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Glass-cutting medical images via a mechanical
image segmentation method based on crack
propagation

Yagi Huang® "23% Ge Hu'?3, Changjin Ji"2 & Huahui Xiong"?

Medical image segmentation is crucial in diagnosing and treating diseases, but automatic
segmentation of complex images is very challenging. Here we present a method, called the
crack propagation method (CPM), based on the principles of fracture mechanics. This unique
method converts the image segmentation problem into a mechanical one, extracting the
boundary information of the target area by tracing the crack propagation on a thin plate with
grooves corresponding to the area edge. The greatest advantage of CPM is in segmenting
images involving blurred or even discontinuous boundaries, a task difficult to achieve by
existing auto-segmentation methods. The segmentation results for synthesized images and
real medical images show that CPM has high accuracy in segmenting complex boundaries.
With increasing demand for medical imaging in clinical practice and research, this method
will show its unique potential.
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ith the rapid development of modern imaging tech-

niques, medical image segmentation plays an

increasingly important role in the diagnosis and treat-
ment of various diseases!. When computer models are used to
simulate physiological phenomena, explore pathogenesis, and
design personalized surgery, image segmentation is an essential
step for reconstructing the anatomical structure of relevant tissues
and organs®~4. Some typical segmentation technologies, such as
the active contour model®~10, atlas-based registration!!-14, and
neural network-based segmentation!>~18, have become more
mature over the past several decades. Other strategies, such as fuzzy
clustering!®, the superpixel method?%21, and graph-cut method?>23,
are also well applied to medical image segmentation. These auto-
segmentation methods have promoted the development of medical
imaging-based diagnostic and treatment techniques. However,
automatic image segmentation of certain complex images, such as
soft tissues with blurred and discontinuous boundaries, remains
challenging today. A general solution for the myriad of complex
medical images that need to be segmented is still wanting. As a
result, many complex medical images still rely on manual seg-
mentation, greatly limiting the applications of medical imaging in a
wider range of medical study and clinical practice.

One example of a segmentation problem that is difficult to
solve can be found in head and neck magnetic resonance (MR)
images. We see that the epimysium appears as a white bright line
between dark-gray muscle tissues, and the grayscale color of these
muscles is quite similar24. This dividing line between the muscles
may be fuzzy and even discontinuous. No existing automatic
methods can identify such a boundary correctly, and it currently
must be segmented manually. So the question is, can we segment
it automatically with the limited information that we have?

At present, the field of segmentation method study focuses
on incremental improvements of existing mature algorithms
according to characteristics of the target region’~10. Although
these improvements can enhance the performance of segmenta-
tion methods to some extent, it is difficult to achieve a real
breakthrough while being trapped in the existing frameworks. We
propose a fresh way to think about the problem: can we solve the
segmentation problem easily by transforming it into a problem in
another field, such as a mechanics problem? This may sound
farfetched because image processing and mechanics seem com-
pletely unrelated. But consider the following well-known real-life
phenomenon: after we scored a glass surface using a glass cutter,
the glass will crack along the scored line under an appropriate
load. Therefore, if we convert the grayscale image into a thin plate
and transform the boundary line between tissues into a groove or
crack on its surface, then we can make this plate fracture along
the groove just like cutting glass. Thus, the image segmentation
problem transforms into a mechanical calculation of crack
propagation on a thin plate. Compared with boundary-overflow
issues caused by other algorithms, such as level sets, this
mechanical method has an outstanding advantage when there are
discontinuities or small grayscale gradients at the edge of the
target area in the image. Due to stress concentration at its tip,
when subject to external load, the crack can penetrate small gaps
of groove-free regions in the thin-plane structure to connect to
the crack on the other side of the gap, forming a continuous trace
representing the boundary that we want to segment.

Based on the above analysis, we propose a unique method,
named the crack-propagation method (CPM), for image seg-
mentation. The core idea of this method is to transform the image
segmentation problem into a mechanical problem of crack pro-
pagation on a thin plate. Using the principles of fracture
mechanics, we can obtain the boundary coordinates of the target
area in an image by tracing the cracks along the edge of the
relevant region in a thin-plate model. This paper establishes this

unique method, and demonstrates its great advantage and
potential in image segmentation by segmenting synthetic and
realistic medical images, especially those including soft tissues with
blurred and broken boundaries.

Results

Conversion of grayscale image to a mechanical model. The
term “image” used throughout the paper denotes a two-
dimensional image slice if not specified. The first step to trans-
form an image-segmentation to a mechanical fracture problem is
to convert the grayscale image to a mechanical model. In this
process, a two-dimensional image is transformed into a thin plate
with the same size as the image and a thickness that varies with
position according to the grayscale value of the pixel at that given
location in the image.

The basic principle for converting grayscale to plate thickness
is to transform the boundaries of the target region into grooves
on the surface of a plate. Under external load, stress will
concentrate at the groove, and the material cracks when the stress
value exceeds a certain threshold?>26. By extracting coordinates
of the crack and mapping it onto the original image, we can
obtain the boundary of the target area. Here we construct the
geometry of the thin plate based on not the grayscale value itself,
but the gradient of the grayscale image, which can transform the
boundary into grooves because the edge of the object region
generally has substantial variation in grayscale level, and therefore
a higher gradient, as shown in Fig. la.

