for C5a-induced internalization, C5aR
expression could also be regulated at transcription level by other
inflammatory mediators generated during sepsis. For instance,
C5aR mRNA expression was greatly reduced in monocytes and
monocyte-derived dendritic cells by Th2 cytokine IL-4 (Soruri
et al., 2003), which was significantly up-regulated during sepsis
(Song et al., 2000). Surface content of C5aR on neutrophils might
play an important role in their function. The lowest level of C5aR
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content on neutrophils 24 h after onset of CLP was accompanied
by defective oxidative burst [decreased production of reactive
oxygen species (ROS), especially H2O2] (Guo et al., 2003), which
might be important for bacterial killing ability of neutrophils.
Furthermore, the gradually increased expression of C5aR on neu-
trophils after 24 h CLP was correlated with elevated oxidative
burst activity (Guo et al., 2003). Therefore, it seems that low level
of C5aR on neutrophils might lead to reduced ROS production
and followed high bacterial burden 24 h after CLP. However, the
exact relationship between C5aR level and production of reactive
nitrogen species (RNS) that may be more important for bac-
tericidal activity is still unknown. On the other hand, there is
no direct evidence demonstrating that reduced oxidative burst
activity of neutrophils was due to decreased C5aR on surfaces;
hence, use of C5aR knockout neutrophils is necessary to examine
its influence on ROS and RNS expressions during CLP-induced
sepsis.

The role of C5aR in sepsis was recently determined by gene
knockout approach. In mid-grade CLP, 31% of wild type mice
survived, whereas 80% of C5aR-deficient mice survived in a
7-days survival study, indicating the contribution of C5aR to
harmful outcome of CLP-induced sepsis (Rittirsch et al., 2008).
Furthermore, plasma levels of IL-1β, IL-6, MIP-2, and MIP-1α

were obviously down-regulated in C5aR knockout mice when
compared with wild type littermates (Rittirsch et al., 2008), sug-
gesting that the harmful effects of C5aR during sepsis might result
from C5a-mediated cytokine storm. Unfortunately, although
C5aR blockade treatment resulted in lower bacterial burden in
various organs, the influence of C5aR on bacterial counts was
not investigated in C5aR-knockout mice. In line with this result,
disruption of the C5a receptor gene significantly increases resis-
tance to acute Gram-negative bacteremia, and endotoxic shock
following an intravenous infusion of purified E. coli endotoxin
(Hollmann et al., 2008). The role of C5aR in sepsis was also inves-
tigated by using a C5aR antagonist, C5aRa. C5aRa is a cyclic
peptide to compete with C5a for binding to C5aR. During sepsis,
C5aRa treatment blocked chemotactic responses of neutrophils to
C5a, and prevented C5a/C5aR-induced paralysis of innate immu-
nity, which led to improved survival in a 9-days survival study
(Huber-Lang et al., 2002a). These studies further indicate C5aR
as a potential therapeutic target in sepsis.

Originally, C5aR was thought to be exclusively expressed
in myeloid cells such as macrophages, monocytes, neutrophils,
basophils, and eosinophils (Solomkin et al., 1981; Gerard et al.,
1989; Kurimoto et al., 1989; Werfel et al., 1992; Bosmann et al.,
2012). There were now growing evidences that C5aR is expressed
on a variety of non-myeloid cells. These include bronchial
and alveolar epithelial cells, smooth muscle cells, Kupffer cells,
endothelial cells, astrocytes, kidney tubular epithelial cells, and
other parenchymal cells of solid organs such as lung, kidney,
liver, and heart (Strunk et al., 1988; Gasque et al., 1995; Haviland
et al., 1995; Lacy et al., 1995; Wetsel, 1995; Schieferdecker et al.,
1997; Fayyazi et al., 2000; Zahedi et al., 2000; Drouin et al.,
2001; Riedemann et al., 2002c; Sun et al., 2009). During the
onset of experimental sepsis in rodents, up-regulated expression
of C5aR was found in whole organs including lung, thymus,
kidney, liver, and heart (Riedemann et al., 2002b) (Riedemann

