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Abstract

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases 

including cancer. Since cancer cells are intrinsically buffered to combat metabolic stress, it is 

important to understand how cells may adapt to loss of de novo fatty acid biosynthesis. Here we 

use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in 

human HAP1 cells carrying a loss-of-function mutation in FASN, whose product catalyzes the 
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formation of long-chain fatty acids. FASN mutant cells show a strong dependence on lipid uptake 

that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle 

trafficking, and protein glycosylation. Further support for these functional relationships is derived 

from additional GI screens in query cell lines deficient for other genes involved in lipid 

metabolism, including LDLR, SREBF1, SREBF2, ACACA. Our GI profiles also identify a 

potential role for the previously uncharacterized gene LUR1/C12orf49 in exogenous lipid uptake 

regulation through modulation of SREBF2 signalling in response to lipid starvation. Overall, our 

data highlight the genetic determinants underlying the cellular adaptation associated with loss of 

de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering 

metabolic buffering mechanisms in human cells.

INTRODUCTION

It has long been recognized that cancer cells exploit lipid metabolism to fuel their 

proliferative demands and support oncogenic signalling. Notably, alterations in lipid 

metabolism, including the uptake of lipids and/or synthesis of fatty acids, are not only 

recognized hallmarks of cancer, but also occur commonly in diverse pathologic states such 

as fatty liver disease and metabolic syndrome, underscoring the importance of understanding 

this metabolic process1. De novo fatty acid synthesis in particular has gained significant 

traction as a targetable pathway following observations that overexpression of FASN, which 

encodes fatty acid synthase and catalyzes the formation of long chain fatty acids, and 

ACACA, which codes for Acetyl-CoA Carboxylase Alpha and acts directly upstream of 

FASN, are associated with decreased survival rates for numerous solid malignancies2–6. 

Efforts to develop and translate small molecule inhibitors of FASN (e.g. TVB-2640) have 

helped validate this enzyme as a targetable liability in cancer7,8, and have led to several 

clinical trials (e.g. NCT02223247, NCT02948569, NCT03179904, NCT02980029). Given 

that metabolic pathways are highly buffered to deal with environmental change, genetic 

screening approaches are a powerful strategy to reveal metabolic regulatory mechanisms that 

underscore metabolic redundancy, cross-talk and plasticity9,10. An understanding of how 

cells adapt to perturbation of de novo fatty acid synthesis could help identify new targetable 

vulnerabilities that may inform novel therapeutic strategies or biomarker approaches.

Mapping genetic interaction (GI) networks provides a powerful approach for identifying the 

functional relationships between genes and their corresponding pathways. The systematic 

exploration of pairwise GIs in model organisms revealed that GIs often occur among 

functionally related genes and that GI profiles organize a hierarchy of functional 

modules11,12. Thus, GI mapping has become an effective strategy for identifying functional 

modules and annotating the roles of previously uncharacterized genes. Model organism GI 

mapping has also provided insight into the mechanistic basis of cellular plasticity or 

phenotypic switching that occurs as cells evolve within their environments13,14. 

Accordingly, the insights gained through systematic interrogation of GIs have fuelled 

significant interest to leverage these approaches towards functionally annotating the human 

genome.
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Recent technological advances using CRISPR-Cas enable the systematic mapping of GIs in 

human cells15,16. Here, we explore genome-wide GI screens within the context of human 

query mutant cells defective for de novo fatty acid synthesis. We systematically mapped 

genome-wide GI profiles for six genes involved in lipid metabolism, revealing cellular 

processes that pinpoint genetic vulnerabilities associated with defects in de novo fatty acid 

synthesis. In particular, negative GIs with known fatty acid synthesis genes tend to identify 

other genes that are associated with this process, including a previously uncharacterized 

gene C12orf49 (LUR1), which appears to function as a regulator of exogenous lipid uptake. 

Collectively, our data support the strategy of systematically mapping digenic interactions 

using knockout query cell lines for identifying buffering mechanisms for a given bioprocess 

(i.e. lipid metabolism).

RESULTS

Systematic identification of genetic interactions for de novo fatty acid synthesis

De novo fatty acid synthesis is a multi-step enzymatic process that converts cytosolic acetyl-

CoA, malonyl-CoA, and NADPH to palmitate. Palmitate can be used directly or further 

elongated and/or undergo desaturation to form alternate lipid species. To systematically 

identify GIs associated with this metabolic process, we performed genome-wide CRISPR 

screens in co-isogenic cell lines either wild-type or deficient in FASN, a de novo fatty acid 

synthesis enzyme that is frequently overexpressed in malignancies6,17 (Fig. 1a). We chose 

the human near-haploid cell line HAP1 as a model system, given the relative ease for 

generating knockout (KO) mutations in this background18. We first validated our clonal 

FASN-KO cells by confirming loss of FASN protein levels by western blot (Extended Data 

Fig. 1a). We also performed targeted metabolite profiling of our parental HAP1 and FASN-

KO cells, which revealed a significant increase in the FASN substrate malonyl-CoA in the 

FASN-KO cells, demonstrating their suitability as a model system for defective de novo fatty 

acid synthesis (Extended Data Fig. 1b).

To map FASN GIs, we performed genome-wide CRISPR screens using the sequence 

optimized TKOv3 gRNA library19 in both the FASN-KO query cell line and control wild-

type (WT) HAP1 cells, and we compared the relative abundance of individual gRNAs 

between the screen start (T0) and end (T18) time points (Fig. 1a–b). The relative abundance 

of gRNAs targeting each of ~18,000 genes in WT cells provides an estimate of single mutant 

fitness, whereas the relative abundance of gRNAs in a query mutant cell line provides an 

estimate of double mutant fitness. Since mutant phenotypes can strongly depend on culture 

conditions20 and most standard cell culture media contains supra-physiological nutrient 

levels that could mask phenotypic effects of perturbing certain metabolic pathways, we 

performed our screens utilizing media conditions containing the minimum amounts of 

glucose and glutamine required to sustain proliferation of HAP1 cells; termed limiting 

media (Extended Data Fig. 1c, see Methods).

We developed a quantitative genetic interaction (qGI) score that measures the strength and 

significance of genetic interactions by comparing the relative abundance of gRNAs in a 

given query mutant cell line to the relative abundance of gRNAs targeting the corresponding 

genes in an extensive panel of 21 genome-wide WT HAP1 screens (Fig. 1b, see Methods). 
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In this context, negative interactions are identified as genes whose corresponding gRNAs 

exhibit significantly decreased abundance in a mutant KO background relative to the control 

WT HAP1 cell line, whereas positive interactions reflect genes with increased gRNA 

abundance in a mutant cell line relative to the parental line. The qGI score represents mean-

summarized gRNA-level interactions after disagreeing reagents had been removed (Fig. 1b, 

see Methods).

We performed three independent genome-wide, GI screens using our FASN-KO query 

mutant cell line. Because GIs rely on accurate measurement of single and double mutant 

phenotypes, we first examined the reproducibility of our single and double mutant fitness 

measurements (see Methods). We observed a strong agreement of single gene fitness effects 

(LFC) among 21 replicate WT HAP1 (r > 0.87) (Extended Data Fig. 1d) and double mutant 

fitness effects derived from independent FASN-KO replicate screens (r > 0.89) (Fig. 1c). 

Moreover, all three FASN screens robustly discriminated a set of reference essential genes 

from non-essential genes (Extended Data Fig. 1e–f).

The identification of qGI scores depends on comparison of single mutant fitness 

measurements in a WT HAP1 cell screen and double mutant fitness measurements in a 

query mutant screen, both of which have inherent variability associated with them; therefore, 

the reproducibility of qGIs is expected to be more challenging than the measurement of 

either single or double mutant fitness phenotypes. Indeed, modest agreement was observed 

between qGI scores of the three FASN-KO replicate screens prior to filtering for significant 

interactions (pairwise r = 0.29 to 0.44) (Fig. 1d). The pairwise correlation between replicate 

screens increased substantially when we considered GIs found to be significant (|qGI| > 0.5, 

FDR < 0.5) in at least one (r = 0.52–0.69) or two (r = 0.86–0.94) FASN-KO replicate screens 

(Fig. 1d, Extended Data Fig. 1g–h, Supplementary Table 1).

Leveraging all 3 FASN-KO replicates, we developed a reproducibility score that measures 

each gene’s contribution to the covariance within two replicate screens and summarizes the 

resulting values across all available screen pairs (replicate 1–2, 1–3, 2–3) (Methods, 

Supplementary Table 1). This analysis confirms that both the strongest positive and negative 

qGI scores were highly reproducible across independent screens (Extended Data Fig. 1i). In 

particular, the most reproducible negative GIs with FASN were interactions with SLCO4A1, 

PGRMC2, LDLR, RABL3 and C12orf49 (Extended Data Fig. 1i, Supplementary Table 1). 

We tested three of these top five strongest negative GIs by independent validation assays and 

confirmed all three, examining WT and FASN-KO HAP1 cells expressing gRNAs against 

SLCO4A1, LDLR and C12orf49 (Fig. 1e, Extended Data Fig. 1j).

To generate an aggregate set of FASN GIs, we mean-summarised qGI scores across the three 

replicate screens (Fig. 1f, Supplementary Table 2). At a pathway level, significant negative 

GIs (qGI < −0.5, FDR < 0.5) with FASN were strongly enriched for genes annotated with 

roles in protein glycosylation, vesicle transport and cholesterol metabolism (FDR <0.05) 

(Fig. 1g, Supplementary Table 3). In the global yeast genetic network negative GIs often 

connect functionally related genes11,21, and we observed a similar general trend for the 

FASN negative GIs. For example, the FASN negative GIs included genes with established 

roles in the uptake, transport, and breakdown of low density lipoprotein (LDL), a major 

Aregger et al. Page 4

Nat Metab. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extracellular source of lipids, including the LDL receptor (LDLR) itself and its coreceptor 

adaptor protein (LDLRAP1). We also observed negative GIs between FASN and the 

transcription factor SREBF2, which controls expression of LDLR, as well as SCAP, 

MBTPS1 and MBTPS2, all of which are important for the activation and nuclear 

translocation of SREBF2 upon cholesterol depletion (Fig. 1h). Moreover, we observed 

negative GIs with additional lipid metabolic processes such as cholesterol biosynthesis 

(ACAT2), genes functioning in long chain fatty acid activation and β-oxidation (ACSL1, 
ACSL3), and vesicle trafficking genes (RAB18/10/1A, RABGEF1, RAB3GAP2/1) (Fig. 1h, 

Extended Data Fig. 1k), as well as a positive GI with the gene encoding stearoyl-CoA 

desaturase (SCD), the product of which catalyses the rate-limiting step in the biosynthesis of 

monounsaturated fatty acids. SCD acts downstream of FASN in the elongation and 

desaturation of fatty acids, and loss of SCD seems to be buffered by the upstream 

perturbation of fatty acid synthesis.

The FASN screen also highlighted an enrichment for genes functioning in protein N-linked 

glycosylation (e.g. ALG3/8/9/12, MOGS, DOLPP1, PRKCSH, MGAT2) (Fig. 1g–h, 

Extended Data Fig. 1k). Interestingly, the hexosamine biosynthetic and N-linked 

glycosylation pathways have been implicated in facilitating lipid accumulation from 

environmental sources through direct modulation of N-glycan branching on fatty acid 

transporters, possibly explaining the strong GIs we observe22. N-linked glycosylation is also 

known to play an important role in the activity of LDLR and activation of the SREBP 

transcriptional programs, providing a potential explanation for the interaction between loss 

of FASN and the glycosylation pathway23,24. Currently, we cannot exclude that 

glycosylation of additional targets may play a role in the adaptation to loss of de-novo fatty 

acid biosynthesis but nonetheless, our data highlights a role for N-linked glycosylation in 

fatty acid biosynthesis. Finally, we observed a significant negative GI between FASN and 

SLCO4A1 (Fig. 1f, Extended Data Fig. 1i). SLCO4A1 encodes a member of the organic 

anion-transporting polypeptides (OATPs), which can transport a wide range of structurally 

unrelated compounds including hormones, bile acids and lipid species (prostaglandins)25. 

