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Abstract: Medical infrared thermography has proven to be a complementary procedure to physio-

logical disorders, such as the diabetic foot. However, the technique remains essentially based on 2D 

images that display partial anatomy. In this context, a 3D thermal model provides improved visu-

alization and faster inspection. This paper presents a 3D reconstruction method associated with 

temperature information. The proposed solution is based on a Structure from Motion and Multi-

view Stereo approach, exploiting a set of multimodal merged images. The infrared images were 

obtained by automatically processing the radiometric data to remove thermal interferences, seg-

ment the RoI, enhance false-color contrast, and for multimodal co-registration under a controlled 

environment and a ∆T < 2.6% between the RoI and thermal interferences. The geometric verification 

accuracy was 77% ± 2%. Moreover, a normalized error was adjusted per sample based on a linear 

model to compensate for the curvature emissivity (error ≈ 10% near to 90°). The 3D models were 

displayed with temperature information and interaction controls to observe any point of view. The 

temperature sidebar values were assigned with information retrieved only from the RoI. The results 

have proven the feasibility of the 3D multimodal construction to be used as a promising tool in the 

diagnosis of diabetic foot. 
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1. Introduction 

According to the International Diabetes Federation, 463 million people were diag-

nosed with diabetes mellitus (DM) in 2019. Among them, from 40% to 60% have periph-

eral neuropathy, as a result of diabetic foot complications [1,2]. Commonly, diabetic foot 

carries a risk for DM patients since it could lead to amputation below the knee joint as a 

preventive procedure. Furthermore, DM is responsible for a lower limb amputation every 

30 s [3]. Several efforts have been focused on the early detection of the diabetic foot by 

exploiting medical imaging modalities, such as MRI, radiography, and thermography as-

sociated with image processing techniques [4,5]. However, the anticipated diagnosis usu-

ally received limited attention in terms of research [6]. Table 1 summarizes the state-of-
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Abstract: Medical infrared thermography has proven to be a complementary procedure to physio-
logical disorders, such as the diabetic foot. However, the technique remains essentially based on
2D images that display partial anatomy. In this context, a 3D thermal model provides improved
visualization and faster inspection. This paper presents a 3D reconstruction method associated with
temperature information. The proposed solution is based on a Structure from Motion and Multi-view
Stereo approach, exploiting a set of multimodal merged images. The infrared images were obtained
by automatically processing the radiometric data to remove thermal interferences, segment the RoI,
enhance false-color contrast, and for multimodal co-registration under a controlled environment
and a ∆T < 2.6% between the RoI and thermal interferences. The geometric verification accuracy
was 77% ± 2%. Moreover, a normalized error was adjusted per sample based on a linear model to
compensate for the curvature emissivity (error ≈ 10% near to 90◦). The 3D models were displayed
with temperature information and interaction controls to observe any point of view. The temperature
sidebar values were assigned with information retrieved only from the RoI. The results have proven
the feasibility of the 3D multimodal construction to be used as a promising tool in the diagnosis of
diabetic foot.

Keywords: diabetic foot; thermal 3D surface; IR radiometric processing; Structure from Motion;
medical thermography; infrared sensors; developing world diagnostics

1. Introduction

According to the International Diabetes Federation, 463 million people were diagnosed
with diabetes mellitus (DM) in 2019. Among them, from 40% to 60% have peripheral
neuropathy, as a result of diabetic foot complications [1,2]. Commonly, diabetic foot carries
a risk for DM patients since it could lead to amputation below the knee joint as a preventive
procedure. Furthermore, DM is responsible for a lower limb amputation every 30 s [3].
Several efforts have been focused on the early detection of the diabetic foot by exploiting
medical imaging modalities, such as MRI, radiography, and thermography associated with
image processing techniques [4,5]. However, the anticipated diagnosis usually received
limited attention in terms of research [6]. Table 1 summarizes the state-of-the-art related to
the diagnosis of the diabetic foot with different medical imaging modalities.
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Table 1. State-of-the-art of medical imaging for DM complication studies on lower limb and foot.

Author Year Medical Imaging Technique Application

Short and Zgonis [7] 2017 Tomography and MRI Diabetic Charcot neuroarthropathy

Ramanujam et al. [8] 2018 Radiography and MRI Diabetic Foot Osteomyelitis and Partial
Foot Amputations

Toledo Peral et al. [9] 2018 Digital image processing Skin Macules Characterization

Goyal et al. [10] 2020 Image-based machine
learning algorithms Recognition of ischemia and infection

Maldonado et al. [11] 2020 Image-based machine learning
algorithms and thermography Diabetic foot necrosis detection

Bayareh Mancilla et al. [12] 2021 Radiometry data and digital
image processing

Detection of regions with
non-homogeneous temperatures

Although the study of DM has several approaches in terms of medical imaging, in-
frared thermography (IRT) has the advantage of being a contactless, non-invasive, and
passive method. IRT is an alternative method for monitoring superficial body temperatures
to detect diseases since abnormal body temperature is a natural indicator of illness or com-
plications [11–14]. This technique measures radiometric information to obtain correlations
between the skin surface temperature and the underlying physiological process, which
is commonly visible as a false-color image [15–17]. The IR radiation emitted by the skin
surface is detected by an array of microbolometers and interpreted as temperature [17].