et al., 2003c), though CLP-induced C5aR level on neutrophils
was reduced (Guo et al., 2003). Because lower C5aR level was
accompanied by defective respiratory burst in neutrophils (Guo
et al., 2003), disruption of C5aR function in other cell types
except for neutrophils might contribute to improved survival rate
during CLP-induced sepsis. Functionally, mice receiving blocking
antibody to C5aR immediate after onset of CLP showed dramat-
ically improved survival in a 7-days survival study (Riedemann
et al., 2002b). Furthermore, anti-C5aR treatment led to a signif-
icant reduction of serum levels of IL-6 and TNF-α, and bacterial
counts in a variety of organs (lung, liver, and kidney) when
compared with normal IgG injection (Riedemann et al., 2002b).
Using CLP-induced sepsis model in mice, IL-6 blockade was
shown to have protective effects on sepsis, which are linked to
reduced C5a receptor expression in lung, liver, kidney, and heart
(Riedemann et al., 2003c). In another study, C5aR expression was
markedly elevated on bronchial epithelial cells in LPS-induced
systemic inflammation model (Drouin et al., 2001). However, the
pathogenic role of C5aR signaling pathway in these organs during
sepsis remains poorly understood.

C5aR was constitutively expressed in γδT cells and its expres-
sion was further enhanced in mice undergoing sepsis at both
transcription and translation level (Han et al., 2011). In vitro,
C5aR expression was elevated in γδT cells treated with C5a (Han
et al., 2011), and incubation of γδT cells with C5a stimulated
IL-17 expression (Han et al., 2011), implying the involvement
of C5a/C5aR signaling in the release of inflammatory media-
tors from γδT cells during sepsis. Interestingly, our previous data
showed that IL-17 released from γδT cells during experimental
sepsis contributed to high concentrations of pro-inflammatory
mediators and bacteremia, leading to a low survival rate (Flierl
et al., 2008b).

C5aR expression in other cells and organs plays an important
role in apoptosis during sepsis. C5aR expression was increased
in thymocytes as early as 3 h after CLP, and peaked at 12 h
(Riedemann et al., 2002a). The increased C5aR expression was
accompanied by the elevated binding of C5a to the receptor
on cell surfaces, leading to apoptosis-mediated loss of lymphoid
cells (Riedemann et al., 2002a). Therefore, C5aR may be a pos-
sible therapeutic target to control unexpected apoptotic loss of
lymphoid cells at the early stage of sepsis, preventing lethal
immunosuppression. Clinically, catecholamines are frequently
used last-resort drugs to prevent cardiovascular dysfunctions
during severe sepsis. However, the mechanisms regulating their
production during sepsis remain largely unknown. Recently, it
was found that blockade of both C5aR and C5L2 abolished
adrenomedullary apoptosis in vivo during sepsis, further suggest-
ing that C5aR and C5L2 may be promising targets with impli-
cations on future complement-blocking strategies in the clinical
setting of sepsis (Flierl et al., 2008a). C5aR in heart may also play
a critical role in the development of reversible cardiac dysfunction
commonly occurred during sepsis. A recent study demonstrated
that C5aR mRNA level in hearts rose almost 3-fold as early as
6 h after CLP (Atefi et al., 2011). Furthermore, CMs isolated from
C5aR- or C5L2-knockout rodents undergoing sepsis secreted low
level of inflammatory mediators, which was comparable to sham
group (Atefi et al., 2011).
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C5aR was expressed in splenic NK and NKT cells (Fusakio
et al., 2011). NK and NKT cells from C5aR knockout mice
infected with E. coli expressed less CD69 (the marker of NK and
NKT cell activation) when compared with their wild type coun-
terparts, suggesting that C5aR signaling regulates the activation of
NK and NKT cells (Fusakio et al., 2011). Furthermore, C5aR defi-
ciency resulted in a reduced release of IFN-γ and TNF-α by NKT
and NK cells and in an impaired recruitment of NKT and NK
cells to the site of infection (Fusakio et al., 2011). Importantly,
the absence of C5aR, NKT, and NK cells, but not of C5L2, led
to significantly increased survival from sepsis, which was associ-
ated with reduced IFN-γ and TNF-α serum levels (Fusakio et al.,
2011). These results together indicate that C5aR activation may
represent a novel pathway driving detrimental effects of NKT and
NK cells during sepsis. In addition, C5a and Toll-like receptor
(TLR) acted synergistically to stimulate TNF-α and IFN-γ expres-
sions in NK and NKT cells (Fusakio et al., 2011). Interestingly,
the cognate antigen-mediated NKT cell activation was inhibited
by C5a, suggesting that C5a might play a dual role in NKT cell
activation (Fusakio et al., 2011).