Which and how these compounds may buffer loss of FASN, or whether SLCO4A1 may be 

involved in the transport of additional metabolites, awaits further investigation. To 

summarize, these results suggest that in the absence of cell autonomous de novo fatty acid 

synthesis, cells depend on uptake and breakdown of lipids from the environment or the 

synthesis of sterols, with our data illuminating the genetic determinants of how cells rewire 

to meet the demand for lipids in proliferating cells.

Expanding the genetic interaction landscape of de novo fatty acid synthesis

To better understand the GI landscape of de novo fatty acid synthesis, we next performed 

pooled genome-wide CRISPR screens using the TKOv3 library in five additional co-

isogenic cell lines harbouring genetic KO of genes that exhibited significant negative GIs 

with our FASN-KO query, including LDLR, C12orf49 and SREBF2 (Supplementary Table 

2), as well as two genes that did not show a negative GI with FASN, including SREBF1, 

which regulates the expression of FASN and other de novo fatty acid genes, and ACACA, 
which functions in the same pathway and immediately upstream of FASN (Fig. 2a)6,17,26. 

Each of these five query gene screens was performed in technical triplicate (i.e. parallel 
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cultures from a common infection). Since these additional GI screens were performed under 

the same conditions as we used for the FASN-KO screens, we applied the same confidence 

threshold on the derived qGI scores (|qGI| > 0.5, FDR < 0.5; Methods) (Fig. 2b–f, Extended 

Data Fig. 2a–b, Supplementary Table 2). At this confidence threshold, we estimated a per-

screen false discovery rate of ~0.3 and a false negative rate of ~0.6 (Methods; Extended Data 

Fig. 1l). Overall, 169 (36%, p < 2e-55) and 69 (49%, p < 2e-109) of the genes that interacted 

with FASN in two or three screens, respectively, also interacted with at least one of the five 

queries (Fig. 2g, Supplementary Table 2).

We next analyzed the functional enrichment across all GIs identified by our fatty acid 

synthesis-related query screens. While we did not detect strong functional enrichment 

amongst the positive GIs in our data set, we observed a clear 5-fold enrichment of negative 

GIs for genes annotated to functionally relevant pathways, which were defined by the 

metabolism-focused HumanCyc standard27 (Extended Data Fig. 2c). We further quantified 

enrichment for pathways annotated at different levels of the HumanCyc database hierarchy, 

including gene sets corresponding to general metabolic reaction categories, sub-categories, 

and finally specific metabolic pathways (Supplementary Table 4). At the most general level 

of the HumanCyc pathway hierarchy, negative GIs from all six genome-wide screens were 

most enriched for genes annotated to the biosynthesis and macromolecule modifications 

pathway categories (Fig. 3a). Further analysis of these terms at a more specific level of the 

HumanCyc hierarchy (i.e. sub-category level), we found that genes exhibiting negative GIs 

were associated with functions related to the roles of our six query genes, including fatty 

acid, lipid and carbohydrate biosynthesis (Fig. 3b, Extended Data Fig. 3a). At a more refined 

level of functional specificity within the fatty acid and lipid biosynthesis pathway, we found 

that each query gene was associated with a significant enrichment for negative GIs with 

functionally-related genes of distinct pathways. For example, the LDLR GI profile includes 

negative GIs with genes in the cholesterol/epoxysqualene biosynthesis pathway (i.e. 

HMGCS1, MSMO1, HMGCR, FDFT1, NSDHL, HSD17B7, SQLE, HSD17B7, ACT2, 
SQLE, LSS) and the ACACA, LDLR and SREBF2 GI profiles include negative GIs with 

fatty acid elongation and biosynthesis pathway genes (FASN, ACACA, OXSM) (Fig. 3c–d). 

Notably, the FASN GI profile, and to a lesser extent the ACACA and LDLR GI profiles, 

revealed negative GIs with pathways and genes involved in N-glycosylation initiation 

(ALG6, ALG13, ALG11, ALG1, ALG2, ALG8, ALG5, ALG3, ALG12, ALG9), processing 

(MOGS, PRKCSH), dolichol monophosphate mannose synthase activity (DPM2, DPM3, 

DPM1), and glycan transfer (STT3A, STT3B) (Fig. 3c, e, Supplementary Table 4).

Our survey of GIs related to perturbation of de novo fatty acid synthesis or exogenous fatty 

acid uptake pathways provided unique insight into the genetic regulation of these processes. 

Specifically, for the SREBF2 screen, while we observed negative GIs with lipid uptake 

genes such as LDLR and LDLRAP1 (Fig. 3f, Supplementary Table 2), none were observed 

with the cholesterol biosynthesis pathway (Fig. 3d, 2d). This observation is consistent with 

SREBF2 being the predominant transcriptional regulator of cholesterol homeostasis26; its 

perturbation does not further reduce cellular fitness in cells deficient for cholesterol 

biosynthesis. In addition, we also detected a strong positive GI between SREBF2 and 

TFAP2C (Fig. 2d). Indeed, theTFAP2 transcription factor family has recently been proposed 

as a ‘master’ regulator of lipid droplet biogenesis28, with our data suggesting that reduced 
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sequestration of lipids into lipid droplets may benefit SREBF2-KO cells to mitigate lipid 

starvation.

In contrast, SREBF1 did not show enrichment for GIs for either the cholesterol or fatty acid 

synthesis pathways (Fig. 3c, Supplementary Table 2). Instead, this query was found to show 

only a strong reciprocal negative GI with its paralog SREBF2, highlighting the functional 

redundancy between the paralog pair (Fig. 2e, Supplementary Table 2) and suggesting that 

SREBF2 may regulate some of the transcriptional targets of SREBF1 as previously 

described26,29. Furthermore, the imbalanced number of GIs between SREBF1 and SREBF2 
may point towards asymmetric paralog evolution, whereby duplicated genes gain or lose 

functional roles at different rates while maintaining partially redundant functions, a process 

previously observed in yeast and human cells30–32.

A novel role for C12orf49 in lipid biosynthesis

One of the strongest negative GIs identified in both the FASN and the ACACA profiles 

involved the uncharacterized gene C12orf49, suggesting that this gene may have a role in 

lipid metabolism (Fig. 1f, 2c, Supplementary Table 2). C12orf49 is a 23.5 kDa protein that is 

part of the UPF0454 family of uncharacterized proteins, contains an N-terminal 

transmembrane sequence, a single uncharacterized DUF2054 domain of approximately 200 

amino acid residues, 14 conserved cysteines (three of which are annotated to form CC-

dimers), and a predicted glycosylation site33 (Extended Data Fig. 4a). In some plant 

proteins, the uncharacterized UPF0454 is found in juxtaposition to a glycosyltransferase 

domain and thus may be targeted into the lumen of the ER or Golgi34. By extension, the 

bulk of the C12orf49 protein may reside in the lumen of the ER or Golgi. In addition, 

C12orf49 is ubiquitously expressed across tissues and cell lines (http://

www.proteinatlas.org )35. Notably, expression of C12orf49 is associated with differential 

prognoses on univariate analysis of TCGA data across multiple tumor types, including 

kidney, breast, liver and sarcoma36 (Extended Data Fig. 4b–e; p < 0.05), which further 

motivated us to study the functional role of this previously uncharacterized gene.

Genetic interactions derived from a genome-wide screen using a C12orf49-KO query cell 

line further supported a role for this gene in lipid biogenesis. Consistent with the results 

described above, C12orf49 showed a strong negative GI with both FASN and ACACA (Fig. 

2f). C12orf49 also showed negative GIs with LDLR, ACSL1 (i.e. encoding acyl-CoA 

synthase), SLC25A1 (i.e. encoding mitochondrial citrate transporter), SCD and SREBF2, 
further supporting a role for this gene in fatty acid biosynthesis (Fig. 2f). Consistently, 

C12orf49 negative GIs were enriched for genes involved in fatty acid metabolism, 

cholesterol biosynthesis and additional metabolic pathways (FDR <0.05) (Fig. 4a, 

Supplementary Table 3). Moreover, as observed for the FASN GI profile, C12orf49 negative 

GIs involved genes functioning in vesicle-mediated trafficking and endocytosis, including 

RAB3GAP2, RABIF, RAB18, VPS18, VPS419 and VPS39 (Supplementary Table 2). 

Beyond vesicle trafficking, many of the genes that showed a negative GI with C12orf49 also 

displayed negative GIs with other query genes in our lipid metabolism panel (e.g. LDLR, 

ALG3, ASCL1, MBTPS2, SLC25A1, PDHA1), supporting the functional relatedness of 
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these genes (Fig. 4b–c, Extended Data Fig. 4f–h). Thus, our lipid metabolism GI map 

strongly implicates C12orf49 as playing a functional role in lipid metabolism.

To further confirm the predictions about C12orf49’s function based on our HAP1 GI data, 

we also examined publicly available data from the 19Q2 DepMap release and observed that 

C12orf49 is essential for fitness in 120 out of 563 cell lines with highest dependencies 

observed for lung, ovarian, pancreatic, colon and bile duct origins37,38. Other genes that 

shared similar cell line essentiality profiles to C12orf49 included SREBF1, SREBF2, 

MBTPS1, SCAP, SCD and ACSL3 (Fig. 4d, Extended Data Fig. 4i). The association of 

C12orf49 with lipid metabolism genes was corroborated by a pathway enrichment analysis 

of the co-essentiality profiles, which revealed strong enrichment for genes annotated to ultra-

long-chain fatty acid biosynthesis (Fig. 4e, Extended Data Fig. 4j). Furthermore, we found 

that cell lines that depend on C12orf49 more frequently had missense mutations in FASN 
(FDR < 20%). Interestingly, germline variants in C12orf49 have also been reported to 

associate with serum lipid abnormalities in high-density lipoprotein (HDL) in a multi-ethnic 

cohort of the Million Veteran Program, further supporting a role for this gene in lipid 

metabolism39. Overall, these observations support a novel function for C12orf49 in lipid 

metabolism that is conserved across diverse cell types.

C12orf49 is a novel regulator of lipid uptake

Given the strong dependency on exogenous lipid uptake for FASN-deficient cells, we 

hypothesized a role for C12orf49 in this biological process. To explore this, we measured 

uptake of labelled LDL particles, which represent one of the major sources of extracellular 

lipids, upon serum or lipid starvation across several HAP1 KO lines. As expected, loss of 

LDLR resulted in abolishment of LDL-staining, while FASN-KO cells displayed increased 

uptake of exogenous lipid (Fig. 5a, Extended Data Fig. 5a). In contrast, loss of C12orf49 
caused a significant reduction of LDL uptake, which was rescued by the exogenous 

expression of C12orf49 (Fig. 5a, Extended Data Fig. 5a). This phenotype was also observed 

in SREBF1- and SREBF2-deficient cells. Notably, this reduction of LDL was not secondary 

to a generalized impairment in receptor-mediated endocytosis, as loss of C12orf49 did not 

impair uptake of labelled transferrin (Extended Data Fig. 5b). We further confirmed a strong 

reduction in LDL uptake in C12orf49 KO cells upon lipoprotein starvation (Extended Data 

Fig. 5c). Overall, these results support the hypothesis that C12orf49 participates in lipid 

homeostasis through regulation of lipid uptake.