The deeper the groove, the higher the stress concentration and
the greater the tendency of crack propagation along the groove,
and therefore the higher the accuracy of the segmentation result.
Thus, when transforming an image into a plate, the height
difference between the groove and its surrounding structures
should be increased as much as possible. In order to increase the
height difference, we can increase the grayscale contrast of the
image. Figure 1b shows the results from linear and nonlinear
transformations. Although a linear transformation can increase
the overall grayscale contrast, the left boundary of the image is
still blurred. When we perform a nonlinear transformation, the
left boundary is further enhanced. We can achieve a much higher
overall contrast compared to using a linear transformation, and
additionally the grooves formed in the plate model are deeper.

The models established above are one-sided models, char-
acterized by a flat lower and a curved upper surface with grooves.
Because the stress distribution on two sides is different, the crack
generated on the lower surface does not necessarily coincide with
the grooves on the upper surface, which may cause deviations in
the path of crack propagation. Figure lc shows a symmetric
model with grooves on the both sides of the thin plate. In the
double-sided model, both surfaces reflect the same grayscale
gradient, and therefore we can avoid the problem caused by an
asymmetric stress distribution along the thickness of the plate in
the one-sided model. Therefore, the results of the double-sided
model can be more consistent with the boundary of the target
area in the image.

Stress concentration and crack propagation. The key for image
segmentation using CPM is that the crack propagation in the
plate due to stress concentration matches the boundary of the
target area in the original image. Figure 2a shows the cross-
sectional stress distribution under a distributed pulling force
perpendicular to the groove in the plate, showing a strong stress
concentration at the bottom of the groove. As shown in Fig. 2b,
the deeper the groove, the greater the maximum stress. Therefore,
when the boundary of the target area on the image is converted
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Fig. 1 Establish mechanical models from images. a From left to right: original image, gradient image, grayscale trend of the gradient image, and mechanical
model established from the gradient image. b From left to right: original image, images after intensity transformation, grayscale trend of the images in the
second column, and perspective mechanical models corresponding to those same images. € From left to right: magnetic resonance image of head and neck
muscles, grayscale trend of the one-sided model, grayscale trend of the two-sided model, and bilateral symmetric mechanical model.

into a groove on a plate, the stress at the groove position will be
much higher than in other areas under external load.

For the brittle materials, damage and breakage will occur at the
location where the stress value reaches the strength limit of the
material?’. The stress concentration at the groove region allows it
to reach the damage threshold first, causing it to crack. The crack
continues to expand along the groove, tracing a path reflecting
the boundary position. Figure 2¢ is a mechanical model for a thin
plate with an arc-like groove. Under the external load F near the
groove, stress concentration occurs at the groove region marked
by the red circle. The local stress value increases rapidly as F
increases, and a crack is generated there when the stress limit is
reached (Fig. 2d). Persistently applying tensile force, the crack will
continuously extend along the groove due to stress concentration,
and finally will trace along the entire arc of the groove (Fig. 2e).

After mapping the crack back to the original image, we can obtain
the coordinates of the arc on the two-dimensional plane (Fig. 2f).

Segmentation of discontinuous boundaries. We want to
emphasize that crack propagation does not require a fully con-
tinuous groove. The greatest advantage of CPM is in dealing with
the segmentation of discontinuous boundaries. Discontinuous
boundaries are common in complex medical images, and existing
segmentation algorithms generally tend to overflow when dealing
with weak or discontinuous boundaries, ultimately resulting in
incorrect segmentation. Here we show that when the image with a
discontinuous boundary is transformed into a thin plate by
CPM, the cracks on either side of a discontinuous region can
expand and connect through the nongrooved area, finally meeting
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Fig. 2 Stress concentration and crack propagation. a The stress distribution of a three-dimensional model under a distributed pulling force P perpendicular
to the groove. b The trend of the maximum stress as the groove-depth increases of the model in a. ¢ A thin- plate model with a groove transformed from a
quarter-circle boundary. The shadow surface S on the left is fixed. d The stress distribution and the generated crack of the model enclosed by the red circle
in ¢ under external load F. e Crack-surface propagation process in the model. f The final boundary obtained after a crack-propagation procedure shown in e.
Different colors in the scale bar in a, d represent different stress values (N m=2).

together to form a continuous crack corresponding to the correct
boundary of the target area.

The strategy to crack a discontinuous region depends on the
length of the discontinuity. For a short gap, enclosed by the cyan box
in Fig. 3a, the original crack is able to penetrate the gap to continue
propagating in the groove on the other side of the gap due to the
strong concentrated stress at the crack tip (Fig. 3b). For a wider gap,
enclosed by the magenta line in Fig. 3a, because the grooves are too
far away from each other, the effect of one groove on the opposite
side is too weak to guide the direction of crack propagation. For
these cases, we can separate this area into two subregions denoted by
boxes 2 and 3 in Fig. 3a, and crack propagation can be performed
simultaneously from both sides of the discontinuous region as shown
in Fig. 3c, d. After the cracks from the two sides meet together, we
can integrate them into a single, smooth crack trace through post-
processing procedures (Fig. 3e). In the above simulation, we assumed
that the discontinuous region does not contain any edge information.
In fact, a discontinuous region can usually provide some boundary

information, which can be used to generate shallow grooves during
the image-to-board transformation. These shallow grooves make the
crack propagation much easier, and the boundary coordinates
extracted from the crack are more accurate.

Synthetic image segmentation. The crack-propagation simula-
tion requires a starting position on the groove to generate the first
crack locally. Once the initial conditions have been set, the crack
will propagate following the groove under the external load
applied on the tip region of the crack. The detailed process of
image segmentations using CPM can be found in the Methods
section.