ROLE OF C5L2 IN SEPSIS
C5L2 is the newly identified C5a receptor, which has a molecu-
lar weight similar to C5aR. C5L2 belongs to a subfamily of C3a,
C5a, and fMLP receptors, and like C5aR, it is expressed in vari-
ous types of cell such as granulocytes and dendritic cells (Ohno
et al., 2000). While C5L2 binds to C5a and C5a des Arg with
high affinity, the interaction between C5L2 and other ligands
such as C3a and C3a des Arg, is still a matter of controversy
(Gerard et al., 2005; Kalant et al., 2005; Johswich et al., 2006; Chen
et al., 2007; Scola et al., 2009). Unlike C5aR, C5L2 is uncoupled
from G-proteins due to the replacement of arginine by leucine
in the DRY region of the third intracellular loop, and the associ-
ation of C5L2 with C5a induces no intracellular calcium influx
(Okinaga et al., 2003; Scola et al., 2009). C5L2 was thus pro-
posed to function as a recycling decoy receptor to remove active
complement fragments from the extracellular environment (Scola
et al., 2009). The majority of C5L2 are located in cytosol in
the “resting” PMN, which was in striking contrast to C5aR that
mainly appears to be on cell surfaces (Johswich et al., 2006; Scola
et al., 2009). C5L2 can play both anti-inflammatory and pro-
inflammatory roles. For example, C5L2 could protect mice from
IgG immune complex-induced acute lung injury and inflamma-
tion (Gerard et al., 2005). Conversely, in a mouse model of OVA-
or house dust mite-induced allergic asthma, C5L2 deficiency led
to a attenuated asthmatic phenotype with the decreased airway
hyper-responsiveness (AHR) and Th2 cytokine expression, and
reduced airway accumulation of lymphocytes and eosinophils
numbers as well as serum IgE level. Therefore, C5L2 may play
opposite roles in distinct diseases (Zhang et al., 2010).

The functional role of C5L2 in sepsis remains poorly under-
stood. In CLP-induced sepsis, C5L2 expression in neutrophils was
increased, and C5L2 on cell surfaces did not undergo internal-
ization as C5aR (Gao et al., 2005), suggesting the expression of
C5aR and C5L2 are regulated by different mechanisms during
sepsis. C5L2 expression was significantly increased in lung and
liver in septic mice (Gao et al., 2005). Importantly, anti-C5L2

