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Abstract Cyanophycin or cyanophycin granule peptide is
a protein that results from non-ribosomal protein synthesis
in microorganisms such as cyanobacteria. The amino acids
in cyanophycin can be used as a feedstock in the production
of a wide range of chemicals such as acrylonitrile,
polyacrylic acid, 1,4-butanediamine, and urea. In this study,
an auxotrophic mutant (Rhizopus oryzae M16) of the
filamentous fungus R. oryzae 99-880 was selected to
express cyanophycin synthetase encoding genes. These
genes originated from Synechocystis sp. strain PCC6803,
Anabaena sp. strain PCC7120, and a codon optimized
version of latter gene. The genes were under control of the
pyruvate decarboxylase promoter and terminator elements
of R. oryzae. Transformants were generated by the biolistic
transformation method. In only two transformants both
expressing the cyanophycin synthetase encoding gene from
Synechocystis sp. strain PCC6803 was a specific enzyme
activity detected of 1.5 mU/mg protein. In one of these
transformants was both water-soluble and insoluble cyano-
phycin detected. The water-soluble fraction formed the
major fraction and accounted for 0.5% of the dry weight.
The water-insoluble CGP was produced in trace amounts.
The amino acid composition of the water-soluble form was
determined and constitutes of equimolar amounts of
arginine and aspartic acid.
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Introduction

Cyanophycin or cyanophycin granule peptide (CGP) was
first discovered in 1887 by Borzi while examining
cyanobacteria with a microscope (Borzi 1887). Later, it
was discovered that all groups of cyanobacteria produce
CGP (Oppermann-Sanio and Steinbuchel 2002) as well as
many heterotrophic bacteria (Krehenbrink et al. 2002). CGP
is a polypeptide that results from non-ribosomal protein
synthesis by a single enzyme, cyanophycin synthetase
(CphA) (Ziegler et al. 1998). The molecule consists of an
«-amino-x-carboxy linked aspartic acid backbone to which
arginine residues are linked to the 3-carboxyl group of each
aspartic acid (Simon and Weathers 1976) (Fig. 1). The non-
ribosomal synthesis results in a polydisperse size distribu-
tion. In addition, the molecular mass depends on the CGP
producing organism (Krehenbrink et al. 2002); in cyano-
bacteria, the molecular mass ranges from 25 to 100 kDa
(Hai et al. 1999; Lang et al. 1972; Simon 1971, 1973). At
neutral pH and under physiological ionic strength, CGP is
in general water insoluble, although a CGP form was
described that is water soluble at neutral pH (Ziegler et al.
2002). The water-insoluble CGP can become water soluble
at extreme pH values (below 3 or above 9) or under high
ionic strength (Fuser and Steinbuchel 2005; Simon 1971).

CGP has potentially many industrial applications, it can
be used for the production of poly(L-aspartic acid) (PAA)
generated by [3-cleavage of the side chains. PAA can be
used as substitute for non-degradable poly(anionic) mole-
cules such as polyacrylic acid (Sanders et al. 2007). CGP
can also be applied for the production of anti-scalants,
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Fig. 1 Schematic overview of a (o)
CGP molecule. Schematic
representation of a CGP mole-

cule with an aspartic acid back- * NH *
bone and arginine side chains
(Simon and Weathers 1976) [0}
n
HO NH
0

HN
J— NH;
HN

dispersing agents, or bulk chemicals such as acrylonitrile
(Konst et al. 2009), urea, and 1,4-butanediamine (Kdnst et
al. 2010; Schwamborn 1998; Scott et al. 2007).

Currently, the application of CGP is hampered by the
lack of a cost-effective production process in cyanobacteria
as a result of the low yield and strict growth requirements
such as light and complex media. In order to increase the
production efficiency, cphAd-encoding genes from various
biological sources were expressed in Escherichia coli (Berg
et al. 2000; Frey et al. 2002; Krehenbrink et al. 2002;
Ziegler et al. 2002; Ziegler et al. 1998; Hai et al. 1999;
Aboulmagd et al. 2000) and other commercially relevant
bacteria such as Corynebacterium glutamicum, Ralstonia
eutropha, and Pseudomonas putida (Aboulmagd et al.
2001; Voss et al. 2004; Diniz et al. 2006). The maximal
yield in these bacteria varied strongly with a maximum yield of
35% (w/w). In eukaryotic microorganisms like Saccharomyces
cerevisiae (Broker et al. 2008) and Pichia pastoris (Broker et
al. 2010), the maximal CGP yield dropped to 15% w/w).