To test the effectiveness of CPM, we first segment some
synthetic images shown in Fig. 4, which contain typical shape
features, grayscale distributions, and noise.

In this figure, the distributions of the grayscale values in the
background of image (a) and the object of image (b) are inhomo-
geneous. For these kinds of images, it is easy to incorrectly segment
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Fig. 3 Segmentation of discontinuous boundaries. a An image with discontinuous boundaries. b From left to right: mechanical model of the image
enclosed by the cyan line in a, stress distribution of the model, crack generated in the model, and boundary obtained by the crack. ¢ From left to right:
mechanical model of the image enclosed by the red dotted line in a, stress distribution of the model, crack generated in the model, and boundary obtained
by the crack. d From left to right: mechanical model of the image enclosed by the blue dotted line in a, stress distribution of the model, crack generated in
the model, and boundary obtained by the crack. e The final boundary of the discontinuous region enclosed by the magenta line after integration of the
cracks in ¢, d. Different colors in the scale bar in subfigures b-d represent different stress values (N m=2).
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Fig. 4 Synthetic image segmentation results. a-e An image with inhomogeneous grayscale distribution in the background, an image with inhomogeneous
grayscale distribution in the object, an image with a textured background, a textured image with noise, and an image with both intensity inhomogeneities
and Gaussian noise. Yellow curves denote the boundaries obtained by the level-set algorithm, magenta curves represent the final contours obtained by the
crack- propagation method, and green curves denote the manual segmentation boundaries.

the boundary at the position where the grayscale value of the object
is similar to that of the background using general segmentation
methods. However, the small difference in the grayscale value at
such locations can be amplified through nonlinear transformations
to form grooves in the mechanical model, and therefore the
boundary can be identified by the crack propagation. Image (c) is
an image with a textured background, and image (d) is a textured
image with noise. When we generate mechanical models for these
images, the noise may cause unevenness on the surface of the
structure. However, the surface fluctuations do not change the
overall character of the plate: the stress concentration still manifests
at the groove corresponding to the edge, and the generated crack
still accurately reflects the right boundary. Image (e) has both
intensity inhomogeneities and Gaussian noise. Although it contains
complex interference, the correct edge can still be identified using
CPM. The first row of Fig. 4 shows the segmentation results using
the level-set algorithm®. One can see that there is a slight boundary
overflow in image (c). The second row is the results using CPM. As
a comparison, the third row gives the results from manual
segmentation. It is clear that the boundaries segmented using
CPM are completely consistent with those obtained by manual
segmentation. Therefore, this mechanical method is reliable and
accurate for segmenting generic shapes from synthetically generated
computer images.

Medical image segmentation. The second test is for the seg-
mentations of medical images. To make the test results more
representative, we use medical images from different imaging
techniques for various human tissues and organs. We collect a
total of 67 medical images from MRI, computed tomography
(CT), X-ray, and ultrasound, which involve various human tissues
and organs, including the bladder, knee, spleen, blood vessels
(side view or caliber), kidney, brain tumor, lung, liver, breast
tumor, and left ventricle, from published literature and our pre-
vious database to perform the test. These images contain different

morphological contours and grayscale features. The results show
that both the level-set algorithm and CPM can segment the target
boundary well for some images. For other images, CPM can give
obviously better segmentation results than the level-set algorithm.
Figure 5 shows 11 medical images, taken from each kind of the
aforementioned tissues or organs. The first row from image (a) to
image (f) in Fig. 5 shows the segmentation results using a typical
level-set algorithm DRLSE®28, the second row gives the results
using CPM, and the third row shows the results from manual
segmentations.

The image in Fig. 5a is a bladder MR image?3. Although most
of the outline is clear, the grayscale values of the mid-bottom
section are not uniform. Similar to the processing for inhomo-
geneous images in Fig. 4, we can correctly obtain the boundary
information of the fuzzy region by a nonlinear transformation
from the image to a thin plate and the simulation of the crack
propagation. The second one, image (b), is a knee MR image?’.
Surrounded by other tissues, the target area suffers from
interference from the boundaries of other structures. However,
although these other structures do generate grooves at their own
boundaries, there is little practical effect to the edge detection of
the target structure, because the external load is always applied to
the positions near the crack tip, and therefore no large stresses
will be generated in these neighboring grooves. Image (c) is a CT
image of a spleen3®. There is also interference from the
boundaries of other structures, especially at the right boundary
of the spleen. However, like in case (b), such interference does not
affect the correct boundary detection of the target area. Image (d)
is an X-ray image of a blood vessel?8. This image has a blurred
vessel boundary and a complicated contour with low contrast, but
it does not affect the generation of the concentrated stress and the
propagation of the crack in the grooves transformed from the
image. The automatically segmented result using CPM is
consistent with the true boundary. Image (e) is an ultrasound
image of a blood vessel caliber. Due to the characteristics of
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Fig. 5 Medical image segmentation results. a-k Magnetic resonance (MR) image of bladder, MR image of knee (reproduced with permission from ref. 29),
computed tomography (CT) image of spleen (reproduced with permission from ref. 30), X-ray image of blood vessel (reproduced with permission from
ref. 28), ultrasound image of blood vessel caliber, CT image of the kidney (reproduced with permission from ref. 31), MR image of brain tumor, CT image of
lungs (reproduced with permission from ref. 34), CT image of the liver (reproduced with permission from ref. 35), ultrasound image of breast tumor

(reproduced with permission from ref. 3¢), and MR image of the left ventricle. Yellow curves denote the boundaries obtained by the level-set algorithm,
magenta curves represent the final contours obtained by the crack-propagation method, and green curves denote the manual segmentation boundaries.