To investigate why C12orf49 is required for optimal LDL uptake, we performed proximity-

dependent biotinylation of proteins coupled to mass spectrometry (BioID) to reveal the 

physical neighbourhood in which C12orf49 resides. Because the C12orf49 single predicted 

N-terminal transmembrane domain may direct the C-terminal DUF2054 domain into the 

lumen of the secretory pathway, leaving the N-terminus facing the cytoplasm, BioID-MS 

was performed separately with both N- and C-terminal miniTurbo BirA*-tagged C12orf49 

open reading frames (ORFs) expressed in HEK293 cells. Proximity-based labelling with the 

N-terminal construct captured proteins localizing to various cellular compartments including 

the ER, Golgi apparatus, plasma membrane and the cytosol, whereas the C-terminal 

miniTurbo construct revealed a strong enrichment of proteins localizing to the endoplasmic 
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reticulum (ER) lumen (Fig. 5b, Supplementary Table 5). Furthermore, the BirA* ligase 

fused to the N-terminus captured proximal interactions that are enriched for proteins 

functioning in cholesterol biosynthesis and vesicle-mediated ER – Golgi transport, whereas 

the C-terminus labelled proteins enriched for functions related to protein glycosylation 

(Extended Data Fig. 5d, Supplementary Table 6).

To study the subcellular localization of C12orf49 we performed immunofluorescence 

analysis. This was performed under normal and starved conditions since SREBPs, the master 

regulators of lipid homeostasis, are known to travel between the ER and Golgi in response to 

lipid deprivation26,40. Under normal growth conditions (with serum), C12orf49 containing a 

C-terminal V5 tag (i.e. C12orf49-V5) was localized throughout the ER-Golgi network (Fig. 

5c), consistent with our BioID results. Strikingly, C12orf49-V5 accumulated in the Golgi 

apparatus under serum starvation, as demonstrated by co-staining with GOLGA2, a Golgi 

membrane marker protein (Fig. 5c). These data thus suggest that localization of C12orf49 is 

regulated in a growth condition-dependent manner, involving the shuttling between the ER 

and the Golgi apparatus.

To gain insight into potential protein interactions of C12orf49 we further explored our BioID 

data performed under normal and starved conditions. While 1,688 proteins passed the high-

confidence criteria (≤1% Bayesian FDR) against our negative controls across the four tested 

conditions (Supplementary Table 5), distinguishing between specific proximity partners 

versus the general footprint of the ER-Golgi neighbourhood is challenging. To do this, we 

therefore leveraged a recently-generated reference map of a human cell 

(humancellmap.org)41 containing 192 BioID experiments in HEK293 cells, and compared 

our quantitative profiles to that of these baits. This revealed high-specificity interactions with 

the master lipid homeostatic transcription factor, SREBF2 in addition to SREBF1, SCAP 

and MBTPS1 (Fig. 5d). Notably, GIs were also observed between C12orf49 and SREBF2, 

as well as the SREBF2 regulatory proteases, MBTPS1, MBTPS2, and major SREBF2 
transcriptional target, LDLR. Further, similar to C12orf49, SREBF2 is also known to traffic 

to the Golgi upon serum starvation, whereby it is cleaved and subsequently translocates to 

the nucleus and activates the transcription of genes regulating lipid homeostasis26,40. Given 

this, we hypothesized that C12orf49 could have a role in the activation of the SREBF2.

To investigate a role for C12orf49 in the regulation of SREBF2, we performed RNA-

sequencing experiments under normal and serum-starved conditions across HAP1 WT, 

C12orf49-KO and SREBF2-KO cells (Supplementary Table 7). As expected, serum-

starvation resulted in the induction of a cholesterol biosynthetic transcriptomic signature in 

HAP1 WT cells but not in SREBF2-KO cells (Fig. 5e, Extended Data Fig. 6a–b). In 

C12orf49-KO cells, we observed a SREBF2-mediated transcriptional response similar to 

WT cells, suggesting that C12orf49 is not absolutely required for the activation of SREBF2 

upon serum starvation (Fig. 5e, Extended Data Fig. 6a–b). However, we did notice a trend 

for lower expression of cholesterol biosynthesis and LDL uptake genes in C12orf49-KO 

cells, which was confirmed by analysis of LDLR levels by qRT-PCR and western blot (Fig. 

5f–g). To more directly test the hypothesis that C12orf49 regulates SREBF2 processing, we 

performed western blots to assess cleavage of SREBF2 into its active form following serum 

and lipid starvation. This demonstrated a clear decrease in overall SREBF2 expression and 
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its processing in C12orf49-deficient vs. WT HAP1 and HEK293T cells, a phenotype that 

was not rescued by inhibition of the proteasome (Fig. 5g, Extended Data Fig. 6c), 

confirming the requirement of this gene for optimal SREBF2 activation.

In summary, our unbiased GI screens, transcriptomic, proteomic and biochemical 

investigations reveal a novel role for the uncharacterized gene C12orf49 in the maintenance 

of lipid homeostasis. Our data indicate that C12orf49 localizes in a growth condition-

dependent manner throughout the ER-Golgi network, in parallel with SREBF2, being 

required for full SREBF2 activation as a major lipid homeostasis transcription factor (Fig. 

6). Based on our findings, we suggest that C12orf49 be named LUR1 for its role in Lipid 

Uptake Regulation.

DISCUSSION

The systematic mapping of GIs in model organisms like yeast has provided a detailed view 

into the functional organisation of eukaryotic cells42. Recent advances in CRISPR-based 

genome engineering technologies provide a path for similar systematic GI studies in human 

cells43–48. Here, we apply genome-wide CRISPR-based fitness screens using query mutant 

HAP1 cell lines to systematically map GIs with a focus on lipid metabolism. Our data 

revealed a strong interaction between de novo fatty acid synthesis and lipid uptake 

processes, highlighting a system that balances synthesizing lipids intracellularly with their 

uptake from the extracellular environment. More generally, this analysis confirms that 

relatively strong negative GIs identify functionally related genes, mapping a functional 

wiring diagram for a particular cellular process.

We screened a FASN mutant query cell line multiple times and identified highly confident 

negative GIs, many of which were involved in lipid metabolism. Perturbation of de novo 
fatty acid synthesis has been suggested as a prominent cancer therapeutic approach and 

multiple compounds targeting FASN are currently being tested in clinical trials; for example, 

TVB-2640 is a FASN inhibitor that is being tested in solid tumors in phase 2 trials, while 

both Fatostatin and Betulin are inhibitors of the SREBP-SCAP interaction in pre-clinical 

development6,49. Since single agent therapies often lead to emergence of resistance and 

tumor relapse, it makes sense to pursue therapeutic targets that are synergistic with FASN 

inhibition. Thus, the strong GIs detected in our FASN screen may be informative towards 

future investigations of combinatorial targets or biomarkers to treat diseases that would 

benefit from disruption of de novo fatty acid biosynthesis.

Our focused GI landscape related to de novo fatty acid biosynthesis provides unique insight 

into the genetic dependencies required for response to perturbation of lipid metabolism. 

Several pathways emerge as being most commonly utilized to adapt to perturbations, 

including those involved in alternate fatty acid and cholesterol biosynthesis processes as well 

as lipid uptake. Interestingly, while our screens revealed strong negative GIs between de 
novo fatty acid synthesis and uptake of LDL, we failed to detect interactions with 

transporters of fatty acids. This may be a consequence of the genetic redundancy inherent 

amongst the SLC27A (FATP) fatty acid transporter family50. As previously shown in 

yeast31, functional redundancy between paralogs can mask genetic interactions associated 
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with perturbation of a single gene of a duplicated pair and highlights an important need for 

multi-gene targeting systems to survey complex genetic interactions involving more than 

two genes. Nonetheless, our data suggest a strong functional relationship between de novo 
fatty acid synthesis and glycosylation, and may involve a mechanism wherein cells modify 

the FATP transporters through N-glycosylation, thereby enhancing lipid uptake as suggested 

by Ryczko et al.22. As such, this pathway serves as an obvious focal point not only for 

ongoing mechanistic investigation but also therapeutic development for anti-cancer 

strategies targeting de novo fatty acid synthesis.

Genome-wide GI profiling also revealed an important role for LUR1 (C12orf49) in lipid 

uptake. Interestingly, analysis of the DepMap data revealed that LUR1 is essential in the 

same set of cancer cell lines that also depend on other lipid biosynthesis-related genes for 

viability, including SREBF1, MBTPBS1, SCAP and SCD. Similarly, two recent studies 

identifying co-functional gene clusters, support a functional role of LUR1 in lipid 

metabolism across diverse genetic backgrounds51,52. Furthermore, genome-wide association 

studies with large patient cohorts have found LUR1 variants linked to abnormal HDL 

profiles39, neuroticism53–55 and body height54, all phenotypes that could have root causes in 

lipid metabolism defects.

In summary, we present an unbiased and genome-wide approach for uncovering genetic 

vulnerabilities related to lipid metabolism in human cells, which led us to identify a function 

for LUR1 in regulating SREBF2 activity (Fig. 6). Our GI profiles for de novo fatty acid 

synthesis and related lipid uptake genes provide a resource for studying metabolic rewiring 

and disease phenotypes linked to lipid metabolism. We also demonstrate the power of 

systematic GI profiling using query mutants in a co-isogenic cell line, an approach that can 

be applied to other bioprocesses and expanded to begin generating more comprehensive GI 

maps for human genes.

DATA AND CODE AVAILABILITY

The datasets generated and analysed in this study are included in the manuscript. The raw 

fastq files for the sequencing data are available upon request and have also been deposited to 

the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/): RNA-sequencing data, 

GSE147770. All mass spectrometry data has been deposited to the MassIVE repository 

(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) and assigned the accession number 

MSV000085005. The ProteomeXchange accession is PXD017719. Descriptions of the 

analyses, tools and algorithms are provided in the methods section and the Reporting 

Summary of this article. Custom code for generating gRNA counts from fastq files and code 

for generating qGI-scores will be made available on Github upon publication.

METHODS

Cell culture

Human HAP1 wild type cells were obtained from Horizon Genomics (clone C631, sex: male 

with lost Y chromosome, RRID: CVCL_Y019). The following HAP1 gene knockout cell 

lines were obtained from Horizon: FASN (HZGHC003700c006 – used for GI screening; 
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HZGHC003700c011 – used for hit validation), ACACA (HZGHC004903c002), LDLR 
(HZGHC003978c007), SREBF1 (HZGHC001361c012), SREBF2 (HZGHC000683c004). 

All gene knockout cell lines were confirmed to carry the expected out-of-frame insertions or 

deletions by Sanger Sequencing of PCR products. HAP1 cells were maintained in low 

glucose (10 mM), low glutamine (1 mM) DMEM (Wisent, 319–162-CL) supplemented with 

10% FBS (Life Technologies) and 1% Penicillin/Streptomycin (Life Technologies). This 

culture medium is referred to as “minimal medium”. Cells were dissociated using Trypsin 

(Life Technologies) and all cells were maintained at 37°C and 5% CO2. Cells were regularly 

monitored for mycoplasma infection.

HAP1 KO cell line generation

The HAP1 C12orf49 gene knockout cell line was constructed by first cloning a gRNA 

targeting C12orf49 (Supplementary Table 8) into the pX459v2 backbone (Addgene #62988), 

which was modified to carry the same restriction overhangs as the pLCKO vector (Addgene 

#73311). 350k HAP1 WT cells were seeded into a 6-well plate and 24 hours later cells were 

transfected with a mix of 2 μg pX459 plasmid (Addgene #62988) carrying a gRNA, 6 μl X-

treme Gene transfection reagent (Roche), and 100 μl Opti-MEM media (Life Technologies). 