Filamentous fungi of Rhizopus oryzae spp. have great
potential in biotechnological applications. This is due to
their ability to utilize a range of simple carbon substrates
such as D-glucose, D-xylose, sucrose, and lactose (Vially et
al. 2010). Next to simple carbohydrates, R. oryzae spp. can
also grow on agricultural waste streams (Abedinifar et al.
2009; Bulut et al. 2004; Guo et al. 2010; Xu et al. 2010;
Yao et al. 2010; Yen and Lee 2010; Yu and Hang 1989).
Using these carbon sources, it can produce ethanol and
organic acids like L-(+)-lactic, fumaric and L-(+)-malic acid
(Lockwood et al. 1936; Magnuson and Lasure 2004). These
organic acids have wide applications in the food and feed
industry. In addition, these compounds can be applied as
feedstock in order to produce renewable resources like
plastics, fibers, solvents, and oxygenated chemicals (Datta
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and Henry 2006; Engel et al. 2008; Goldberg et al. 2006;
Roshchin 2010). The biotechnological potential of R.
oryzae spp. further increased by the publication of the
genome sequence of strain 99-880 in 2004 and with the
development of transformation systems based on uracil
auxotrophy (Skory and Ibrahim 2007).

To investigate the potential for the production of CGP in
a fungal expression system, we have expressed the cphA-
encoding genes from Synechocystis sp. strain PCC6803,
Anabaena sp. strain PCC7120 and its codon-optimized
version in the auxotrophic mutant R. oryzae M16 derived
from R. oryzae 99-880.

Materials and methods
Strains, media, growth conditions, and methods

One Shot® Mach1™ T1 Phage-Resistant E. coli (Invitro-
gen Carlsbad, CA) was used for plasmid maintenance and
propagation. The cells were grown in Luria-Bertani (LB)
medium containing 50 pg/ml ampicillin or kanamycin at
37°C with agitation at 250 rpm. In this study, R. oryzae 99-
880 (Fungal Genetics Stock Center FGSC 9543) for which
the genome sequence is known and the from this strain-
derived orotate phosphoribosyltransferase (pyrF) auxotro-
phic mutant M 16 (Skory and Ibrahim 2007) were used. The
auxotrophic mutant M16 was a kind gift of Dr. C. D. Skory
of the USDA, Peoria, IL. Spores were obtained by
cultivation on synthetic Rhizopus (RZ) medium (Skory
2000) containing 1.5% (w/v) agar and 2% D-glucose. For
growth of R. oryzae M16, the medium was supplemented
with 0.5 mg/ml uracil. The plates were incubated for 4 days
at 30°C. The spores were harvested using a saline Tween-
80 solution [0.9% (w/v) NaCl, 0.005% (v/v) Tween-80].
Details for the strains and plasmids are listed in Table 1. All
experiments were performed with biomass obtained from
liquid cultures unless stated otherwise. Biomass of R.
oryzae transformants and wild-type was generated by
cultivation in shake flasks containing 100 ml RZ medium
using 100 g/l of D-glucose as a carbon source, inoculated
with 10° spores per milliter. The cultures were incubated for
72 h at 30°C with constant agitation in an orbital shaker at
200 rpm. To maintain a stable pH, 10 g/l CaCO3; was added
after 18 h. When the CaCO; was almost dissipated, fresh
CaCO; was added.

DNA techniques

The c¢phA4159 gene originating from Anabaena sp. strain
PCC7120 was cloned from plasmid pBBRIMCS-2::
cphAq159 (Voss et al. 2004). The cphAggp; gene originating
from Synechocystis sp. strain PCC6803 was cloned from
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Table 1 Strains and plasmids used in this study Ap", ampicillin resistance, Km', kanamycin resistance and Cm', chloramphenicol resistance

Strain or plasmid

Description

Reference or source

E. coli One Shot® Machl™
R. oryzae 99-880

R. oryzae M16
pBBRIMCS-2::cphA7120

plet:icphA7120
pMa/c5-914::cphAggos

plet:icphAesgos
pPdcExPyrF
pPdcExPyrF::cphAsgos

pPdcExPyrF::cphA;120

cphA7120 codon optimized
pPdcExPyrF::cphA4150

F-@80 (lacZ) AM15 AlacX74 hsdR (tK-mK+) ArecA1398 endAl tonA
Sequenced strain

Auxotrophic mutant derived from R. oryzae 99-880 ApyrF

Kmr, broad host range vector, lacPOZ' harboring c¢phA from Anabaena
sp. strain PCC7120 collinear to lacPOZ’