ultrasound imaging, there is fuzziness and noisy background
information around the vessel in the image. However, since the
grayscale values inside the vessel caliber are low and uniform,
significant grayscale changes can form near the boundary.
Therefore, both CPM and the level-set algorithm can obtain
correct segmentation results. Image (f) is a CT image of a
kidney?!. Similar to image (d), there is a low contrast between the
target area and the background in this image. However, the target
area is clearly defined and the boundary is not fuzzy, and
therefore the kidney boundary can be accurately segmented using
both CPM and the level-set algorithm. Image (g) is an MR image

of a brain tumor (https://www.smir.ch/BRATS/Start2016). It is
difficult to obtain the exact contour of the elongated structure at
the top of the tumor using existing methods, such as the active
contour model32-33, because they often miss boundaries of such
fine structure as shown in row 2. However, the CPM proposed in
this paper does not have such a limitation. Due to the stress
concentration at the groove, the objective edge of the image can
be effectively detected by crack propagation. Image (h) is a CT
image of the lungs®%. There is a white area at the bottom of the
left lung that is distinctly different from other tissues, and it is
difficult to correctly segment this area when using an algorithm
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based on region consistency. The segmentation in other parts of
the image is also largely affected by interference information in
tissues. Because the mechanical method developed in this paper
mainly focuses on the structure converted by the grayscale values
near the edge, the propagation of the crack is affected by the local
stress distribution in the groove, but not the stress in other
regions. Therefore, CPM can correctly extract the edge of the
interested region. Image (i) is a CT image of a liver3>. The
middle-right section of this image has an interference region
similar to image (h), which affects the segmentation accuracy of
the level-set algorithm. Image (j) is an ultrasound image of a
breast tumor3°. Different from the ultrasound image (e) for the
cross section of a blood vessel, which has uniform grayscale
values inside the target area, this image contains substantial
transverse texture information within the target area in addition
to the interference around the tumor. Therefore, the expansion of
the level-set function cannot reach the boundary accurately.
Because CPM is not affected by the grayscale distribution far
from the target boundary, the segmentation results of CPM are
highly consistent with the manually extracted boundary. Figure 5k
is an MR image of the left ventricle (http://sourceforge.net/
projects/cardiac-mr/files/). Although both the level-set algorithm
and CPM can segment the left ventricle, there is some boundary
overflow in the level-set algorithm due to the effect of the partial
fuzzy boundary. Overall, both CPM and the level-set algorithm
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can segment images (a)-(f) accurately, and CPM has higher
accuracy than the level-set algorithm when segmenting images
(g)-(K).

In order to quantitatively compare the performance of CPM
and the level-set method, we compare Dice similarity coefficient
(DSC)37 and Hausdorff distance (HD)3® of the segmentation
results for each of the 11 tissue or organ groups in Fig. 6, which
involve a total of 67 images (see Source Data). DSC and HD are
used to evaluate the similarity and difference between the
automatic segmentation results and the manual segmentation
boundaries. The average values of the two parameters are 0.9565
and 3.6371 for CPM, and 0.9511 and 7.5555 for the level-set
algorithm DRLSE, respectively. The segmentation results of CPM
and the level-set algorithm for average DSC are similar, reaching
more than 0.95. This means that for most of these medical
images, both segmentation algorithms can correctly identify the
target area. However, affected by interference information within
the target region, the level-set algorithm cannot extend its
detection to the correct boundary position in some images, such
as those shown in Fig. 5g, k. Therefore, the HD value of
segmentation results obtained using the level-set algorithm is
higher than that using CPM. The accurate segmentations of these
medical images with complex contours and fine structures
indicate that CPM may have important applications and bright
prospects in medical image-segmentation applications.
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Fig. 6 Comparison of the crack-propagation method (CPM) and the level- set algorithm DRLSE. Statistical results for a Dice similarity coefficient

and b Hausdorff distance. The first 11 data groups in a, b are for each image group, from magnetic resonance (MR) image of the bladder, MR image of the
knee, computed tomography (CT) image of the spleen, X-ray image of the blood vessel, ultrasound image of blood vessel caliber, CT image of the kidney,
MR image of brain tumor, CT image of lungs, CT image of the liver, and ultrasound image of breast tumor, to MR image of the left ventricle. The last data
group combines all 67 images in these 11 groups. The number within the parentheses indicates the number of the images in that group. Magenta bars
represent the CPM segmentation results and yellow bars represent the DRLSE. The error bars represent the standard deviation. Source data are provided in

the Source Data file.
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Soft-tissue image segmentation. For images of soft tissues, such
as muscle groups, due to similar grayscale values in the different
parts of the image, boundaries between different tissues are dif-
ficult to distinguish using existing automatic segmentation algo-
rithms. Here we select 60 images of 12 head and neck muscles,
including both left- and right sternocleidomastoid (SCM), tra-
pezius (TZ), splenius capitis (SC), semispinalis capitis (SSC),
levator scapulae (LS), and obliquus capitus inferior (OCI) with
different positions, shapes and sizes, to segment using CPM, and
compare the results with that obtained using the level-set
algorithm DRLSE.

Because there are many fuzzy or discontinuous boundaries in
the images of the head and neck muscles, the level-set algorithm
is prone to serious overflow when discovering these boundaries,
resulting in incorrect segmentation results. However, although

boundaries between the muscles are sometimes blurred, there are
still light-colored edges visible to the naked eye. When these
visible edges are transformed into grooves to build a mechanical
model, the boundaries of the tissues can be identified by crack
propagation along the grooves. Furthermore, the technique is able
to connect the discontinuous regions of the grooves and arrive at
a continuous and complete boundary.