antibody-treated mice showed increased serum IL-6 level during
CLP-induced sepsis (Gao et al., 2005). Furthermore, in vitro study
using blood neutrophils showed that IL-6 expression-induced by
LPS and C5a was further amplified by anti-C5L2 antibody treat-
ment (Gao et al., 2005), indicating that C5L2 negatively regulated
IL-6 generation. In line with these results, a recent study shows
that TLR activation enhances C5a-induced pro-inflammatory
responses in peripheral blood mononuclear cell (PBMC) and
whole blood by negatively modulating the C5L2 (Raby et al.,
2011). These data support the hypothesis that C5L2 could act
as a “decoy” receptor to dampen inflammatory response during
CLP-induced sepsis. Contrary to these speculations, C5L2 was
shown to be a functional receptor rather than merely a decoy
receptor (Rittirsch et al., 2008). In a mid-grade CLP model, 31%
of wild type mice survived, whereas all C5L2 knockout mice
survived in a 7-days survival study, suggesting a critical role of
C5L2 in the harmful outcome of sepsis (Rittirsch et al., 2008).
The effect of C5L2 during sepsis was linked to its regulation
of both inflammatory cytokines (IL-1β, MIP-2, and MIP-1α)
and plasma high mobility globulin β1 (HMGB1) in the blood
(Rittirsch et al., 2008). These data suggest that C5L2 is a positive
regulator of sepsis. In contrast to the finding in CLP model, C5L2-
deficient mice showed increased susceptibility to lethal effects of
LPS injection compared with control littermates (Chen et al.,
2007). Furthermore, LPS-injected mutant mice showed higher IL-
1β serum levels, indicating that the increased susceptibility was
associated with elevation of some inflammatory cytokines (Chen
et al., 2007). These results suggest that C5L2 plays a key role
in the regulatory mechanism that protects against LPS-induced
shock responses. Interestingly, C5L2 seems to have a functional
role in heart during sepsis. Cardiomyocyte (CMs) isolated from
wild mice undergoing sepsis produced high levels of IL-6, TNF-α,
IL-1β, MIP-1α, MIP-2, MCP-1, and KC, while CMs from C5L2-
deficient mice secreted significant low level of the inflammatory
mediators (Atefi et al., 2011). These data suggest that C5aR and
C5L2 contribute synergistically to the harmful consequences in
heart during sepsis.

CONCLUSIONS
Sepsis in human beings results in a high death rate. The thera-
peutic options remain limited and controversial. Following the
recent updated review that no evidence suggests APC should
be used for treating patients with severe sepsis or septic shock
(Marti-Carvajal et al., 2012) and withdraw of Xigris [a recombi-
nant human activated protein C (rhAPC)] from market in 2011,
the search for “silver bullet” for the treatment of sepsis will con-
tinue. In septic human beings, there is abundant evidence for
complement activation and C5a production. Interception of C5a
or its receptors in the CLP model greatly improves survival in sep-
tic rodent. Mechanically, these observations are mainly linked to
the recovery of blood neutrophil function during sepsis. Thus,
anti-C5a strategy holds great promise for the treatment of sep-
sis. Eculizumab (trade name Soliris), a recombinant humanized
monoclonal antibody that inhibits C5 cleavage by the C5 con-
vertase via binding to C5 was recently approved for atypical
hemolytic-uremic syndrome (aHUS), a disease that causes abnor-
mal blood clots to form in the kidneys (2011). This will encourage
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the development of effective humanized monoclonal antibody
targeting C5a or its receptors.

On the other hand, the molecular signaling whereby
C5a/C5aRs regulates neutrophil function at different stages of
sepsis remains poorly understood. Furthermore, although both
C5aR and C5L2 are expressed in various other cell types and
organs, their potential role in organ function during sepsis are
not known. Importantly, many anti-C5a antibodies also bind
C5, thus preventing the formation of the terminal complement
complex C5b-9 which is important for controlling bacterial
infection. Clearly, the anti-C5a strategy remains to be carefully
evaluated in future clinical research and trials. Interestingly, a
recent study shows that resolvin 2 (RvD2), a new member of
lipid mediators enzymatically generated within resolution net-
works that possess unique and specific functions to orchestrate

catabasis, potently reduced C5a-mediated neutrophil-endothelial
interactions to reduce microbial peritonitis (Spite et al., 2009).
Furthermore, RvD2 significantly inhibited C5a-stimulated extra-
cellular superoxide generation (Spite et al., 2009). In CLP-induced
sepsis, RvD2 sharply decreased the excessive cytokine production,
neutrophil recruitment, bacterial burden while increasing peri-
toneal mononuclear cells and macrophage phagocytosis (Spite
et al., 2009). These pro-resolving actions together translate to
increased survival from CLP-induced sepsis (Spite et al., 2009). It
is tempting to speculate that C5a/C5aRs signaling pathway may
be a major target of resolvins. Understanding how the mecha-
nisms by which activation of C5a/C5aR/C5L2 regulate cell and
organ function including inflammatory responses and apoptosis
is no doubt a fruitful field for future progress in prevention and
treatment of sepsis.
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