Twenty-four hours after transfection, cells were selected in medium containing 1 μg/ml 

puromycin for three days and single cells were sorted onto 96-well plates by manual seeding 

of a single cell suspension at 0.6 cells/well. Following amplification of cells from individual 

wells, genomic DNA was extracted with Extracta DNA Prep (Quanta Bio), Sanger 

sequencing was performed across the gRNA target sites following PCR amplification, and 

successful gene knockouts were identified following sequence analysis.

Library virus production and MOI determination

For CRISPR library virus production, 8 million HEK293T cells were seeded per 15 cm plate 

in DMEM medium containing high glucose, pyruvate and 10% FBS. Twenty-four hours 

after seeding, the cells were transfected with a mix of 8 μg lentiviral lentiCRISPRv2 vector 

containing the TKOv3 gRNA library19 (Addgene #90294), 4.8 μg packaging vector psPAX2, 

3.2 μg envelope vector pMD2.G, 48 μl X-treme Gene transfection reagent (Roche) and 1.4 

ml Opti-MEM media (Life Technologies). Twenty-four hours after transfection, the media 

was replaced with serum-free, high-BSA growth media (DMEM, 1.1g/100ml BSA, 1% 

Penicillin/Streptomycin). Virus-containing media was harvested 48 hours after transfection, 

centrifuged at 1,500 rpm for 5 minutes, aliquoted and frozen at −80°C.

For determination of viral titers, 3 million HAP1 cells seeded in 15 cm plates were 

transduced with different dilutions of the TKOv3 lentiviral gRNA library along with 

polybrene (8 μg/ml), in a total of 20 ml medium. After 24 hours, the virus-containing media 

was replaced with 25 ml of fresh media containing puromycin (1 μg/ml), and cells were 

incubated for an additional 48 hours. Multiplicity of infection (MOI) of the titrated virus was 

determined 72 hours post-infection by comparing percent survival of puromycin-selected 

cells to cells that were infected but not selected with puromycin (i.e. puro minus controls).
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Pooled CRISPR dropout screens

For pooled CRISPR dropout screens, 3 million HAP1 cells were seeded in 15 cm plates in 

20 ml of specified media. A total of 90 million cells were transduced with the lentiviral 

TKOv3 library at a MOI~0.3, such that each gRNA is represented in about 200–300 cells. 

Twenty-four hours after infection, transduced cells were selected with 25 ml medium 

containing 1 μg/ml puromycin for 48 hours. Cells were then harvested and pooled, and 30 

million cells were collected for subsequent gDNA extraction and determination of the 

library representation at day 0 (i.e. T0 reference). The pooled cells were then seeded into 

three replicate plates, each containing 18 million cells (>200-fold library coverage), which 

were passaged every three days and maintained at >200-fold library coverage until T18. 

Genomic DNA pellets from each replicate were collected at each day of cell passage.

Preparation of sequencing libraries and Illumina sequencing

Genomic DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega). 

The gDNA pellets were resuspended in TE buffer, and the concentration was estimated by 

Qubit using dsDNA Broad Range Assay reagents (Invitrogen). Sequencing libraries were 

prepared from 50 μg of the extracted gDNA in two PCR steps, the first to enrich guide-RNA 

regions from the genome, and the second to amplify guide-RNA and attach Illumina TruSeq 

adapters with i5 and i7 indices as described previously using staggered primers aligning in 

both orientations to the guide-RNA region (Supplementary Table 8)56. Barcoded libraries 

were gel purified and final concentrations were estimated by quantitative RT-PCR. 

Sequencing libraries were sequenced on an Illumina HiSeq2500 using single read 

sequencing and completed with standard primers for dual indexing with HiSeq SBS Kit v4 

reagents. The first 21 cycles of sequencing were dark cycles, or base additions without 

imaging. The actual 36-bases read begins after the dark cycles and contains two index reads, 

reading the i7 first, followed by i5 sequences. The T0 and T18 time point samples were 

sequenced at 400- and 200-fold library coverage, respectively.

Construction of color-coded lentiCRISPRv2 vectors for co-culture assay

The color-coded lentiCRISPRv2 vectors were derived from the lentiCRISPRv2 vector 

(Addgene #52961) by inserting mCherry (Addgene #36084) or mClover3 (Addgene #74236) 

open reading frames between the Cas9 and PuroR expression cassette. To this end, the 

lentiCRISPRv2 vector was digested with BamHI, PCR products coding for the respective 

fluorescent protein flanked by T2A and P2A self-cleaving peptides were ligated into the 

vector using Gibson assembly. The two forward primers (Supplementary Table 8) were used 

at a 1:0.1:1 (P233:P234:P235) ratio in the same PCR reaction with the reverse primer 

(primers bind to both fluorescent proteins mCherry and mClover3).

Validation of genetic interactions using co-culture assays

For validation of genetic interactions, HAP1 parental and gene knockout clones were 

transduced with color-coded lentiCRISPRv2 vectors targeting either an intergenic site in the 

AAVS1 locus (i.e. negative control), or a specific target gene hit (e.g. LDLR). Each gene 

was targeted with three independent and unique gRNAs. Twenty-four hours after 

transduction, cells were selected with 1 μg/ml puromycin for 48 hours and seeded for co-
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culture proliferation assays as follow: 50k of green (e.g. lentiCRISPRv2-mClover3 AAVS1 
gRNA) and red (e.g. lentiCRISPRv2-mCherry hit gene gRNA) cells were mixed (total 100k) 

in a 6-well plate in both color orientations for both parental and gene knockout cells, 

respectively. Cells were passaged every 4 days until day 12 (T12). Cells were trypsinized, 

washed and stained for dead cells using Zombie NIR (BioLegend). The relative proportion 

of red and green cells in the co-culture were assessed using an LSR Fortessa flow cytometer 

(BD Bioscience). The relative ratio of Hit:AAVS1 was calculated and averaged for the three 

gene-targeting guides and two color orientations.

Low-density lipoprotein and transferrin uptake assay

For uptake experiments with labelled probes 150k HAP1 cells were seeded in a 12-well 

plate. After 48 hours cells were serum-starved or deprived of lipoprotein overnight in 

minimal medium (described above) complemented with 0.3% BSA (BioShop) or 

lipoprotein-deprived FBS (MilliporeSigma, S5394) instead of standard FBS, respectively. 

After 16 hours cells were labelled with Dil-LDL (Invitrogen L3482), pHrodo Red LDL 

(Invitrogen L34356) or pHrodo Red Transferin (P35376) at 2 μg/ml (1:500) in minimal 

medium plus 0.3% BSA for 15 minutes at 37°C. Cells were washed in PBS, trypsinized and 

stained with 7-AAD (BioLegend 420404) or Zoombie NIR (BioLegend 423105) cell 

viability solution at 25 ng/ml (1:2,000) for 5 minutes at room temperature. Staining was 

measured using an LSR Fortessa flow cytometer (BD Bioscience). The gating strategy is 

outlined in Extended Data Fig. 7.

Proximity-based labelling of proteins capture to mass spectrometry (BioID-MS)

BioID-MS analysis was performed essentially as described previously57, with minor 

modifications. In brief, HEK293 Flp-In T-REx lines expressing inducible N- or C-terminal 

miniTurbo-FLAG-tagged C12ORF49 open reading frames were generated58. Five (for 

normal growth condition) and 12.5 (for serum-starvation) Mio. cells were seeded on 15 cm 

plates and after 24 hours, cells were treated with 1 μg/ml tetracycline to induce expression of 

baits. 24 hours later 50 μM biotin was added for labelling of proximal proteins for 3.5 hours. 

Cell pellets were collected and lysed in RIPA lysis buffer (50mM Tris-HCl pH 7.5, 150mM 

NaCl, 0.1% (w/v) SDS, 1% NP-40, 1mM EDTA, 1mM MgCl2; 0.5% Deoxycholate and 

Sigma protease inhibitors were added right before cell lysis.) at an 1:10 (g:ml) ratio, 

sonicated three times for 5 seconds with 2 seconds breaks. 1ul/sample TurboNuclease 

(BioVision) and 1ul/sample RNAse (Sigma) was added and samples were incubated at 4ºC 

for 30 minutes. 20% SDS was added to bring the sample’s final SDS concentration to 

0.25%, samples were mixed well and centrifuged at 14,000 rpm (Microfuge) for 20 mins in 

4ºC. The supernatant was added to Streptavidin resin (pre washed with lysis buffer) using 

30μl bed volume and rotated at 4ºC for 3 hours. Beads were washed after binding as 

following: a) 1×1ml of 2% SDS buffer (2% SDS, 50mM Tris-Hcl pH7.5), b) 1×1ml of lysis 

buffer, c) 1×1ml of HEK293 lysis buffer (with 0.1% NP-40), d) 3×1ml of 50mM ammonium 

bicarbonate (made fresh). After purification of biotinylated preys using streptavidin 

sepharose, samples were digested on beads using trypsin. Samples were separated by liquid 

chromatography and analysed by tandem mass spectrometry on a AB SCIEX TripleTOF™ 

5600 mass spectrometer.
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The LC-MS/MS setup consisted of a TripleTOF™ 5600 (SCIEX, Concord, ON, Canada) 

equipped with a nanoelectrospray ion source connected in-line to an AS-2 Nano-HPLC 

system (Eksigent Technologies, Dublin, CA, USA). The fused silica column (10 cm x ID 75 

μm, OD 360 μm) had an integrated emitter tip prepared in-house using a laser puller (Sutter 

Instrument Co., Novato, CA, USA). The column was packed with ~10 cm of C18 resin 

(Reprosil-Pur, 3.5 μm, Dr.Maisch HPLC GmbH, Germany). 5 μl of sample was loaded onto 

the column using the autosampler at 400nl/min, and the LC delivered the organic phase 

gradient at 200 nl/min over 90 min (2–35% acetonitrile with 0.1% formic acid). The MS 

instrument was operated in data-dependent acquisition mode with 1 MS scan (250 ms; mass 

range 400–1250 m/z) followed by up to 20 MS/MS scans (100 ms each). Only candidate 

ions between two and four charge states were considered, and ions were dynamically 

excluded for 15 s with a 50 mDa window. The isolation width was 0.7 m/z, and minimum 

threshold was set to 250. Between sample injections, 2 blank samples were injected (0.1% 

formic acid), each with 3 rapid gradient cycles at 300 nl/min over 60 min. Before another 

sample was injected, system performance was verified with a 30 min BSA quality control 

run and a 30 min BSA mass calibration run.

Raw files (.WIFF and .WIFF.SCAN) were converted to an MGF format and to an mzML 

format using ProteoWizard (v3.0.4468) and the AB SCIEX MS Data Converter (V1.3 beta), 

as implemented within ProHits59. For human samples, the database used for searches 

consisted of the human and adenovirus sequences in the RefSeq protein database (version 

57). The database was supplemented with “common contaminants” from the Max Planck 

Institute (http://141.61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome 

Machine (GPM; http://www.thegpm.org/crap/index.html), and with commonly used epitope 

tags. The search databases consisted of forward and reverse sequences (labeled “gi 9999” or 

“DECOY”); in total, 72,481 entries were searched for the human database. Spectra were 

analyzed separately using Mascot (2.3.02; Matrix Science) and Comet [2018.01 rev.4] with 

trypsin specificity and up to two missed cleavages; deamidation (Asn or Gln) and oxidation 

(Met) were selected as variable modifications. The fragment mass tolerance was 0.15 Da, 

and the mass window for the precursor was ±35 ppm with charges of 2+ to 4+ (both 

monoisotopic mass). The resulting Comet and Mascot results were individually processed by 

PeptideProphet and combined into a final iProphet output using the Trans-Proteomic 

Pipeline (TPP; Linux version, v5.2.1-dev Flammagenitus, Build-201906251008-exported). 