Figure 7 shows partial segmentation results of these soft tissues.
The segmentation results of the DRLSE algorithm for the upper-
right corner of the obliquus capitus inferior image in (f) and the
upper-left corner of the levator scapulae image in (k) contain
leakages, and all other tissue images contain significant boundary
overflow. Since both the bottom of the obliquus capitus inferior in
(1) and the middle of the sternocleidomastoid in (g) have an
interference region similar to the CT image of the lungs in Fig. 5h,

Fig. 7 Image-segmentation results for 12 head and neck muscles. Image columns from a to f are the muscles in the left region of the head, and image
columns from g to I are the muscles in the right region of the head. Image columns from left to right: sternocleidomastoid (SCM), trapezius (TZ), splenius
capitis (SC), semispinalis capitis (SSC), levator scapulae (LS), and obliquus capitus inferior (OCI). Yellow curves denote the boundaries obtained by the
level-set algorithm DRLSE, magenta curves represent the contours segmented by the crack-propagation method, and green curves represent the manual

segmentation boundaries.
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Fig. 8 Comparison of the crack-propagation method (CPM) and the level- set algorithm DRLSE. a Dice similarity coefficient, b Hausdorff distance,

¢ true-negative rate, and d false positive rate. The statistical results are for muscles sternocleidomastoid (SCM), trapezius (TZ), splenius capitis (SC),
semispinalis capitis (SSC), levator scapulae (LS), and obliquus capitus inferior (OCI). There are 10 images for each muscle group: five are from the
left region and five are from the right region of the head. The last column combines all 60 images in six muscle groups. Magenta bars represent the
CPM segmentation results and yellow bars represent the DRLSE. The error bars represent the standard deviation. Source data are provided in the Source

Data file.

the level-set algorithm is affected by this region and cannot detect
the correct boundary position. In contrast, CPM calculates
correct boundaries for all images of the 12 head and neck
muscles, clearly showcasing its great advantages in segmenting
complex medical images with unclear and even discontinuous
boundaries.

In order to quantitatively compare the performance of CPM
and the level-set method, we compare several indicators of the
segmentation results for six tissue groups in Fig. 8. Each of the
groups includes 10 images from the same muscle, with five from
the left region and five from the right region of the head (see
Source Data). In addition to DSC and HD, we also compare the
true-negative rate (TNR) and false-positive rate (FPR)*®. TNR
and FPR are used to describe the proportion of the correctly
segmented non target region and the incorrectly segmented target
region to quantify the boundary-overflow issue. The average
values of the above four parameters are 0.9387, 3.7910, 0.9946,
and 0.0054 for CPM, and 0.8078, 20.5753, 0.9448, and 0.0552 for
DRLSE, respectively. The calculation results show that the mean
DSC value is between 0.9058 and 0.9585, and the mean HD is
between 2.8464 and 5.2710 for images of different muscle groups
using CPM. However, the mean DSC value is between 0.7204 and
0.8934, and the mean HD is between 12.676 and 27.9274 when
using DRLSE. It is clear that CPM is superior to DRLSE according
to these performance metrics. A serious boundary overflow
occurs in the segmentation process of DRLSE, whereas CPM does
not have this problem. Currently, the accurate segmentation of
the head and neck muscle tissues is a big challenge due to the lack
of sufficient boundary information*’. We have found very few
publications that have attempted automatic segmentations for
these muscles!»12, Although the methods used in these two
studies are different from CPM, we can still evaluate CPM

performance by comparing the available indicators between CPM
and the literature. Our average DSC and HD for segmentations of
all 60 images of 12 head and neck muscles are 0.9387 and 1.6290
mm, respectively, if using mm as the unit of HD. The average
DSC and HD in ref. ! are 0.9191 and 6.4700 mm, respectively,
and the average DSC in ref. 12 is 0.8500. Therefore, CPM has a
higher accuracy than both of these two studies do.

Automatic three-dimensional structure reconstruction. One
the most important applications of medical image segmentation is
the three-dimensional reconstruction of tissue structures. As an
example, we selected 12 consecutive MR images to automatically
reconstruct the three-dimensional structure of the splenius capitis
using CPM. One can see from Fig. 9 that the three-dimensional
structure built using the two-dimensional boundaries extracted by
CPM is highly consistent with the structure built based on the
manual segmentation, which strongly highlights the advantages
of CPM in the automatic segmentations of medical images
involving complex features such as soft tissues with blurred
boundaries.

Discussion

In this study, we view image segmentation from a unique per-
spective, and propose the CPM, which applies the principles of
fracture mechanics to image segmentation. The establishment of
this method begins a bold new direction in the field of image
segmentation. Using seemingly unrelated interdisciplinary knowl-
edge, we make a breakthrough in solving a difficult problem in
image processing and open a new way forward for the segmenta-
tion of complex medical images and the three-dimensional struc-
ture reconstruction.
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Slice 1 Slice 2

Slice 3

CPM

Manual segmentation

Fig. 9 Segmentations of 12 consecutive magnetic resonance images of splenius capitis and reconstructions of the three-dimensional structure.
Magenta curves in the images represent the final contours obtained by the crack-propagation method and green curves denote the manual segmentation
boundaries. The red area of the three-dimensional structure corresponds to the first-layer image close to the head and the blue area corresponds to the

last-layer image close to the neck.