The measurement protocols in medical thermography consider external factors such
as airflows, room temperature, and humidity. However, the acceptance of the IRT by
the medical community still remains a challenge due to the uncontrolled acquisition
conditions. Improved standardization and a better understanding of the relationship
between temperature and physiology remain in the research stage [18]. Nevertheless, IRT is
a continuously evolving technology; in recent years, the development of IR equipment was
significant in terms of data acquisition and image processing techniques. The improvements
are focused on the automatic analysis of the temperature in the region of interest (RoI)
to detect thermal patterns [19–21]. Currently, several types of thermal cameras have
dedicated software for the digital processing of the data and images produced by the
arrays of sensors [22]. The gradual IR medical application has increased, not only due to
technological advances but also because IRT does not require the use of ionizing radiation
and is a non-invasive procedure. Thus, the patient will never be harmed, and the technique
helps to apply a fast examination. IRT has proven to be a valuable imaging technology in
terms of clinical quantitative evaluation of pathologies and detection of thermal patterns in
the human body [23].

On the other hand, the combination between IR and visible-light modalities is relevant
for quantitative studies that can facilitate advanced processing, such as 3D reconstruction,
which is particularly essential in the biomedical field. An effective image fusion can allow
to retrieve information from the original data and integrates it onto the merged images
without any artifacts that would compromise the accuracy. Table 2 summarizes some recent
biomedical applications and methods for IR and visible-light fusion.

Table 2. Overview of recent studies regarding the registration between visible and thermal images.

Author Year Method Application

Liu [24] 2017 Convolutional neural networks Multi-modal medical image fusion
aims

El-Hoseny et al. [25] 2019 Non-sub-Sampled Shearlet Transform and
Modified Central Force Optimization

Object detection and
medical diagnosis

González-Pérez et al. [20] 2021
Geometric Optical Translation, Homography,
Iterative Closest Point, and Affine transform

with Gradient Descent
Diabetic foot monitoring
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Although the studies presented in Table 2 apply robust techniques for multimodal
image registration, the segmentation is carried out manually for IR images.

Since the IRT procedure has become a valuable tool for the early detection of several
diseases, it remains essentially a 2D technique that does not provide useful anatomical
information since it only displays partial information of the lower limb [26]. Furthermore,
typical 2D thermal images are not optimal in terms of reproducibility. The correlation
between thermograms or quantitative analysis of the same object depend on the distance
and angle between the sensor and the body under observation. In such a context, a 3D
anatomical model could improve clinical pre-diagnosis by providing a more comprehensive
and faster inspection of the plantar, lateral, and dorsal regions as a single entity. A 3D
model allows visualizing lower limbs in a more exploitable way than the planar information
seen in 2D images, since 3D information is useful for studying temperature differences
from any viewpoint of the foot surface. Table 3 resumes an overview of the state-of-
the-art contributions regarding the 3D reconstruction methods using IR images in the
biomedical field.

Table 3. Overview of the 3D reconstruction techniques based on visible-light images and/or IR images. Although the
acquisition techniques are different, the objective is common for all the reported papers for a 3D structure estimation.

Author Year Method Optical
Technique

Data/Image
Processing

3D Structure
Estimation Acquisition Application

Souza et al. [27] 2015 Structured
light Active Particle Swarm

Optimization
Structure

from motion
Sequential

frames
General

purposes

Chernov et al. [28] 2017 Stereoscopy Active
Correlation

between depth
and IR images

Structure
from motion

Non-
sequential

multi-frame

Breast recon-
struction

van Doremalen
et al. [29] 2019 Stereoscopy Passive Projective

transformation Not reported
Non-

sequential
multi-frame

Diabetic Foot
study

de Queiroz Júnior
and de Lima [30] 2020 Stereoscopy Passive

Manual tracing
of the profile

curve
Not reported Sequential

frames

Breast
pathologies

study

As IRT implementation advances in the medical community, technological improve-
ments in optical sensors from thermographic cameras and image processing have made
the Structure from Motion (SfM) and Multi-view Stereo (MVS) techniques effective and
common methods for the estimation of 3D surfaces. These techniques were conceived to
have visible-light images as input since they require invariant scale feature detection and
matching of homologous 2D structure seen from different viewpoints. Thermal images can
be determined using the radiometric information acquired with thermal cameras; however,
the structure and texture features are usually not detectable in false-color images. Thus,
the fusion of IR and visible-light images seen from identical viewpoints is required when
SfM and MVS are applied in SfM algorithms.

The SfM method estimates the three-dimensional shape of a scene using only its
two-dimensional projections taken from different viewpoints. The first step lies in the
determination of homologous feature points for different images. One of the most common
feature point extraction and description methods is the scale-invariant feature transform
(SIFT) [31]. The feature vectors (or descriptors) are used to track feature points (most
often located on the corner) along the image sequence to find correspondences (groups of
homologous points correspond to the same 3D point). A geometric verification is carried
out to validate potentially overlapping images using homography [32] as a model in the
Random Sample Consensus (RANSAC) algorithm [33]. The SfM algorithm is an iterative
optimization process that uses the point tracks to simultaneously determine the camera
trajectory and the cloud of 3D points lying on the surface to be reconstructed [33–35]. On
the other hand, the Multi-view Stereo method exploits the sparse point cloud and the
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camera positions given by the SfM step to reconstruct a dense point cloud with the textures
of the images [36]. While the 3D structure estimation is obtained by the SfM method,
some MVS applications may require a structured and sequential input to reduce errors
and improve the accuracy of the 3D reconstruction, especially when the images do not
have good quality or lack appropriate illumination [37]. A meshed surface is determined
using the dense point cloud and the image colors and textures are finally projected on this
surface [35].

This paper describes a method to achieve a 3D anatomical model by exploiting the
fusion of IR and visible-light images associated with temperature information. In a com-
parison of the state-of-the-art, the novelty of this contribution lies in the accurate and
automatic segmentation of radiometric arrays based on temperature threshold criteria
under certain conditions. The advantage of processing radiometric data instead of a false-
color image lies in the fact that the RoI can be delimited in terms of a set of temperature
values, while the background can be set to zero. In this sense, it is possible to automatically
segment a region with search criteria for a specific temperature range in a one-dimensional
array, instead of processing a false-color image for a specific segmentation process. This
method can automatically eliminate thermal interferences, detect the region of interest, and
enhance the RoI contrast. In essence, the method was designed to automatically obtain
merged images in which only the RoI would contain false colors, proportionally to the
measured temperature.