TPP options were as follows: Peptide prophet were --minprob 0.05 --ppm --decoy DECOY 

--nonparam --accmass --expectscore --decoyprobs and iProphet options were --nonsp --

nonrs --nonsi --nonsm --nonse. All proteins with a minimal iProphet probability of 0.95 and 

two unique peptides were used for analysis.

Data processing and analysis was performed within the ProHits LIMS60 searched against the 

RefSeq human and adenovirus data base, version 57; forward and reverse. Mascot and 

Comet search results were jointly analysed using the iProphet component of the Trans 

Proteomic Pipeline61.

High confidence interactions were determined by scoring bait samples against negative 

control samples (6 runs of miniTurbo-FLAG-EGFP) using the statistical tool 

SAINTexpress62 v3.6.1 with default parameters. Preys with a SAINT score (FDR) of less 
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than 1% were considered as high confidence hits. To calculate specific enrichment of preys 

against a reference dataset, we leveraged the humancellmap.org, a compendium of 192 

BioID baits profiled in HEK293s41. Each SAINTexpress-filtered list was uploaded to the 

“Analyze” module of the humancellmap, and processed using default options. Default 

specificity plots (calculating the specific enrichment of spectral counts for a prey with a bait 

against that across the entire database) were generated within the humancellmap site and 

visualized in ProHits-viz59.

Western blotting

HAP1 WT and FASN KO cells were lysed in buffer F (10 mM Tris pH 7.05, 50 mM NaCl, 

30 mM Na pyrophosphate, 50 mM NaF, 10% Glycerol, 0.5% Triton X-100) and centrifuged 

at 14,000 rpm for 10 minutes. The supernatant was collected and protein concentration was 

determined using Bradford reagent (BioRad). 10–30 μg protein was resolved on 4–12% Bis-

Tris gels (Life Technologies) and transferred to Immobilon-P nitrocellulose membrane 

(Millipore) at 66V for 90 minutes. Subsequently, proteins were detected using anti-FASN 

(1:2,000, Abcam ab128870), anti-SREBP2 (1:250, BD Biosciences 557037), anti-LDLR 

(1:250, ab52818), anti-GAPDH (1:10,000, Santa Cruz 166574) and anti-β-Actin (1:10,000, 

Abcam ab8226) antibodies and proteins were visualized on X-ray film using Super Signal 

chemiluminescence reagent (Thermo Scientific) and Western Lightning ECL Pro 

(PerkinElmer). Scans of uncropped western blots are provided in Source Data Figure 5 and 

Source Data Extended Figures 1, 6.

Immunofluorescence

Cells were seeded on cover slips and fixed with 4% paraformaldehyde in PBS for 10 

minutes at room temperature. Cells were permeabilized with 1% NP-40 in antibody dilution 

solution (PBS, 0.2% BSA, 0.02% sodium azide) for 10 minutes and blocked with 1% goat 

serum for 45 minutes. Cells were incubated with anti-V5 (1:250, Abcam ab27671) and anti-

GOLGA2 antibodies (1:250, Sigma HPA021799) for 1 hour at room temperature. 

Subsequently, cells were incubated with Alexa Fluor488 goat anti-mouse (1:500, Invitrogen 

A-11001) or Alexa Fluor647 anti-rabbit antibodies (1:500, Invitrogen A-21245) and 

counterstained with 1 μg/ml DAPI (Cell Signaling Technology, 4083S) for 45 minutes in the 

dark. Cells were visualized by confocal microscopy (Zeiss LSM 880).

RNA-sequencing

Sample preparation—HAP1 WT, C12orf49 and SREBF2 KO cells were cultured in 

minimal DMEM medium for 48h and either control treated or serum-starved for 4 hours as 

indicated. Each cell line was cultured and processed in three biological replicates. RNA was 

extracted using the RNeasy Kit (QIAGEN) according to manufacturer’s instructions. 18 total 

RNA samples were DNase treated using RNase-free DNase Set (Qiagen, 79254). Samples 

were submitted for mRNA-Seq at the Donnelly Sequencing Centre at the University of 

Toronto (http://ccbr.utoronto.ca/donnelly-sequencing-centre). RNA was quantified using 

Qubit RNA BR (Thermo Fisher Scientific, Q10211) fluorescent chemistry and 1 ng was 

used to obtain RNA Integrity Number (RIN) using the Bioanalyzer RNA 6000 Pico kit 

(Agilent Technologies, 5067–1513). Lowest RIN was 9.5; median RIN score was 9.8. 1000 
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ng per sample was then processed using the NEBNext Ultra II Directional RNA Library 

Prep Kit for Illumina (New England Biolabs, E7760L) and included polyA-enrichment using 

NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, E7490L), 

fragmentation for 15 minutes at 94°C prior to first strand synthesis, and 8 cycles of 

amplification after adapter ligation. 1μL top stock of each purified final library was run on 

an Agilent Bioanalyzer dsDNA High Sensitivity chip (Agilent Technologies, 5067–4626). 

The libraries were quantified using the Quant-iT dsDNA high-sensitivity (Thermo Fisher 

Scientific, Q33120) and were pooled at equimolar ratios after size-adjustment. The final 

pool was run on an Agilent Bioanalyzer dsDNA High Sensitivity chip and quantified using 

NEBNext Library Quant Kit for Illumina (New England Biolabs, E7630L). The quantified 

pool was hybridized at a final concentration of 400 pM and sequenced paired-end on the 

Illumina NovaSeq6000 platform using a S2 flowcell at 2×151 bp read lengths.

Data Processing—Samples were mixed to obtain an average of 35 million clusters that 

passed filtering. Reads shorter than 36bp on either read1 or read2 were removed prior to 

mapping. Reads were aligned to reference genome hg38 and Gencode V25 gene models 

using the STAR short-read aligner (v2.6.0a)63. Approximately 80% of the filtered reads 

mapped uniquely, and the read counts from each sample, computed by STAR, were merged 

into a single matrix using R. The raw and processed data will be deposited in the GEO 

database upon publication of manuscript.

Differential expression—Differentially expressed genes were identified using the 

Bioconductor packages limma (v3.32.10) and edgeR (v3.24.3). The read count matrix was 

filtered using the filterByExpr() function using default parameters. Principal Components 

Analysis was performed to examine the main treatment effects, and to exclude the presence 

of confounding batch effects, using the base R function prcomp(). Samples were normalized 

using calcNormFactors(method=”TMM”) from edgeR and transformed to log2 using 

voom(). Next, a design matrix was specified to fit coefficients for the CRISPR knockouts, 

presence or absence of FBS, and an interaction term to examined differences in the FBS 

effect in the mutant backgrounds. Differentially expressed genes were extracted using 

topTable() with log2( fold-change ) > 0.58 and adjusted P-value less than 0.05.

Quantitative real-time (qRT)-PCR analysis

HAP1 WT, FASN KO and C12orf49 KO cells were cultured in minimal DMEM medium for 

48h and either control treated or serum-starved for 4 hours as indicated. RNA was extracted 

using the RNeasy Kit (QIAGEN) according to manufacturer’s instructions. RNA was 

converted into cDNA using the cVilo master mix (ThermoScientific) according to 

manufacturer’s instructions. The cDNA was amplified and quantified by quantitative PCR 

using a BioRad CFX96 real-time PCR detection system (BioRad) and using the Maxima 

SYBR Green PCR master mix (ThermoScientific) according to manufacturer’s instructions. 

Transcript levels were normalized to GAPDH (see Supplementary Table 8 for primer 

sequences).
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Metabolite profiling

HAP1 WT and FASN-KO cells were cultured in minimal medium for 3 days. Cells were 

washed twice in warm PBS and subsequently flash frozen on liquid nitrogen. Cells were 

scraped in chilled extraction solvent (40% Acetonitrile: 40% Methanol: 20% water, all 

HPLC grade), transferred to clean tubes and shaken for one hour at 4°C and subsequently 

centrifuged at 4°C at max speed for 10 minutes. The supernatants were transferred to a clean 

tube and dried in a speedvac then stored at −80°C until mass spec analysis. Samples were 

reconstituted in water containing Internal Standards D7-Glucose and 13C15N-Tyrosine and 

injected twice through the HPLC (Dionex Corporation) for positive and negative mode 

analysis using a reverse phase column (Inertsil ODS-3, 4.6 mm internal diameter, 150 mm 

length, and 3 μM particle size). In positive mode analysis, the mobile phase gradient ramped 

from 5% to 90% acetonitrile in 16 minutes, remained for 1 minute at 90%, then returned to 

5% acetonitrile in 0.1% acetic acid over two minutes. In negative mode, the acetonitrile 

composition ramped from 5 to 90% in 10 minutes, remained for 1 minute at 90%, then 

returned to 5% acetonitrile in mobile phase (0.1% tributylamine, 0.03% acetic acid, 10% 

methanol). The total runtime in both the positive and negative modes was 20 minutes, the 

samples were maintained at 4°C, and the injection volume was 10 μL. An automated 

washing procedure was included before and after each sample to avoid any sample 

carryover.

The eluted metabolites were analyzed at the optimum polarity in MRM mode on an 

electrospray ionization (ESI) triple-quadrupole mass spectrometer (ABSciex 5500 Qtrap). 

The mass spectrometric data acquisition time for each run was 20 minutes, and the dwell 

time for each MRM channel was 10 ms. Mass spectrometric parameters were as previously 

published64. Metabolite peak areas were determined using Multiquant software (SCIEX, 

Toronto, ON, Canada), normalized to internal standard in each mode yielding an area ratio 

and then further normalized to total cell number for each sample and Malonyl-CoA levels 

were further normalized to WT cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Guide mapping and quantification

FASTQ files from single read sequencing runs were first trimmed by locating constant 

sequence anchors and extracting the 20 bp gRNA sequence preceding the anchor sequence. 

Pre-processed paired reads were aligned to a FASTA file containing the TKOv3 library 

sequences using Bowtie (v0.12.8) allowing up to 2 mismatches and 1 exact alignment 

(specific parameters: -v2 -m1 -p4 --sam-nohead). Successfully aligned reads were counted, 

and merged along with annotations into a matrix.