In recent years, deep-learning algorithms have begun to out-
perform previous state-of-the-art traditional methods and are
gaining more popularity in research!>. While applying to the
segmentation of a wide range of images, a big challenge for deep-
learning approaches is the scarcity of annotated training data,
particularly for medical imaging applications, where both data
and annotations are expensive to acquire*!. Within systems
lacking transparency, deep-learning networks require a great
amount of hyperparameter tuning. Small changes in the hyper-
parameters can result in disproportionately large changes in the
network output!®. Moreover, there is a known problem with deep
neural networks, where visually indistinguishable images can
return significantly different results. The interconnected com-
plexity of the networks makes such issues difficult to trouble-
shoot2. Therefore, current deep-learning methods have
limitations when dealing with segmentations of some complex
medical images. The CPM established in this study is a clear and
convenient method that requires less input information. It cannot
only segment common computer-synthesized images and medical
images correctly, but also obtain the same results as manual
segmentation when dealing with images involving the identifi-
cation of fuzzy muscle boundaries. Especially for those blurred or

even discontinuous edges that are difficult to deal with using
existing automatic methods, CPM has unique advantages. There
are currently large demands for complex image segmentation in
clinical practice and research, for example, in the pathogenesis of
sleep-disordered breathing and personalized surgical planning
for obstructive sleep apnea patients*3-43, as well as the diagnosis
and treatment of shoulder- and neck-pain diseases*®. This
unique segmentation method based on mechanical principles
brings new insights into the study of image processing and pro-
vides an important tool for solving difficult image-segmentation
problems.

As a first step, we aim to propose and validate the feasibility of
this unique idea. Therefore, we are not particularly concerned
with optimizing the process of the crack propagation in this
study. A commercial software for finite-element analysis is used
directly for convenience in the crack calculation, and the crack-
growth process will inevitably be limited by certain software
configurations due to the software’s requirements of adaptability
to solve a wide range of problems, not just this one. In the next
step, we will focus on an in-depth study on the algorithm of crack
propagation, including simplifying the crack-calculation model
based on the characteristics of the target boundary, and
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optimizing the propagation process. We firmly believe that with
the ever-increasing dependence on and demand for medical
imaging in the diagnosis and treatment of diseases, the clear need
for automatic recognition of complex tissues, and the importance
of three-dimensional structure reconstruction to aid in the
investigation of disease mechanisms and the development of
effective treatments, CPM will continue to demonstrate its unique
charm and vast potential.

Methods
All equations and calculations involving matrices in the Methods section are
element-wise.

Local crack-propagation method (LCPM). The first step of CPM is to convert the
image into a thin-plate structure in order to induce crack propagation along
grooves under highly concentrated stress. In fact, we do not need to transform the
whole image into a mechanical model at once. Instead, we decompose the seg-
mentation problem into a continuous evolution process in which the crack grows
only in a local area. This process iteratively converts the partial image corre-
sponding to a small neighborhood near the crack tip into a thin plate and calculates
the crack expansion in the local region only. Following the direction of crack
propagation of the current iteration of the local model (i.e., the direction of the
boundary in the partial image), we determine the next iteration and local region.
The new region partially overlaps with the previous one in that it contains a small
portion of the crack, which had been generated in the previous local model, as the
initial crack. Thus, cracks generated in the previous region will continue to expand
in the new local model, as shown in Fig. 10. Finally, all the cracks generated in local
models form a complete crack after the iterative process, resulting in the exact
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Fig. 10 Pipeline of the local crack-propagation method algorithm. a Preprocessing (blue box): Import the segmentation image and obtain the
corresponding grayscale-gradient image. Determine the center C; of the initial partial image and the size of the local model 2L. b Set the initial crack (yellow
box) in the first local model manually (top half) or automatically (bottom half). ¢ Local crack-propagation method (green box): establish the mechanical
model based on the local image, set parameters, and boundary conditions of the finite-element analysis (FEA). Call FEA software ABAQUS to simulate
crack propagation. Obtain the crack generated in the model. Calculate the local boundary in the partial image according to the crack. If the crack calculation
of the entire image has not been completed, determine the next local model center C;,; based on the current center C; and the crack direction, and then
establish the new local model to continue the crack propagation. d Post processing (pink box): After completing the crack calculation for the entire target
area, integrate cracks generated in all local models to obtain the complete image boundary.
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boundary position of the target area. We can call this method, which achieves
image segmentation by splitting the crack propagation of the overall model into
multiple local models, the local crack-propagation method (LCPM).

The LCPM has obvious advantages. The evolution process of local cracks can
greatly reduce unnecessary and repetitive computations, and significantly improve
image-segmentation efficiency. Converting the target area directly into a global
model for crack-propagation simulation consumes a high amount of computation
time. In reality, areas far away from current crack tip have no substantial effect on
crack propagation, and including these areas in each calculation greatly increases
computational cost for little gain. Although we need to simulate crack growth of
multiple small regions separately, the number of displacement equations is
drastically reduced due to the large reduction of nodes, greatly saving calculation
time. Additionally, since the entire image contains a lot of grayscale information
and the overall grayscale range of the pixels is large, it is often difficult to balance
the grayscale of the entire original image to establish a complete mechanical model
with obvious height differences between grooves and surrounding structures. The
LCPM avoids this problem easily. The conversion from image to plate structure is
based on the grayscale value in a small local area, so that any grayscale
transformations to increase contrast can operate without interference from pixels
in other regions, and we can easily amplify the grayscale differences near edges.
This will maximize the effective height difference between grooves and adjacent
structures in the mechanical model and strengthen stress concentration at grooves
under external load. Finally, LCPM can also transform the dynamic load applied to
the overall model into static loads applied to each local model, which simplifies the
complexity of applying load in finite-element analysis (FEA).