The paper structure is as follows: Section 2 describes the instrumental set-up, the
acquisition protocol, the radiometric data processing, IR image reconstruction, and the
automatic overlapping of the visible-light and IR images, the estimation of the point cloud,
and the textured surface and the temperature information association. In Section 3, the
results and their analyses are presented, and the discussion and conclusion are provided in
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Instrumentation Features

The data were acquired with a Ti32 thermal camera (Fluke, Everett, WA, USA), gener-
ally used for industrial applications. The thermal camera is equipped with visible-light
and IR sensors. Each capture contains the radiometric information and visible-light images,
stored as an IS2 format file. The equipment features are described in Table 4. Additionally,
the camera has a handle, with dimensions 27.7 cm × 12.2 cm × 17.0 cm, with an advantage
of being transportable to healthcare centers for future studies.

Table 4. Fluke Ti32 Commercial Thermal Imager characteristics.

Characteristics Range Units

Visible-light sensor resolution 480 × 640 Pixel
Infrared sensor resolution 240 × 320 Pixel

Temperature Range −20 to +600 ◦C
Thermal Sensitivity ≤50 mK

Infrared Spectral Band 8–14 µm
Minimal focus distance 46 cm

Refresh rate 60 Hz

2.2. Thermal Calibration

To ensure accurate temperature measurements, a calibration was performed with a
10 cm × 10 cm blackbody, which consisted of a matte, black-painted aluminum plate with
a smooth texture. The plate was placed inside a sealed container, as shown in Figure 1a.
The container with the blackbody was placed inside the thermal bath depicted in Figure 1b.
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Figure 1. Temperature calibration material. (a) Blackbody placed inside a sealed container to isolate
the upper surface from the water. (b) Thermally controlled water bath with the blackbody placed
inside the closed bath container.

The thermal camera emissivity was set to 98%, as this value corresponds to the human
skin thermal property, which could be considered as a blackbody [38]. Then, the sensor was
placed 20 cm away from the blackbody surface and a standard thermometer was located
inside the container. The water was heated from 22 to 44 ◦C in 2 ◦C steps, with a settling
time of 2 min at each step for temperature stabilization. The temperature was measured on
the center point of the plate, which is expected to have a homogeneous distribution along
the surface. Figure 2 describes the diagram of the calibration system.

Figure 2. Thermal calibration system.

2.3. Acquisition Protocol and Curvature Effect Correction

The volunteer selection was carried out by a public invitation. The samples required
for the purposes this first approach only required volunteers indistinctly with a history
of DM. The informed consent was presented to the participants under the guidelines of
the World Health Organization. Each volunteer was informed that their health, integrity,
and personal data will not be exposed and will be kept confidential during and after the
publication of this research. Due to the main objective to obtain a 3D model of the foot, the
recruitment conditions neither considered age, gender, or background of DM, nor visible
alterations on the foot.

Each volunteer was seated with the right lower limb in a straight position and was
instructed to remain as steady as possible. The foot rested over a support base with an
angle guide and thermal insulating background, as illustrated in Figure 3. The proposed
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protocol was based on passive thermography, in which the foot was exposed to room
temperature for 15 min to generate a thermal equilibrium and avoid drastic temperature
changes and the samples were taken in a radial sequence. Sudden temperature fluctuations
could cause surface distortions or loss of correlation at the feature-matching stage between
two consecutive images.

Figure 3. Foot posture during the image acquisition. (a) Lateral view of the foot on the resting base with angle and the
thermal insulating foam background. (b) Frontal view. It is noteworthy that the pink background foam is large enough to
isolate the foot from the remaining body of the volunteer so that the IR radiation does not interfere with the captured frame.

The camera was placed at 95 cm from the foot, in a parallel position, and rotated
every 12◦ around the resting chair in order to obtain 15 captures per volunteer, i.e., 15
visible-light frames and 15 radiometric data arrays from left to right viewpoints of the foot.
The equipment was stabilized with a tripod to avoid motion artifacts and the time between
the acquisition of two consecutive samples was 13 s. The capture timing prevented spatial
or thermal blurring. Additionally, with the controlled environmental conditions, airflows
are avoided, so that the acquired surfaces do not have drastic temperature variations. The
acquisition trajectory is illustrated in Figure 4.

Figure 4. The sequence trajectory in the XZ plane is represented by the red arc. The camera was
placed in a vertical position regarding the foot.

A limitation in temperature acquisition with a curvature trajectory is the susceptibility
to angular emissivity despite the uniform temperature distribution along the skin surface.
This physical factor impacts the relative temperature recording, inducing errors for each
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capture at different angles [39]. To deal with such issues, there are models for an estimation
of the errors due to the viewpoint angle. The approach proposed by Cheng et al. [40]
suggests a linear model related to directional emissivity for the error measurement, as
described in Equation (1):

∆T =
Tn − T(θ)

Tn − Ta
(1)

where, ∆T is the temperature error normalized to the range [0,1], Tn is the temperature
measured at a normal angle (i.e., 90◦), T(θ) is the temperature obtained at any viewing angle
different from the normal angle, and Ta is the room temperature (i.e., 20 ◦C for our study).
For each sample, the average temperature was retrieved between the metatarsal and heel
zone since they presented a homogeneous distribution, and the area is visible within each
capture (see Figure 5). A total of 8 samples were taken for each dataset, from 0◦ to 90◦.