Scoring of quantitative genetic interactions: the qGI score

To identify and quantify genetic interactions (GI), genome-wide CRISPR/Cas9 screens were 

performed using the TKOv3 gRNA library in HAP1 co-isogenic cell lines. Co-isogenic 

knockout (KO) “query” cell lines were obtained from Horizon Genomics (see above) or 

generated by introducing mutations in target genes of interest (see above) in the parental 

HAP1 cells, which we consider as wild-type (WT). The TKOv3 library contains 71,090 
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guide (g)RNAs that target ~18k human protein-coding genes, most of them with four 

sequence-independent gRNAs19. To quantify GIs, log2 fold-changes (LFC) between read-

depth normalized gRNA abundance in the starting population (T0) and the endpoint (T18) 

were computed. Matched T0 measurement assured that differences between screens during 

library infection and Puromycin selection would not result in false positive GIs. Matched T0 

were stabilized using the median across many T0 measurements (common T0), and those 

two estimates were combined in a weighted fashion to minimize correlation between GI 

scores and residual T0 (matched T0 – common T0).

gRNA-level residual scores were derived for a given genetic background by estimating a 

non-interacting model between LFC values in this background and 21 WT HAP1 

backgrounds. To do so, for each WT-KO screen pair the population of LFC values were M-

A-transformed, which contrast the per-gRNA LFC difference M with per-gRNA mean A. A 

Loess regression was fitted, which was additionally locally stabilized by binning the data 

along A and considered equal bin sizes and equal numbers of data points in every bin. For 

each gRNA, this resulted in 21 residual scores, which represent the contrasts of a given KO 

with the 21 WT HAP1 screen. Under the assumption that genetic interactions are sparse and 

that experimental artefacts such as batch effects would introduce additional signal into the 

population of residual values, we computed a weighted mean of its 21 residual scores by 

giving a higher weight to WT HAP1 screens with lower absolute residual mean of all 71k 

gRNAs. We refer to the resulting value for each gRNA as the “guide-level” GI score. Those 

guide-level GI scores were further normalized. First, locally-defined shifts towards negative 

or positive scores were identified and normalized, based on genome location of the target 

genes. Next, to remove unwanted effects that would arise from screen-to-screen variability, 

we quantified guide-level GI scores for each of the 21 WT HAP1 screens by contrasting a 

given WT screen to the remaining WT screens (as described for the KO-WT comparison 

above). Patterns that explain substantial variance among these WT guide-level GI scores are 

likely to correspond with unwanted experimental artefacts. To remove these artefacts from 

the GI data, we performed singular value decomposition (SVD) on guide-level GI scores of 

the HAP1 WT screens only. We then projected guide-level GI scores onto the left singular 

vectors, and subtracted the resulting signal from the GI scores.

Finally, we computed gene-level genetic interaction scores. First, gRNAs were excluded 

when their guide-level GI profile disagreed with those of the remaining gRNAs against the 

same gene. Specifically, the mean within-gene guide-level GI profile Pearson correlation 

coefficient was computed, which we call the gRNA quality score (QS) and a per-gene 

quality score (gQS) was computed using the median of the gRNA QS for a given gene. For 

each gene, we tested three criteria and excluded the gRNA with the lowest QS, if true. First, 

a gQS above a selected threshold th1 indicated that sufficient signal was present in the 

guide-level GI profiles. Second, a difference between the lowest QS and the gQS above a 

selected threshold th2 indicated sufficient within-gene disagreement. Third, a QS of the 

gRNA with the lowest QS for a given gene below a selected threshold th3 indicated lack of 

gene-specific signal. Based on these criteria, we excluded a gRNA for 648 out of the 17,804 

genes. All remaining guide-level GI values per gene were mean-summarized and their 

significance was computed using limma’s moderated t-test followed by Benjamini-Hochberg 

multiple testing correction.
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Screen reproducibility analysis

Reproducibility of the gRNA library screening data in FASN-KO cells was tested across 

three independent screens. The three screens were started from independent infections with 

lentivirus packaged gRNA library and performed as described above. To assess 

reproducibility of fitness effects, a log2 fold-change (LFC) quantifying the drop-out between 

T0 (after puromycin selection) and T18 (endpoint) was computed for each gene by mean-

summarizing the respective four gRNA LFC values. The Pearson correlation coefficients 

(PCCs) were computed between LFC values of all three pairs of independent replicates.

Our experiments were designed to quantify fitness effect differences due to the introduction 

of a specific mutation into an otherwise isogenic background (i.e. GIs). To assess 

reproducibility of GIs, PCCs were computed between qGI values of all pairs of independent 

replicates. While we assessed screen reproducibility primarily at the gene-level, we also 

computed the gRNA-level GI PCC between the replicates as reference (Extended Data Fig. 

1g).

To test reproducibility of genes, each gene’s contribution to the covariance between a pair of 

FASN-KO screens was computed and divided by the product of standard deviations of both 

given screens. The resulting three pairwise (for replicates A-B, A-C, B-C) gene-level scores 

were mean-summarized to a FASN qGI reproducibility score.

Reproducibility analysis of FASN interactions

We used an MCMC-based approach to measure the reproducibility of FASN GIs. 

Specifically, we first independently scored the three independent FASN replicate screens and 

applied an FDR threshold of FDR 50% to generate positive and negative GI profiles for each 

of the three screens. MCMC was then used to jointly infer false negative and false positive 

rates, as well as a binary consensus FASN GI profile (separately for positive/negative GI). 

Then, using this consensus profile as a standard for evaluation (assuming pairs with 

posterior probability of interaction of > 0.5 as positives), we measured precision and recall 

statistics (averaged across the three screens) at two different cut-offs: a “standard” cut-off 

(absolute qGI score > 0.5 and FDR 50%) and a “stringent” cut-off (absolute qGI score > 0.7 

and FDR 20%).

Precision-recall analysis

To control quality of genome-wide gRNA screens, gene-level fitness effects were estimated 

by computing a log2 fold-change (LFC) quantifying the drop-out between T0 (after 

puromycin selection) and T18 (endpoint) for each gene and mean-summarizing the 

respective four gRNA LFC values. Gold-standard essential (reference) and non-essential 

(background) gene sets were taken from Hart et al., 201565 and Hart et al., 201719. For the 

identification of reference genes using LFC values of a given screen was assessed by 

computing precision over true positive statistics.

Functional evaluation of genetic interactions

To calculate the enrichment of metabolic GIs in different functional standards, we separated 

the metabolic GIs in two different sets: all (background) GI scores and high confidence 
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(reference) GI (FDR < 0.5, |qGI| >= 0.5). Then we calculated the fold enrichment of the 

reference set against the background set in a particular functional standard. First, we 

computed the overlap of metabolic GI pairs as co-annotations in the standard. Then we 

divided the overlap density of the background set into the overlap density of the reference 

set to determine the fold enrichment. Once we got the fold enrichments, we calculated p-

values on the actual overlap counts of the reference and background sets according to 

hypergeometric tests. We used four different functional standards: Human functional 

network66, GO biological processes67, Pathway (Canonical pathways from68), and 

HumanCyc27.

Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis for the FASN and C12orf49 GI screen and the 

BioID experiments were performed using the gProfileR R package using the GO-

Bioprocesses, GO-Molecular Function and Reactome pathway standards69. For the GI 

screens, enrichment analysis was performed for significant negative GIs (qGI < −0.5, FDR < 

0.5), enriched pathways (p<0.05, maximum term size 100) with a similarity of > 50% were 

collapsed using the Cytoscape Enrichment Map function and the mean percentage overlap of 

hits within the term were visualized on a bar plot. For the BioID experiments, GO-Cellular 

compartment and KEGG standards were also included in the analysis. Enrichment analysis 

was performed for significant hits (FDR < 0.01), enriched pathways (p<0.05) with a 

similarity of > 70% were collapsed using the Cytoscape Enrichment Map function and for 

pathways with at least 5 collapsed terms the mean percentage overlap of hits within the term 

were visualized on a bar plot.

Co-occurrence of missense mutations and gene essentiality

Starting from the DepMap (19Q2) dataset, we first filtered down to a subset of cell lines 

(523) that had no more than 1000 called missense mutations. Among this set, we identified 

the subset of cell lines (6 total) that exhibited dependency on C12orf49 (dependency scores 

threshold of < −1.0). Then, for each gene with at least one missense mutation with the 

candidate cell lines, we tested for association between the presence of a missense mutation 

in the corresponding gene and the dependency on C12orf49, using the hypergeometric 

distribution to assess significance and Benjamini and Hochberg multiple hypothesis 

correction. For FASN mutations, we observed 30 cell lines with at least one mutation with 

FASN, and 3 of this set were also dependent on C12orf49 (out of 6) (FDR=18.9%).

Statistical analysis

For all experiments the number of technical and/or biological replicates are listed in the 

figure legends or text. Unless otherwise indicated, statistical significance was assessed via 

one or two factor ANOVA with Fisher’s Least Significant Difference test. Statistical 

analyses were performed using GraphPad Prism 8 (GraphPad Software, La Jolla, California, 

USA) or the R language programming environment. For further information please also refer 

to the Reporting Summary.
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Extended Data

Extended Data Fig. 1. Validation of FASN-KO cells and genetic interactions screens.
(a) Western blot depicting FASN and β-Actin levels in HAP1 parental wildtype (WT) and 

FASN-KO cells. Representative data from three biologically independent experiments.

(b) Bar plot depicting malonyl-CoA levels in HAP1 WT and FASN-KO cells as detected by 

mass spectrometry-based metabolite profiling, normalized to parent HAP1 WT cells. Data 
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are represented as means ± standard deviation; n = four biologically independent 

experiments; two-tailed Mann Whitney U test.

(c) Growth curves of HAP1 WT cells depicting relative cell numbers over 3 days, plotted as 

a function of glucose concentration in mM, in either 0.5 mM (blue), 1 mM (red), 1.5 mM 

(yellow), or 2 mM (black) glutamine.

(d) Histogram showing a frequency distribution of all pairwise Pearson correlation 

coefficients for LFC values (T0/T18) of the 21 WT HAP1 screens.

(e) Precision-recall curves for the three CRISPR replicate screens in HAP1 FASN-KO cells 

using the reference core essential gene set (CEG2) defined in Hart et al., 201719.

(f) Fitness effect (log2 fold-change, LFC) distributions for reference core essential (CEG2) 

and non-essential gene sets defined in Hart et al., 201719 across the three FASN-KO query 

screens.

(g) Agreement of gRNA-level genetic interaction scores with FASN. Scatter plots show all 

possible pairwise combinations of three biological replicate screens. The Pearson correlation 

coefficient (r), based on comparison values for 70,152 gRNAs.

(h) Agreement of FASN quantitative genetic interactions (qGIs). Scatter plots show gene-

level FASN genetic interactions (qGI scores) derived from all possible pairwise 

combinations of three biological replicate screens. The Pearson correlation coefficient (r), 
based on comparison of all qGI scores (r shown in grey, calculated on all the grey and purple 

data points in the scatter plots), or only genetic interactions that exceed a given significance 

threshold (|qGI| > 0.5, FDR < 0.5) in either one screen (logic OR; purple).

(i) Scatter plot showing reproducibility scores as a function of qGI scores for a single FASN-

KO screen (replicate A). Pairwise reproducibility of a qGI score was calculated by 

computing the contribution of each of the 17,804 genes to the covariance between a pair of 

screens divided by the sum of standard deviations. The reproducibility score represents the 

sum of those values across the three pairwise comparisons. Five genes with highest 

reproducibility scores and the most negative qGI scores with the FASN-KO screen (replicate 

A) are labelled.

(j) Establishing the AAVS1 target locus as a good negative control site in HAP1 WT and 

FASN-KO cells. Schematic depicting co-culture validation assays (upper panel). Parental 

WT and FASN-KO cells were stably transduced with color-coded gRNA expression vectors 

carrying an intergenic control or screen hit-targeting gRNA. Color-coded cells are mixed at 

an equal ratio, cultured over two weeks and the relative proportion of green and red cells 

was quantified by flow cytometry. Control co-culture experiments performed in parallel to 

the validation of hit genes depicted in Fig. 1e as indicated above each barplot (lower panel). 

Bar plots are depicting the color ratio of cells carrying two colour-coded gRNAs targeting 

AAVS1 (intergenic control) across WT and two FASN-KO clones as indicated. Experiments 

were performed with three independent gRNA targeting AAVS1 and using both color 

orientations. All data are represented as means ± standard deviation; n = three (LDLR) or 

four (SLCO4A1, C12orf49) biologically independent experiments.