The main steps of segmenting target regions by LCPM are as follows (Fig. 10).
First, we import the segmentation image and obtain the corresponding grayscale-
gradient image. We execute a nonlinear contrast-enhancing transformation on the
gradient image to optimize image quality and highlight the edge information of
target areas. We determine the position of the local calculation region in the
original image and set relevant geometric parameters of the local model. Then, we
establish the mechanical model based on the transformed local image, determine
the position of the initial crack, and set parameters and boundary conditions of
FEA. We execute the FEA software to simulate crack propagation. Once we obtain
the edge position in current partial image, we update the relevant parameters
according to the edge direction and propagate the next iteration of the model along
the edge direction. We continue to simulate crack propagation until the crack
expansion is complete at all positions in the entire target region. Finally, we
integrate all the results of the partial models to obtain a complete outline of the
target region.

Intensity transformation. A mechanical model is established based on the
grayscale distribution obtained by convolution of the original image and a Gaus-
sian function combined with a gradient calculation. Let I, be the grayscale dis-
tribution of an original image. We define the new grayscale distribution I after
convolution and gradient operation by

I = |V(G, *1,)I’ (1)

where G, is a Gaussian kernel function with standard deviation o, * represents the
convolution operation, and V is the gradient operator. According to the properties
of convolution, V(G,*I,) = (VG,)*I,, we can reduce the computation time greatly
by writing

I = VG, *I,[* )

The convolution in Eq. (2) is used to smooth the original image to reduce noise
and optimize the quality of the image.

Since the gradient function reflects the change in the original grayscale
distribution, I usually takes larger values at the boundaries of the target region
than the nonboundary area. In order to map the object edge to the groove of plate
structure, we use a negative transformation to scale the values of I to the interval
[0, 1]

~ I —1I- .

IG —1— G Gmin (3)
IGmax - IGmin

where IGmin and Igmay represent the minimum and maximum values in Ig. After
Eq. (3), the new grayscale distribution function I; takes on smaller values at object
boundaries. When we convert I into the thickness distribution of a thin plate, a

groove structure forms at the boundary positions.
In order to increase the height difference between the grooves and surrounding

structures, we perform a power-law transformation?’ on IAC . The grayscale
distribution of transformed image I is

Ly =1Ig" 4)

where y is constant. If y > 1, then higher grayscale values are stretched and the
output image appears darker than the input. If y <1, then the opposite happens,
with lower values being stretched and the resulting image appearing brighter. By
choosing different values of y to selectively stretch a certain grayscale interval, we
can deepen the grooves corresponding to the object boundaries and improve the
quality of the inhomogeneous image.

Local model setup. We need to determine several geometric parameters when
building the plate model from a partial image. These include the pixel coordinates
of the local image center in the original image, the size of the partial image, and the
maximum thickness of the model when transforming the partial image into a plate
structure. Only the first local model center needs to be predetermined, as sub-
sequent local area center positions can be automatically calculated from the cracks
generated in the previous model.

Let C(x;, ;) be the center of the ith local image with size 2L. The grayscale
distribution Iyy; in this local region can be defined by

Ly (%, y) = {Dw(x, ), where max(|x — x|, [y — yil) <L} (5)

(x, y) is the pixel coordinate. If H is the maximum thickness of the local plate
model, the height at the position (x, y) in the local model is

[IMi(xs)’) - IMimm] (H-1)

1 (6)
IMi *

h(xJ/) =

I
‘max Mxmm

where Inimin and Inimayx represent the minimum and maximum grayscale values in
this partial image.

Finite element. The mesh of the finite-element models in this paper is a three-
dimensional extrapolation of the two-dimensional pixel layout of the original
image. If the length of a pixel is L, and the area is L, x L,,, a cube whose height is
also L, is defined as the element. The grayscale value is simply equal to how thick
the model is in pixels in the vertical direction of pixel face based on Eq. (6) when
converting from image intensity to plate thickness. This mesh-construction method
has obvious advantages, as it can generate high-quality units simply, evenly, and
quickly, while avoiding the difficulty of generating qualified meshes on the uneven
surface of the mechanical model.

Material properties. We use a relatively large Young’s modulus and a Poisson’s
ratio close to 0.5. The former can make the structure immune to deformations
when the crack is generated, and the latter keeps the material incompressible under
external force and keeps the volume of elements constant. The fracture criterion
selected in this study is the maximum principal stress criterion, and the material
parameters used in FEA are as follows: Young’s modulus 210 GPa, Poisson’s ratio
0.49, maximum principal stress 220 MPa, and fracture energy per unit area 42,200
Jm—2,

Initial crack. In each partial model, we set an initial crack. The initial crack will
grow along grooves under external load until reaching object boundaries. For the
first local model, the initial crack needs to be specified. After completing crack
propagation in the current region, the next local model can be determined
according to the position and the orientation of the crack. The new area will
partially overlap the old one so that it can contain the end portion of the crack in
the previous area as the initial crack.