Figure 5. Thermal images taken from different viewpoints. (a) Reference sample at a normal angle. (b) The last sample at a
90◦ angle change position. For each sample, the average temperature was retrieved within a marker box.

2.4. IR Radiometric Data Extraction and Processing

A specific feature of the IRT technique is that the object of interest is warmer or
cooler than the background in certain environments [41,42]. In medical thermography, the
limb was left to cool with the room temperature in such a way that the temperature was
homogenized [43,44]. However, due to the physiological processes of the human body, the
limb usually has a higher temperature than the surrounding environment. In addition,
medical thermography protocols, in general, suggest maintaining a controlled environment
without continuous air flows and heat sources at the scene [15,43].

In terms of data processing, this feature enables a high contrast between the RoI
and the background, leading to a relatively easy way to segment the RoI. However, the
capture may be affected by heat interferences due to several external factors, such as
lamps, electronic equipment, surrounding people, thermal shadows, reflections, or even
the volunteer body heat. The flowchart presented in Figure 6 summarizes the overall
process for extracting and processing the information. The input is a temperature matrix,
while the output is an IR false-color image with the segmented RoI in jet colormap scale
(blue to red). Each radiometric array was represented as a color-scaled image in which the
colors have a direct correlation to the temperature intensity measured in each frame.
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Figure 6. Flowchart of the radiometric data processing to obtain a segmented IR image, without interferences or non-
desirable artifacts.

Although the thermal camera has a management software (SmartView), an automated
processing for our specific purpose such as the segmentation of the RoI is not available.

The data was extracted from each IS2 file with a version of the READIS2 Matlab code,
written by Beauducel et al. [45]. The code was modified for this paper, i.e., extract the 14-bit
radiometric data interpreted as temperature given in degrees Celsius and exported as text
(TXT) format, while the visible-light images were extracted in Portable Network Graphics
(PGN) format.

The first step was to perform a normalization of the radiometric data fIR(x, y) so that
the value fnorm(x, y) belongs to the [0,1] interval, see Equation (2):

fnorm(x, y) =
f IR(x, y)−min( f IR(x, y))

max( f IR(x, y))−min( f IR(x, y))
(2)

After the normalized data are thresholded, the values below 0.8 are set to 0, whereas
the other values remain unchanged, see Equation (3):

ft(x, y) =
{

fnorm(x, y), fnorm(x, y) ≥ 0.8
0 , otherwise

(3)

where ft(x, y) is an array with thresholded values. The values below 0.8 were set to zero,
converting them as background components, meanwhile, the values higher than 0.8 were
kept as their normalized original value. Equation (3) homogenizes the components of
the background, removing several interferences in the background. However, some IR
interference may be strong enough to remain present in the background of the thresholded
array ft(x, y). In the binarized image fbin(x, y), these artifacts correspond standardly
to isolated objects with a small area with respect to the RoI. Equation (4) describes the
detection of the regions with enough temperature intensity that remains in ft(x, y):

fbin(x, y) =
{

1, i f ft(x, y) > 0
0, otherwise

(4)

Such non-desirable objects and the RoI, denoted by fobf(x, y), were detected as 4
connected neighborhood regions with a Manhattan distance of r = 1. This step allowed to
segment the RoI and the interferences as islands that have a similar temperature. The RoI is
always located in the center of the frame with a greater area than the non-desirable objects
due to the IR interferences. For this reason, instead of using morphological operators
such as erosion and dilation, the largest and central area was delineated to find the sub-
image, i.e., the foot. The values of the pixels corresponding to non-RoI objects are simply
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set to 0. The binarized images are essential for retrieving the coordinates of the RoI, to
extract the original values of the thresholded array ft(x, y) that correspond only to the foot.
Afterward, the data of the sub-array from ft(x, y) was displayed as a false-color image
with a Jet colormap range from blue to red. The blue color corresponds to the lowest value
(i.e., zero) while the rest of the colors were mapped only on the RoI.

The following process was performed to co-register the IR image onto the visible-light
image. Since the thermal camera is equipped with multi-modal sensors, the foot can be
captured in a single shot. The main reason for considering the images in visible light is that
contrary to the IR images, the visible-light images contain texture and structure information,
which contains feature points and descriptors. This information can be determined for a
robust and accurate surface reconstruction using an SfM approach, so the estimation of the
structure process could use the visible-light images as a reference instead of using only IR
images. Figure 7 describes the fusion process between both modalities.

Figure 7. Flowchart of the multimodal co-registration. For each IR image, the blue background was transformed into black
to apply the alpha mask transformation. The visible-light images were co-registered with the IR images by alignment,
scaling, and merging.

Considering that the background of the IR images is blue color, the component RGB =
(0,0,131) was tracked in each pixel to replace the value into black color, i.e., RGB = (0,0,0),
since the alpha mask described in Equation (5) will make transparent only with black pixels.
Therefore, after performing the alpha mask, the output will be an image with a perfect
segmented RoI and transparent background.

imgIR(x, y) = a · imgIR−original(x, y) + (1− α) · imgblack(x, y), with a = 1 (5)

where imgIR(x, y) is the target image with transparent background, imgIR−original(x, y) is
the IR with a black background, imgblack(x, y) is the background base color, and α is the
transparency factor α ∈ [0,1].

Once the RoI was retrieved with a transparent background, the following step was
performed to co-register the source image onto the visible-light target image. An advantage
of a bifocal system with sensors fixed in the same position is that their scales will be
constant. Therefore, the visible-light images were resized 1.25 times to match the resolution
of the IR images. Then, the source images were cropped to 400 × 300 since both modalities
are aligned inside this spatial region (see Figure 8.)
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Figure 8. Multimodal superimposed images without RoI segmentation.