(k) Scatter plots reproducibility scores as a function of qGI scores for the negative genetic 

interaction hits depicted in Fig. 1h functioning in lipid uptake and homeostasis (red), vesicle 

transport genes (black) and glycosylation (blue).
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(l) Precision and recall values for GIs with FASN measured at the standard (|qGI| > 0.5, FDR 

< 0.5) and stringent (|qGI| > 0.7, FDR < 0.2) thresholds. Precision and recall values were 

computed using an MCMC-based approach (see Methods).

Extended Data Fig. 2. Quality control of genetic interaction screens for fatty acid synthesis-
related query genes.
(a) Precision-recall curves distinguishing the reference core essential gene set (CEG2) 

defined in Hart et al., 201719 and a non-essential gene set in CRISPR screens in five HAP1 

knockout query cell lines (LDLR, C12orf49, SREBF2, ACACA, SREBF1-KO).

(b) Fitness effect (LFC) distributions for reference core essential (CEG2) and non-essential 

gene sets defined in Hart et al., 201719 across CRISPR screens in five HAP1 KO cell lines 

(LDLR, C12orf49, SREBF2, ACACA, SREBF1).

(c) Bar plot of enrichment of co-annotation as defined by the Human Functional Network, 

Gene Ontology Bioprocesses (BP), HumanCyc or and aggregation of pathway standards 

(including REACTOME, KEGG or BIOCARTA) for genetic interactions identified across 

all six query genome-wide screens (FASN, LDLR, C12orf49, SREBF2, ACACA, SREBF1). 

Enrichment was tested using a hypergeometric test. See methods for details of analysis.

Extended Data Fig. 3. Pathway enrichment analysis of genetic interactions for fatty acid 
synthesis-related query genes in additional HumanCyc sub-categories.
(a) Dot plot of normalized pathway enrichment values for aggregate GIs across the six query 

genes (FASN, C12orf49, LDLR, SREBF2, ACACA, SREBF1) with sub-categories from 

HumanCyc are indicated. A GI is identified for a query-library pair if the |qGI| > 0.5 and 

FDR < 0.5. Enrichment for positive (yellow) and negative (blue) GI is tested inside Glycan 
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Pathways and Generation of precursor metabolite and energy HumanCyc branches using a 

hypergeometric test. Enrichment with p-value < 0.05 are blue (negative GI) and yellow 

(positive GI). Dot size is proportional to the fold-enrichment in the indicated categories and 

specified in the legend.

Extended Data Fig. 4. Overview of C12orf49, cancer associations, and functional correlates.
(a) Cartoon of C12orf49 protein sequence features and domains.
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(b-e) Kaplan Meier survival plots displaying univariate analysis of TCGA data across 

multiple tumor types including kidney, breast, liver and sarcoma for C12orf49 high vs. low 

expressing tumor tissue (www.kmplot.com )36. Patient numbers at risk (n) are indicated 

below each plot; two-sided logrank test.

(f-h) GI overlap between the 17,804 C12orf49 and SREBF2, SREBF1 and ACACA qGI 

scores shown as pairwise scatter plots with C12orf49 as function of SREBF2 (f), SREBF1 
(g) and ACACA (h). A common negative GI is called if it is significant (qGI < −0.5, FDR < 

0.5) in both screens (indicated in blue). The top 10 strongest common GIs and lipid 

metabolism genes are labelled.

(i) Profile similarity of C12orf49 across genome-wide DepMap CRISPR/Cas9 screens. 

Similarity was quantified by taking all pairwise gene-gene Pearson correlation coefficients 

of CERES score profiles across 563 screens (19Q2 DepMap data release). The distribution 

of 17,633 CERES profile similarity is plotted as a quantile-quantile plot, and the top 18 most 

similar out of 17,633 genes are labelled. Genes associated with lipid metabolism are 

indicated in red.

(j) Pathway analysis of C12orf49 profile similarity. C12orf49 profile similarity scores for all 

17,634 genes represented in the DepMap were mean-summarized by pathway as defined in 

the HumanCyc standard27. Tendencies towards pathway-level similarity (co-essentiality) and 

dissimilarity (exclusivity) with C12orf49 were tested using a two-sided Wilcoxon rank-sum 

test with multiple hypothesis correction using the Benjamini and Hochberg procedure.
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Extended Data Fig. 5. Regulation of LDL uptake and LDLR expression by C12orf49.
(a) Bar plots showing the results of a low density lipoprotein (LDL) uptake assay across the 

indicated HAP1 cell lines using pHrodo-LDL probe. All data are represented as means ± 

standard deviation; n = two (SREBF1, SREBF2) or three (WT, FASN, LDLR, C12orf49, 
WT + C12orf49-V5, C12orf49 + C12orf49-V5) biologically independent experiments; one-

way ANOVA.

(b) Bar plots showing the results of a transferin uptake assay across the indicated HAP1 cell 

lines using pHrodo-Transferin probe. All data are represented as means ± standard deviation; 

n = two (SREBF1, SREBF2) or three (WT, FASN, LDLR, C12orf49, WT + C12orf49-V5, 
C12orf49 + C12orf49-V5) biologically independent experiments; one-way ANOVA.

(c) Bar plots showing the results of a low density lipoprotein (LDL) uptake assay across the 

indicated in lipoprotein-deprived HAP1 cell lines using Dil-LDL probe. All data are 

represented as means ± standard deviation; n = two biologically independent experiments.
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(d) Pathway enrichment analysis of BioID preys captured with N-terminal (top panel) or C-

terminal (bottom panel) miniTurbo-tagged C12orf49 under normal growth conditions using 

the GO molecular function, biological process, cellular compartments, KEGG and Reactome 

standards. Terms for significantly enriched gene sets (p < 0.05, maximum term size 105) are 

indicated and bars depict mean percentage overlap with the indicated term. Numbers next to 

each bar indicate the mean overlap and term sizes, respectively. The greyscale color legend 

for p-values is indicated on the right. P-values were calculated using gProfileR69.

(e) Barplots depicting the number of proteins localizing to indicated cellular compartments 

for preys captured with N-terminal (grey) or C-terminal (black) miniTurbo-tagged C12orf49 

in 293 cells under serum-starvation.

Extended Data Fig. 6. RNAseq and western blot analysis in response to serum or lipoprotein 
starvation and upon inhibition of the proteasome.
(a) Gene ontology enrichment analysis of genes upregulated under serum starvation in 

HAP1 wildtype (WT), C12orf49 or SREBF2-KO cells using GO molecular functions, GO 

bioprocesses and Reactome standards. Gene sets with overlapping members have been 

merged and bars depict mean percentage overlap with the indicated term. Numbers next to 

each bar indicate the mean overlap and term sizes, respectively. The greyscale color legend 

for p-values is indicated on the right; p-values were calculated using gProfileR69.
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(b) Boxplots depicting mean expression and induction of genes assigned with the indicated 

term across HAP1 WT, C12orf49 and SREBF2-KO cells under normal (+FBS) and serum-

starved (-FBS) conditions; n = three biologically independent experiments, two-tailed 

student’s t test. Boxes show IQR, 25th to 75th percentile, with the median indicated by a 

horizontal line. Whiskers extend to the quartile ± 1.5 x IQR.

(c) Western blotting analysis of SREBP2, LDLR and β-Actin levels across the indicated 

HAP1 co-isogenic knockout cell lines in response to overnight lipoprotein withdrawal (−) 

and a short refeeding period (−/+) in presence or absence of the proteasomal inhibitor 

MG132 (10μM MG132 for 5 hours) as indicated. Unprocessed full length and processed C-

terminal SREBP2 products are indicated. Representative data from two biologically 

independent experiments.
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Extended Data Fig. 7. Gating strategy for flow cytometry experiments.
Gating strategies for flow cytometry experiments for (a) co-culture assays and (b) LDL/

Transferrin uptake assays. In all cases the following steps were taken: 1. Forward scatter 

area (FSC-A) vs. side scatter area (SSC-A) were used to separate cell events from debris. 2. 

Forward scatter height (FSC-H) vs. forward scatter width (FSC-W) was used separate single 

cells from aggregates. 3. Forward scatter area (FSC-A) vs. viability stain (7AAD/B695–40 

or Zombie NIR/R780–60) was utilized to gate live cells. For co-culture assays, gating 

scheme for separating GFP/B530–30 vs RFP/YG610–20 positive cells including steps 1–3 
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are shown in panel (a). For Dil-LDL/YG585–15 quantification, marker-positive live cells 

were quantified relative to unstained controls following steps 1–3 as displayed panel (b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-scale identification of digenic interactions with FASN.
(a) Schematic outline for the identification of genetic interactions in co-isogenic HAP1 cell 

lines. FASN knockout (KO) and wildtype parental cells are infected with a lentiviral 

genome-wide CRISPR gene KO library (TKOv3) and gRNA abundance is determined using 

Illumina sequencing of guide RNA (gRNA) sequences amplified from extracted genomic 

DNA from the starting cell population (T0) and end time point (day 18, T18) of the screen.

(b) Schematic outline for scoring quantitative genetic interactions (qGI) across co-isogenic 

query cell lines. First, the log2 fold-change (LFC) for each gRNA comparing sequence 
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abundance at the starting (T0) and end time point (T18) in a given query KO or wildtype 

(WT) cell population are computed. Differential LFC for each gRNA are then estimated by 

comparing its LFC in WT and query KO cells. A series of normalization steps and statistical 

tests are applied to these data to generate gene-level qGI scores and false discovery rates 

(see Methods). The LFC scatterplot (bottom left graph) visualizes differential fitness defects 

in a specific query KO and WT cells, whereas the volcano plot (bottom right graph) 

visualizes qGI scores for a specific query.

(c) Replicate analysis of gene loss of function fitness phenotypes in FASN screens. Scatter 

plots of LFC associated with perturbation of 17,804 individual genes derived from a FASN 
query KO mutant screen conducted in triplicate. Reproducibility of fitness effects were 

determined by measuring Pearson correlation coefficients (r) between all possible pairwise 

combinations of FASN-KO replicate screens.

(d) Evaluation of FASN quantitative genetic interactions (qGIs). qGI scores were measured 

by comparing the LFC for every gene represented in the TKOv3 gRNA library in a FASN-

KO with those observed in a WT cell line, as described. Scatter plots show FASN genetic 

interactions (qGI scores) derived from all possible pairwise combinations of three biological 

replicate screens. The Pearson correlation coefficient (r), based on comparison of all qGI 

scores (r shown in grey, calculated on all the grey and purple data points in the scatter plots), 

or only genetic interactions that exceed a given significance threshold (|qGI| > 0.5, FDR < 

0.5) in both screens (purple).

(e) Validation of FASN negative genetic interaction. Bar plots depict the ratio of WT and 

FASN-KO (2 independent clones, c1 and c2) cells carrying a gRNA targeting SLCO4A1, 
LDLR or C12orf49, which all showed a negative interaction with FASN, compared to a 

gRNA targeting AAVS1 (intergenic control). Experiments were performed with three 

independent gRNAs targeting each genetic interaction screen hit. All data are represented as 

means ± standard deviation; n = 3 (LDLR) or 4 (SLCO4A1, C12orf49) biologically 

independent experiments, one-way ANOVA (Kruskall-Wallis test).

(f) FASN negative and positive genetic interactions. A scatter plot illustrating the fitness 

effect (LFC) of 450 genes in a FASN-KO vs. WT parental HAP1 cell line, which exhibited a 

significant genetic interaction in at least 2 out of 3 FASN-KO replicate screens (|qGI| > 0.5, 

FDR < 0.5). Negative (blue) and positive (yellow) FASN genetic interactions are shown. 

Node size corresponds to the mean absolute qGI score derived from three biologically 

independent replicate screens. Genes with mean absolute qGI score > 1.5 as well as selected 

negative interactions involving genes with established roles in lipid metabolism are 

indicated. Inset displays scatter plot of the fitness effect (LFC) of all 17,804 genes targeted 

by the TKOv3 gRNA library in a FASN-KO vs. WT parental HAP1 cell line. The color 

indicates density of genes.