The initial crack in the first local model can be provided either manually or
automatically (Fig. 10b). In the manual method (top half of Fig. 10b), one needs
only to choose a short line a few pixels in length along the target boundary as the
position of the initial crack in the mechanical model. This selection is simple and
accurate because the target boundary is generally very clear in such a location and
there is an obvious groove corresponding to the target boundary in the mechanical
model. For the automatic method (bottom half of Fig. 10b), the initial crack can be
generated by the following procedure: define the side length of square ABCD
representing the local image to be 2L. The target boundary intersects with the two
parallel edges AD and BC. Draw a straight line starting from Pyy;, the midpoint of
the side AB, and passing through Pyy,, the midpoint of the side DC, ending at the
point O. The distance from Py, to O is N times the length of AB (N> 1). Therefore,
a triangle AOB is formed with angle at point O equal to ¢ =2 arctan(1/(2N)).
Dividing ¢ by an integer m defines the angle increment, Ag = 2 arctan(1/(2 N))/m.
Starting at line OA, and sweeping toward line OB by incrementing the angle by A¢
each iteration, the ray with angle ;=i A (i=0, 1, 2, ...) will intersect the target
boundary at the point P; in this local image area. Because the grayscale value of the
pixels at the target boundary changes significantly, an edge-detection operator, such
as the Canny edge detector, can easily identify the coordinates of the points P;. After
detecting several boundary points, the initial crack of the first local model can be
automatically formed by connecting these points to form a small line segment.

Boundary conditions. The external force applied to the plate structure is near the
crack tip and normal to the direction of the initial crack. This way of loading can
increase stress concentration at the grooves and avoid introducing interference
cracks at other high-stress areas caused by the existence of low-height regions
between external force location and the initial crack.

The edges of the interested area are often irregular curves, so the grooves
formed in the mechanical model will also change constantly. Therefore, we must
continuously adjust the direction of force as the crack grows, which will increase
the complexity of loading. The LCPM can effectively avoid this problem. Since the
image size for each partial model is small, object boundaries falling into this area
can be approximated as a straight line. In a local model, the direction of external
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force can be fixed, and the dynamic boundary condition can be transformed into a
series of static conditions. Thus, LCPM greatly simplifies the numerical simulation
process. We want to point out that it does not need to specify the quantity of the
external force applied to the structure during a simulation of the crack propagation
using LCPM. We only need to set a maximum load in the code to ensure that it is
large enough to break all thin-plate structures transformed from images. Starting
from zero, the external force applied to the model will increase linearly with each
iteration. Once the crack is generated on the current local model, the algorithm will
stop increasing the load, and automatically move to the next local model region.

The extended finite-element method (XFEM). After determining input para-
meters and conditions, the FEA software can be invoked to simulate crack growth.
The FEA software used in this paper is ABAQUS (Dassault Systémes Simulia
Corp., Providence, RI, USA), and the numerical calculation method is XFEM*8:49,
Conventional finite- element methods (CFEM) usually use polynomial interpola-
tion functions as the shape function, which requires continuity of displacement and
material. When dealing with a strong discontinuous problem involving damage
and failure, CFEM requires setting the crack as the element boundary and the crack
tip as the node. Considerable mesh refinement is also needed in the neighborhood
of the crack tip. Therefore, the mesh must be updated continuously as the crack
progresses, which leads to low calculation efficiency. In contrast, XFEM is an
extension of CFEM based on the concept of partition of unity®’, which introduces
the special enriched functions in conjunction with additional degrees of freedom to
ensure the presence of discontinuities in modeling a growing crack. Due to the
independence of the mesh and the crack surface, XFEM does not need to update
the mesh when modeling crack propagation.

Using XFEM to simulate crack propagation, the fracture criterion, the damage-
evolution law, and the damage-stability coefficient need to be specified. The
fracture criterion is used to control the onset of damage of the material, and the
maximum principal stress-failure criterion is selected in this study®!. An additional
crack is introduced or an existing crack is extended when the maximum principal
stress in a model reaches the given threshold. Damage-evolution parameters
control the development of the crack, and a mixed-mode, energy-based damage-
evolution law based on a power-law criterion is selected for damage propagation.
The damage-stability coefficient is used to improve convergence performance.

The extraction of local edge. The crack information calculated in a local model
can be converted into boundaries in the corresponding image. The ABAQUS
output file contains a ¢ value for each unit node. The magnitude of ¢ indicates the
spatial distance of the node to the crack surface, and the sign of ¢ indicates which
side of the crack surface the node is on. Given ¢, we can calculate the specific
position of the crack surface in the current model. The crack surface obtained is a
curved surface in space, but the object boundary is a two-dimensional curve.
Mapping the three-dimensional crack surface to a two-dimensional plane, we can
obtain the edges of the interested region in the partial image.

Parameter update. Establishing a new local model based on the crack direction,
the center of the next calculation region needs to be updated as the crack propa-
gates. The boundary acquired by the crack of the ith local model M; is

Si = (X17y1)7(x21y2)! 7(xjvyj)v 7(xn‘ryn) (7)

where (x;, ;) are the coordinates of points in S;. Since the edge of the partial image
corresponding to a local model can be approximated as a straight line, the slope k;
of S; can be obtained by fitting the points in S;. If the center of a local model M; is
Ci(x;, i), the center Ciy1(x;y1, yiy1) of M; can be expressed as

Cip1 (Kip15¥im1) = (¥t acos 0, y, * asin 6) (8)

where 6; = arctan(k;) and « is the distance between two adjacent models. If we
require that 0 <@ <2 L, we can ensure that there is an overlapping area between
adjacent local models, so that the new model can include a partial crack of the
previous model as an initial crack to simulate crack propagation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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