2.5. Estimation and Reconstruction of the 3D Model with SfM and MVS

Once the multimodal images were merged, they were implemented as input for the 3D
reconstruction stage. The 3D structure estimation search corresponds on the background
of the visible images as a reference to determine the 3D sparse point cloud. Therefore,
using only false-color images, it is not possible to obtain a correct correspondence, so the
retrieved point cloud will not be accurate or null. The 3D reconstruction process was
carried out with the COLMAP software [34] for retrieving the point clouds and camera
positions, while the reconstruction of the dense point cloud, the mesh determination,
and the surface texturing was carried out with Open-MVS libraries [46]. The surface
reconstruction algorithm consists of the following steps:

• Image pre-processing: This step is described in Section 2.4. The false-color images are
retrieved after segmenting the foot based on thresholding criteria. The RoI is mounted
into the visible-light images by scaling and translation. The output of this step is a set
of merged images of both modalities (i.e., IR and visible light).

• SfM: The merged images were converted into the gray level domain by modeling a
weighted addition of the R, G, and B components. Then, the sparse 3D point cloud
and the camera parameters (i.e., position and orientation) were retrieved in this step.
The point cloud is obtained by a cluster of homologous 2D points from the projection
of the same point on different viewpoints, which are used for the estimation of the
point cloud and camera poses [34].

• Dense reconstruction: This step retrieves depth and maps for all co-registered images
to fuse them with the dense point cloud. Then, a dense surface is estimated from the
fused point cloud using Poisson surface reconstruction [47].

• Mesh generation: an estimated surface is obtained by triangular facets from the dense
cloud, based on the mesh-generation algorithm [46].

• Surface texturing: a sharp and accurate color texture of the images is superimposed
on the mesh surface [46].

The 3D reconstruction accuracy of the SfM algorithm used in this contribution was
assessed in [35,48] using a phantom with known dimensions and shape. This phantom
was covered with paper sheets on which human skin images were printed to simulate
in a realistic way textures of a healthy foot and hand epithelium. The 3D surface of this
skin textured phantom was reconstructed using the SfM algorithm. For a surface having
the size of a foot, the mean distance between real and reconstructed point positions is
systematically less than a millimeter. This 3D point reconstruction error is low enough to
ensure an accurate shape reconstruction.
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An advantage of using COLMAP is the robustness and accuracy for the surface recon-
struction, even if the intrinsic camera parameters are unknown [49]. For our application,
the exact scale of the surface is not relevant for the 3D foot representation. During the sur-
face construction, the COLMAP software computes intrinsic camera parameters (notably
the radial distortion parameters, see the first line in Table 5), the 3D camera motion (using
the external camera parameters), and a sparse set of 3D points located on the surface of the
objects. The parameter settings for COLMAP software are provided in Table 5.

Table 5. COLMAP parameters for feature detection, matching, and point cloud estimation.

Parameter Value/Option

Camera model Simple Radial
Guided Matching Activated

Edge threshold 50
Peak threshold 0.00067

The sparse 3D point cloud and camera positions were imported in the Open-MVS
libraries proposed by Cernea [46]. The dense point cloud is used to construct a mesh using
the Poisson surface reconstruction method to retrieve a 3D surface model. The input for
this process is the position of the camera and the point cloud obtained with SfM. The MVS
method ends with the projection of the image textures onto the meshed surface.

2.6. Temperature Association

One of the objectives of this work lies in displaying, in an interactive way, the 3D
surface with temperature information. The 3D model provided by the reconstruction stage
with MVS has a PYL format (Polygon File Format) with a texture map in PNG format. Thus,
MATLAB (MathWorks Inc., Natick, MA, USA) was an appropriate option for displaying
the results along a color bar related to the temperature information extracted from the
radiometric arrays as a proof of concept.

The first task was to convert the PYL model into an OBJ format so that the triangulated
mesh could be imported into MATLAB. The transformation was carried out employing the
code proposed by Abayowa [50], which inspects vertices, faces, and texture information
from a specified OBJ file. The displayed model can be seen from any viewpoint, i.e.,
rotations and scale transformations can be performed, displayed along a color sidebar, using
which colors are proportional to the temperature values. The mapped colors of each IR
image are scaled depending on the hottest point. Figure 9 describes the latter characteristic
of the IR thermography technique, which is a disadvantage under uncontrolled background
conditions causing thermal interferences. However, due to this property, only the maximum
and minimum values may be considered as a reference for adjusting the parameters in the
color sidebar. The values are scaled linearly, being red tones for the highest temperature
and blue tones for the minimum temperature.

A challenge in associating the temperature with the model was to analyze the radio-
metric data that only belong to the RoI and discard the background values. Therefore, the
structured data were built with non-background values in which every coordinate was
retrieved regarding the original temperature matrix. However, each RoI has a different size
and temperature values from one array to another (i.e., from one viewpoint to another).
An approach for this problem is to retrieve the minimum and maximum limits for each
thermal array. Then, the average of the limits was calculated and assigned to the sidebar
scale data input and represented by the Jet colormap. Figure 10 summarizes the procedure.
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Figure 9. Color contrast mapping according to the warmest spot. (a) The hottest spot of the picture
frame is located on the upper limb, which decreases the color contrast of the foot image. (b) The
image was acquired by a wrongly aligned camera since the foam background should completely
cover the volunteer’s body.

Figure 10. Flowchart for obtaining the limits of the color bar function for the temperature matrix set.