(g) Enrichment for Gene Ontology (GO) molecular function, GO bioprocesses and 

Reactome terms among genes that exhibited a significant negative genetic interaction with 

FASN (significant in at least 2 FASN replicates, |qGI| > 0.5, FDR < 0.5). The number of 

genes overlapping a particular term and term size are indicated next to each bar, respectively. 

The greyscale color legend for p-values is indicated on the right; p-values were calculated 

using gProfileR69.
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(h) Schematic depicting the function of selected FASN negative interactions known to be 

involved in lipid uptake and homeostasis pathways (red), vesicle transport (black) and 

glycosylation (blue).
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Figure 2. Querying five additional lipid metabolism genes for digenic interactions.
(a) Schematic diagram showing key steps in fatty acid metabolism. The genes encoding the 

proteins mediating these key steps, which are also query genes for genetic interaction 

screens described in the main text, are labelled in red.

(b-f) Volcano plots showing qGI scores and associated significance (-log10 p-value) for the 

17,804 genes targeted by the TKOv3 gRNA library in the (b) LDLR-KO, (c) SREBF2-KO, 

(d) ACACA-KO, (e) SREBF1-KO and (f) C12orf49-KO screens. Colored dots indicate 

genes that meet the standard threshold of |qGI| > 0.5, FDR < 0.5, where positive GIs are 

indicated in yellow and negative GIs in blue. The dot size is proportional to both qGI and 

FDR, calculated as described in the Methods. Genes with |qGI| scores > 1.5 as well as 

selected top negative GI hits associated with lipid metabolism, citrate synthesis and transport 

are indicated.

(g) Heatmap showing overlapping genetic interactions across the six interrogated queries. 

Heatmap displaying genes (x-axis) significantly interacting with FASN across all three 
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FASN replicate screens and at least one additional screened query genes (y-axis) (|qGI| > 

0.5, FDR < 0.5). Positive and negative qGI scores are indicated in yellow and blue, 

respectively. The FASN qGI is represented as the mean qGI from the three FASN screens 

(same data as in Fig. 1f).
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Figure 3. Genetic interactions reveal multiple levels of functional enrichment.
(a) Dot plot of normalized pathway enrichment scores on the HumanCyc category level, 

calculated from qGIs across all six query genes (FASN, C12orf49, LDLR, SREBF2, 
ACACA, SREBF1). A GI is identified for a query-library pair if the |qGI| > 0.5 and FDR < 

0.5. Enrichment for positive (yellow) and negative (blue) GIs is tested in each of the 10 

HumanCyc main pathway categories using a hypergeometric test and considering all 17,804 

genes targeted in the TKOv3 library as the universe. Enrichment with p-value < 0.05 are 

blue (negative GI) and yellow (positive GI). Dot size is proportional to the fold-enrichment 
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in the indicated categories and specified in the legend. Categories indicated in bold are 

further expanded in part (b) and in Extended Data Fig. 3a.

(b) Dot plot of normalized pathway enrichment of GIs on a sub-category level, calculated as 

described in part (a), except that sub-categories were examined inside the Biosynthesis and 

Macromolecule Modification HumanCyc branches. Enrichment with p-value < 0.05 are blue 

(negative GI) and yellow (positive GI). Dot size is proportional to the fold-enrichment in the 

indicated categories and specified in the legend. Categories indicated in bold text are further 

expanded in part (c).

(c) Matrix dot plot of pathway enrichments of GIs for the fatty acid and lipid biosynthesis 

and protein modification sub-categories. Dots show positive (yellow) or negative (blue) z-

transformed qGI scores summarized at a pathway-level. qGI scores were first z-score 

transformed at a gene-level for each genome-wide query screen separately. Then, a mean z-

score was calculated for each pathway for a given query screen. Dot size corresponds to the 

absolute z-transformed mean qGI score, grey dots represent |z| < 0.5. Pathways marked with 

an asterisk are annotated to both protein modification and carbohydrate biosynthesis 

pathways. Bold pathways are shown in (d-e). Pathways were displayed if they shared an 

absolute z-score larger than 1.5 with any query gene.

(d-f) Gene-level heatmaps for genes involved in enriched pathways. qGI scores between 

query genes and all genes from the selected pathways. Positive and negative qGI scores are 

indicated in yellow and blue, respectively.
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Figure 4. C12orf49 genetic interaction profile suggests a functional role in lipid metabolism.
(a) Bar plot depicting pathway enrichment of negative genetic interactions with C12orf49 (|

qGI| > 0.5, FDR < 0.5) using GO molecular functions, GO bioprocesses and Reactome 

standards. Significantly enriched gene sets (p < 0.05, maximum term size 100). Bars depict 

mean percentage overlap with the indicated term, and the numbers next to each bar indicate 

the number of genes overlapping a particular term and term size, respectively. The greyscale 

color legend for p-values is indicated on the right. The greyscale color legend for p-values is 

indicated on the right; p-values were calculated using gProfileR69.

(b) Scatter plot of C12orf49 and FASN qGIs depicting GI overlap between C12orf49 and 

FASN qGI scores. FASN qGI scores are represented as the mean between three independent 

screens. A common negative GI is called if it is significant (qGI < −0.5, FDR < 0.5) in the 

C12orf49-KO screen and significant in 2 of 3 FASN-KO screens (indicated in blue). The top 

10 strongest common GIs, lipid metabolism and vesicle trafficking genes are labelled.

(c) Scatter plot of C12orf49 and LDLR qGIs depicting GI overlap between C12orf49 and 

LDLR qGI scores. A common negative GI is called if it is significant (qGI < −0.5, FDR < 

0.5) in both screens (indicated in blue). The top 10 strongest common GIs and lipid 

metabolism genes are labelled.

(d) Bar plot indicating the C12orf49 profile similarity across genome-wide DepMap 

CRISPR/Cas9 screens. Similarity (i.e. co-essentiality) was quantified by taking all pairwise 

gene-gene Pearson correlation coefficients of CERES score profiles across 563 screens 

(19Q2 DepMap data release). The top 18 out of 17,633 gene profiles most similar to 

C12orf49 are shown. Genes associated with lipid metabolism are indicated in black.
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(e) Volcano plot of pathway enrichment for C12orf49 co-essential genes. C12orf49 co-

essentiality profile scores for all 17,634 genes represented in the DepMap were mean-

summarized by pathway as defined in the HumanCyc standard27. Tendencies towards 

pathway-level similarity (co-essentiality) and dissimilarity (exclusivity) with C12orf49 were 

tested using a two-sided Wilcoxon rank-sum test followed by multiple hypothesis correction 

with the Benjamini and Hochberg procedure.
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Figure 5. C12orf49 shuttles between ER and Golgi and regulates lipid uptake through 
modulation of SREBP2 processing.
(a) Bar plots showing the results of low density lipoprotein (LDL) uptake assays in the 

indicated cells using the Dil-LDL probe. All data are represented as means ± standard 

deviation; n = 4 (SREBF1, SREBF2), 6 (LDLR, WT + C12orf49-V5, C12orf49 + C12orf49-
V5) or 8 (WT, FASN, C12orf49) independent biological replicates; one-way ANOVA.

(b) Schematic outlining proximal protein capture using BioID mass spectrometry analysis 

(upper panel) and analysis of subcellular localization of C12orf49 BioID preys (lower 
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panel). Barplots depicting the fraction of proteins localizing to indicated cellular 

compartments for preys captured with N-terminal (grey) or C-terminal (black) miniTurbo-

tagged C12orf49 in 293 cells. The inset shows a schematic representation of the predicted 

topology and orientation of C12orf49 with respect to the cytoplasm and ER.

(c) Immunofluorescence microscopy analysis of C-terminal V5-tagged C12orf49 in HAP1 

cells under normal (left) or serum-starved (right) growth condition. C12orf49-V5 

localization is shown in green, GOLGA2 is a marker of the Golgi apparatus and shown in 

red, and DAPI (blue) marks the nuclei. Scale bars correspond to 10 μm. Representative data 

from 2 independent biological replicates.

(d) Scatter plot displaying the specificity of detected preys captured with BioID. Average 

spectral counts of preys captured in proximity to N-terminal miniTurbo BirA-tagged 

C12orf49 exposed to serum starvation are plotted against their specificity across hundreds of 

baits listed in the Human Cell Map BioID data set (humancellmap.org)41 (left). The inset 

shows a comparison of the average spectral counts for preys involved in the regulation of 

SREBPs across the different miniTurbo-tagged constructs (i.e. N- and C-terminal) and 

growth conditions (i.e. normal and serum-starved) (right). BFDR was calculated using using 

SAINTexpress62 v3.6.1; n = 3 biologically independent experiments.

(e) Bar plots indicating FPKM expression values from RNA sequencing data for LDLR and 

LDLRAP1 in WT, C12orf49-KO, and SREBF2-KO cells under normal (+FBS) and serum-

starved (-FBS) growth conditions as assessed by RNA sequencing. All data are represented 

as means ± standard deviation; n = 3 independent biological replicates.

(f) Bar plot of relative mRNA expression of LDLR across HAP1 WT, FASN-KO and 

C12orf49-KO cells. All data are represented as means ± standard deviation; n = 3 

independent biological replicates; one-way ANOVA.

(g) Western blotting analysis of SREBP2, LDLR and β-Actin levels across the indicated 

HAP1 co-isogenic knockout cell lines cultured in presence of FBS or exposed to overnight 

serum (left panel) or lipoprotein withdrawal (middle panel) and a short refeeding period 

(−/+). Unprocessed full length (FL) and processed C-terminal SREBP2 products are 

indicated. The same analysis was repeated in HEK293T cells (right panel). Prior protein 

extraction, HEK293T cells were stably transduced with lentiviral Cas9 and gRNA 

expression cassettes, selected and cultured for 4 days. Representative data from 3 

independent biological replicates.
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Figure 6. LUR1/C12orf49 shuttles between ER and Golgi and regulates SREBF2 activation and 
lipid uptake.
Proposed model summarizing functions and locations of key players in lipid metabolism, 

including LUR1/C12orf49, and highlighting the processes induced upon lipid deprivation in 

presence (left) or upon loss of LUR1/C12orf49 (right).

Left panel: (1) upon lipid deprivation (e.g. -LDL) LUR1/C12orf49 and SREBF2 relocate 

from the ER to the Golgi; (2) SREBF2 gets activated in the Golgi through proteolytic 

cleavage; (3) the processed, transcriptionally active domain shuttles to the nucleus where it 

induces expression of target genes required for lipid homeostasis such as LDLR; (4) newly 

synthesized and recycled LDLR shuttle through the ER-Golgi network where they are post-

translationally modified (incl. glycosylation) and traffic to the cell surface; (5) on the cell 

surface LDLR binds LDL particles; (6) LDL particles are taken up through receptor-

mediated endocytosis; (7) LDL particles are degraded and lipoprotein becomes available for 

metabolic processes including the synthesis, modification or storage of fatty acids and 

cholesterol.

Right panel: (1) Loss of LUR1/C12orf49 results in (2) impaired SREBF2 processing (3–5) 

and subsequently reduced expression of LDLR; (6) LDL uptake levels are decreased as a 

consequence of reduced LDLR expression and uptake activity; (7) decreased availability of 

extracellular lipoprotein leads to increased dependence on de novo synthesis pathways such 

as de novo fatty acid and cholesterol synthesis, explaining the negative GI between LUR1/
C12orf49 and FASN and other members of lipid metabolic pathways.
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