2.7. Data for Robustness Testing

To test the robustness and limitations of the segmentation method, samples of IR
radiometric information were obtained in uncontrolled environments on surfaces and
backgrounds that would cause thermal interferences. The data were obtained from the
hand for the simplicity of having immediate samples in scenarios with possible errors
in the capture protocol. The method described in Section 2.4 (see Figure 6) was tested
with these samples to remove thermal interferences and segment the RoI maintaining
the original scale, and then reconstructed as a false-color image. The data were obtained
sequentially by holding the hand motionless while the thermographic equipment was
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rotated in the normal plane around the hand. Three collections of samples were obtained
for different background scenarios and thermal interferences. Figure 11 illustrates some
representative samples.

Figure 11. Samples of radiometric information in an uncontrolled environment are represented in false-color images. These
samples were used to test the robustness of the automatic segmentation method.

3. Results

A calibration with a known thermal distribution on a blackbody was required to
ensure accurate temperature measurements. In this way, the temperature measurement
with the camera retrieves values comparable to a direct measurement with a precise
thermometer. Figure 12 shows the data recorded by the thermal camera on the center of
the plate regarding the water temperature. The average error was 0.4 ◦C with a standard
deviation of 0.2 ◦C, which is considered acceptable to detect variations on a diabetic
foot [51]. The ∆T was adjusted directly on the temperature matrix.

Figure 12. Temperature differences between the measurements of the thermal camera and the
standard thermometer. The red dashed line represents the ground truth values and the blue solid
curve corresponds to the values measured by the calibrated camera.
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Once the ∆T was adjusted, the segmentation method was tested under uncontrolled
conditions to prove the robustness of the algorithm. For this purpose, radiometric data
with thermal interference and reflections were acquired. Figure 13a shows a raw IR image
in which thermal shadows and border blurs can be observed on the fingers and the border
of the hand, respectively. Figure 13b is the result after the normalization and thresholding
steps described in Section 2.4. In this image, the background is homogeneous and the RoI
has low contrast. Figure 13c shows the result after the normalization of the RoI values.
Each temperature matrix was visualized as a false-color image to illustrate the results.

Figure 13. Normalization and segmentation obtained in Section 2.4. (a) False-color image with thermal interferences, (b) IR
image after thresholding step at 0.8. The thresholding leads to a homogeneous image background. (c) Segmentation results
with color contrast on the RoI, in which the false colors represent the temperature intensities.

After the segmentation and contrast stage, there is still a possibility of interferences
due to warm and large objects which are (accidentally) in the field of view, which may lead
to strong intensity signals into the images. However, the RoI cropping method described in
Section 2.4 allows discarding the interference, which is always located at the image borders
and is smaller than the RoI (Figure 14). Smaller thermal interferences located at the borders
can also be detected and removed from the images, as illustrated in Figure 14b,c.

Figure 14. Illustration of the inference treatment. (a) Raw IR image with thermal interferences and reflection, (b) normalized
radiometric data with interference on the corner, (c) area 1 and 2, correspond to warm and large areas with ∆T < 2.6%, but
only the area 1 should be labeled as RoI.

At this point, IR sub-data provides a RoI including a homogenous background instead
of processing a raw IR image, as illustrated in Figure 15. The reconstructed images from
the radiometric data are an interpretation of a color distribution related to the temperature
intensity measured by the sensors.
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Figure 15. (a) Raw IR image, (b) segmentation of the RoI, and removal of artifacts.

Although the proposed method can correctly segment the RoIs, the technique has
limitations. The temperatures lying in RoIs correspond to values higher than 0.8 after the
normalization, leading to [0,1] intervals, while the remaining temperatures are set to zero.
If an interference has a higher temperature of at least 2.6% greater than the RoI, the segmen-
tation method will consider the RoI as a background region. However, if the interferences
have a temperature difference under 2.6%, they will be removed by discriminating the
larger region in the capture frame. Due to this limitation, it is recommended to either have
a thermal insulating background or to avoid thermal artifacts such as light sources, or
persons nearby the experimental system. This limitation was illustrated in Figure 9.

After the RoI segmentation, the background of the sub-image was transformed into a
transparent region. Every pixel with value 131 in the blue channel was transformed into a
black pixel (Figure 16a) and then masked with maximum transparency (Figure 16b).

Figure 16. Illustration of the transparency process. (a) IR image with a black background and (b) IR
image with a transparent background.

As illustrated in Figure 17a, the software of the Ti32 camera has a Picture-In-Picture
which superimposes the images of both modalities. Even with this center superimposition
where both common fields of view are overlapped, the background of the IR image remains,
which is irrelevant for our purposes. Figure 17b shows that, contrary to the Ti32 software
(SmartView), the proposed superimposition method allows to observe only the foot in the
IR image modality from any viewpoint, while having the standard white light information
in the remaining part of the scene.



Sensors 2021, 21, 3918 16 of 24

Figure 17. Multimodal image representation: (a) SmartView Picture-In-Picture image in which the IR
is superimposed on the center of the visible-light image. (b) Results of the merged stage, provided by
an IR image with a transparent background and the visible-light image as the scene.

Figure 18 shows a representative collection of 15 multimodal merged images, in which
the IR-RoI was accurately co-registered for all viewing angles regarding the corresponding
region in the visible-light image, without using manual mounting by software or RoI
detection by classification.

Figure 18. Set of 15 merged image pairs used for determining the 3D point cloud.

Although every radiometric data array has a dimension of 320 × 240, the RoI has a
different dimension depending on the angle of capture, as noticeable in the first columns of
“Image set S1” and “Image set S2” of Table 6. The percentages of these RoI pixels generally
represent less than one-third of the original matrix size. Consequently, all 76,800 values are
not processed or involved in the superimposition process.
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Table 6. RoI elements of the images collection S1 and S2. It is noticed that not all regions of interest
have a constant number of elements.

Image N◦
Image Set S1 (Volunteer 1 Foot) Image Set S2 (Volunteer 2 Foot)

RoI Elements RoI % RoI Elements RoI %

1 14,361 18.7 18,084 23.55
2 16,020 20.86 17,175 22.36
3 15,681 20.42 15,952 20.77
4 15,677 20.41 17,981 23.41
5 13,567 17.67 16,850 21.94
6 12,740 16.59 15,943 20.76
7 11,770 15.33 14,718 19.16
8 13,004 14.32 14,442 18.97
9 16,069 20.92 13,311 17.33
10 12,100 15.76 15,268 19.88
11 12,341 16.07 16,005 20.84
12 13,173 17.15 16,337 21.27
13 14,476 18.85 14,632 19.05
14 14,079 18.33 12,496 16.27
15 13,641 17.76 10,298 13.41

It is recalled that feature points are detected using the SIFT algorithm and their feature
descriptors are used both to find homologous points between image pairs and to track this
homologous point along with all images of the set of acquired data. The results have shown
(see Figure 19 and Table 7) that for the SfM algorithm, it is not only the correspondences
for the IR images that are important but also the matched point pairs are required for
the pixels of the visible-light images. Even if only homologous IR points pairs are finally
used by COLMAP to reconstruct the sparse point of the foot surface, the determination of
visible-light homologous point pairs (spread over the complete image, except in the center)
is required for a precise camera displacement determination (external camera parameters)
which impacts the 3D points’ reconstruction accuracy.

Figure 19. Detected feature points (red dots) and visualization of their correspondence (the green lines represent the link
between homologous points). This figure represents 202 matches between images 6 and 7 from set S1, in which most of the
key points were dismissed, proving that the quality of the model depends on the accuracy of the matching points’ process.

Table 7. Detected and matched features in the two consecutive multimodal images.

Modality
Image Set S1 (Volunteer 1 Foot) Image Set S2 (Volunteer 2 Foot)

Detected Features Detected Features

IR 307,404 99,887
Visible light 465,777 255,421

IR + Visible light 440,978 243,440
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Figure 20 presents the accuracy for the geometric verification stage. The accuracy was
determined between the matching step with the SIFT data and the potentially overlapping
image pairs for a rotating camera capturing on a planar scene and RANSAC as a robust
technique for the estimation of correct correspondences. The accuracy between the number
of images in the matching stage and the geometrical verification was 77% ± 2% for both
image sets. It is noteworthy that the lateral and central images (i.e., 0◦, 90◦, 180◦) have
fewer correspondences.

Figure 20. Geometric verification accuracy for each S1 and S2 image set of the foot.

Robustly matched and accurately homologous point pairs of the visible-light images
were not only relevant for the sparse point cloud determination. Indeed, the camera
positions also have to be accurately known for the dense point cloud estimation and 3D
reconstruction with MVS. Figure 21 shows the positions of the cameras which rotate around
the plane. Table 8 shows the statistics of the surface reconstruction performed by COLMAP.

Figure 21. Successive camera poses (the vertex of the red tetrahedron indicates the camera optical center position while
the complete tetrahedron represents the camera orientation). This figure also shows the sparse 3D point cloud determined
by COLMAP.
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Table 8. Statistics data retrieved by COLMAP.

Statistics Image Set S1
(Volunteer 1 Foot)

Image Set S2
(Volunteer 2 Foot)

Cameras 15 15
Images 15 15

Registered images 15 15
Points 907 1573

Observations 2731 4649
Mean track length 3.01103 2.9555

Mean observations per image 182.067 309.933
Mean reprojection error 0.916495 0.955175

After the 3D point cloud was obtained, the model was exported from the COLMAP
software as a file with an NVM format to the Open-VMS software, to reconstruct the dense
cloud. The point cloud is used to determine a meshed surface’s reconstruction, refining,
and texturing. At the end of the process, a PLY format model is obtained along with
its associated texture in PNG format. The computing time of this complete processing
chain was:

Image set S1: 2.47 min
Image set S2: 3.12 min

Once the 3D reconstruction of the foot was achieved, the temperature error due to the
angular trajectory was compensated. Table 9 shows the errors in percentage concerning
the reference sample at a normal angle. The average temperature recorded between the
metatarsal zone and the heel increased as the angle increased. For both samples, the error
was approximately 10% near 90◦.

Table 9. ∆T regarding the angle of measurement. The temperature was compensated in the original
thermal arrays with the calculated delta.

Angle of
Acquisition (◦)

Image Set S1 (Volunteer Foot 1) Image Set S2 (Volunteer Foot 2)

Average
Temperature (◦C) ∆T (%) Average

Temperature (◦C) ∆T (%)

0 32.44 0.00 31.01 0.00
12 32.84 3.22 31.19 1.63
24 32.88 3.54 31.28 2.45
36 33.16 5.79 31.63 5.63
48 33.24 6.43 31.83 7.45
60 33.31 6.99 31.89 7.99
72 33.24 6.43 32.02 9.17
84 33.64 9.65 32.24 11.17

The error calculated for each angle was compensated in the corresponding thermal
map so that each array had the most accurate temperature, as if it had been measured at a
normal angle. After compensation, the maximal and minimal temperatures for each set
of images were determined. The results of the standard deviation of these maximums
and minimums suggest that this proposal could be an adequate strategy to associate the
temperature intensity with a color scale since the spread regarding the temperature average
is less than 1 ◦C. Table 10 shows the average temperature calculated for image sets S1 and
S2 using their radiometric data arrays.
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Table 10. Average maximum and minimum temperatures for image sets S1 and S2. The temperature
standard deviations were not higher than one degree, which can be acceptable to be considered as
stable information concerning the passive thermography technique.

Image Set Average Maximum
Temperature (◦C)

Standard
Deviation (◦C)

Average Minimum
Temperature (◦C)

Standard
Deviation

(◦C)

S1 36.54 0.24 29.89 0.67
S2 35.04 0.56 30.12 0.78

Figure 22 shows the surfaces of both volunteers’ feet, displayed along with the back-
ground foam and the support on which the foot was placed. A color bar is displayed
with temperature data that associate each color with the surface temperature on the right
side of each model. The 3D model displays only temperatures for the foot as wrapping
textures, providing a quick inspection of the anatomical and physiological state of the foot
under study.

Figure 22. 3D models of the foot in a thermal surface and a visible-light environment. (a) Volunteer 1 and (b) Volunteer 2.

4. Discussion

The results prove the feasibility and the relevance of radiometric data extraction and
processing, to retrieve a segmented IR image merged in a textured visible-light scene. An
IR radiometric processing method can eliminate thermal interference in the background
using thresholds as segmentation criteria before interpreting thermal maps as images.
This approach leads to automate the process regardless of the targeted RoI, under certain
limitations: a controlled environment and the exclusion of heat sources in which the
∆T < 2.6% compared to the RoI. Under other conditions, the segmentation with thermal
arrays would be inadequate. However, medical thermography protocols suggest sampling
in a controlled environment to avoid interferences. Our work proves that when these
recommendations are followed, the proposed method is accurate.

An advantage was that the thermal equipment provides a solution for the parallax
problem, so no additional thermal/spatial calibration was required. Additionally, the
dimensions would provide portability for future clinical validation so the device can be
transported to health centers for future clinic validation. Only a thermal calibration on a
body with known thermal distribution was carried out against a standard thermometer, in
which ∆T = 0.4 ◦C was corrected. In addition, the ∆T error due to the angular emissivity
factor was compensated (error ≈ 10% near to 90◦), a problem that is usually encountered in
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3D thermography studies. Without an angle compensation, a distribution error of 4.74 ◦C
was found on average for both sets.

It is important to point out that the RoI detection was neither based on a specific
segmentation of the foot nor on the implementation of a neural network. Thus, one of
the advantages of this method is that it can be adaptable to other applications in terms
of RoI segmentation with radiometric data, such as portable IR thermography devices
and prototypes based on embedded systems. However, a registration and calibration
method will be required for both sensors. For instance, this study was carried out with
thermographic equipment designed for general/industrial purposes, which dimensions
and handling could allow carrying into research laboratories or health centers for future
studies. For all these reasons, it is expected that the proposed method can be applied to
any thermographic equipment acquiring radiometric information.

Regarding the surface reconstruction, the COLMAP algorithm requires an accurate
feature detection and matching step which cannot be warranted when only IR images
including few textures are used. As a consequence, the visible-light images were essential
as additional data to enable the SfM method to construct surfaces robustly and accurately.
The average accuracy was 77% ± 2% for both image sets, calculated after the RANSAC
correction regard the SIFT matching. The accuracy of a 3D surface depends on the quality
of the images, rather than the number of key points, as the 3D model for the S2 set has
proven. The set S1 had 42% fewer key points than S2, but the reconstruction was visually
more accurate (see Table 8). A possible solution may be improving the visible-light sensor
by including modern cameras with a higher resolution and smaller pixel size. However,
the IR radiometric arrays were fundamental to determine IR images which were exploited
as a “wrapping texture” approach, since they only cover the surface of the model in which
the color distribution is directly related to the temperature intensity. Since the model is
supplied with a temperature scale, it is pertinent to accurately assign the color distribution
proportionally to the temperature intensity of the RoI. The temperature was compensated
concerning the angle of capture since this is a factor in thermography due to angular
emissivity. The ∆T according to the reference sample was suggested to be a linear problem,
so the temperature matrix accuracy was compensated by using Equation (1). The error
adjustment did not influence the color distribution in the RoI but did influence the scale
along with the 3D model.

5. Conclusions

IR medical thermography is recognized as an appropriate technique to detect tem-
perature changes and to assess the evolution of diseases and complications, such as the
diabetic foot. In this paper, a method for the 3D surface reconstruction of the foot displayed
with a temperature scale was presented, aimed at diabetic foot treatment and diagnosis.
The contribution of this work, concerning the most common techniques described in the
state-of-the-art, is the automatic processing of IR radiometric without relaying to manual
manipulation. Automatic processing has the advantage of treating all data and image
arrays under the same segmentation criteria, which also avoids individual manipulation
that can be more time-consuming and is often subject to user interpretation.

The segmentation method is accurate under certain conditions: the RoI should be
warmer than the background to threshold values higher than 0.8 in a range-normalized
array [0 to 1], and if the background thermal interferences are ∆T < 2.6%, regard the RoI
(otherwise, the RoI would be transformed into a background component). Due to this
limitation, it is recommended to either have a thermal insulating background or to avoid
thermal artifacts such as light sources; moreover, the personnel themselves could produce
thermal artifacts.

In essence, our method for automatic segmentation and registration was designed
to obtain multimodal merged images in which only the RoI would contain false colors,
proportionally to the measured temperature. In such a way, the 3D structure estimation
algorithm would use the background components (which are visible light) as a reference
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to determine the 3D sparse point cloud, and the RoI would be exploited as a “wrapping
texture” approach. Otherwise, using only false-color images, it is not possible to obtain a
correct correspondence, so the retrieved point cloud is not accurate or is sometimes null.
The quantity of matched images was 77% ± 2% for multimodal images after the geometric
verification method.

Additionally, the ∆T error due to the angular emissivity factor was compensated
and the temperature was associated with the reconstructed 3D surface to facilitate the
inspection of the physiological state of the foot, and provides additional diagnosis criteria.
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