Ap" harboring ¢phA from Anabaena sp. strain PCC7120

Ap" Cm" c1857ts _ PL/PR, translational initiation region harboring a
2.6-kb PCR product from Synechocystis sp. strain PCC6803
Ap' harboring a 2.6-kb PCR product from Synechocystis sp. strain PCC6803
Ap' pdcA promoter and terminator
pPdcExPyrF harboring a 2.6-kb PCR product from Synechocystis sp.
strain PCC6803 cloned with Sphl and Pacl
pPdcExPyrF harboring cphA from Anabaena sp. strain PCC7120
cloned with Sphl and Pacl
Codon optimized cphAd from Anabaena sp. strain PCC7120

pPdcExPyrF harboring cphA from Anabaena sp. strain PCC7120 cloned

(Invitrogen Carlsbad, CA)

Fungal Genetics Stock
Center FGSC 9543)

(Skory and Ibrahim 2007)

(Voss et al. 2004) Gift of
Prof. Dr. A. Steinbiichel

This study

(Frey et al. 2002) Gift of
Prof. Dr. A. Steinbiichel

This study
Gift of Dr. C. D. Skory
This study

This study

DNAZ2.0, Menlo Park, CA
This study

codon optimized with Sphl and Pacl

plasmid pMa/c5-914::cphAegos (Frey et al. 2002). Both
plasmids were a kind gift from Prof. Dr. A. Steinbiichel of
the WWU Miinster, Germany. The genes were cloned by PCR
amplification using Phusion DNA polymerase (Finnzymes,
Espoo, Finland). The oligonucleotide primers used for PCR
amplification were 7120FS and 7120RS for cphA;1,¢ and
6803FS and 6803RP for cphAggos (Table 2). The correct size
of the DNA fragments was verified by agarose gel
electrophoresis using 0.8% agarose with 0.5 times Tris—
acetate—EDTA (TAE) buffer. The amplicons were ligated
into the plasmid pJET1.2/blunt using the CloneJET™ PCR
Cloning Kit (Fermentas International Inc, Burlington,
Canada) according to the manufacturer's instructions. Codon-

optimized versions of both genes were ordered from DNA
2.0 (Menlo Park, CA). Codon optimization was performed
based on the codon table of Kazusa DNA Research Institute
(Kisarazu, Japan). Electro transformation of E. coli was
performed with the Gene pulser II using cuvettes with a
0.2-cm gap (Bio-Rad, Hercules, CA). Isolation of
plasmid DNA was performed using a GeneJET™
plasmid miniprep kit (Fermentas International Inc, Burlington,
Canada) according to the manufacturer’s instructions. The
plasmid pJet::cphA7150 and plet::cphAggos were digested using
the restriction enzymes Sphl and Pacl (New England Biolabs,
Ipswich, MA), subsequently ligated into the Spkl and Pacl
sites of plasmid pPdcExPyrF. Plasmid pPdcExPyrF was a

Table 2 Oligonucleotide pri-

mers used in this study Oligonucleotide primer

Oligonucleotide primer sequence 5’ to 3’ orientation

7120FS
7120RP
7120qF
7120gR
6803FS
6803RP
) o 6803qF

Characters in bold indicate 6803R

the restriction sites that were q

introduced. The underlined kangF

character indicates the location kangR

of a silent mutat.lor} in ordc?r ‘ 7120coqF

to remove an existing restriction

site. Primer 7120RP is designed ~ /120codR

to have an overlap with the PDCqF

donor plasmid to facilitate PDCqR

cloning

GCATGCGAATCCTCAAGATCCAGACC
GGGAATCACCACATCTCTACTATTAATTAAAGCAAAGTA
CTGGATGAAACCCAAGCAAT
CGGTTGTCGAGGAATTTTGT
GCATGCAAATTCTTAAAACCCTTACCCTCCGC
TTAATTAACCAATGGGTTTACGGGCTTTGATTAAC
TCAATCTGGGTCGGTACCAT
GGCCCCGTTTATCATCATCT
AGCATTACGCTGACTTGACG
AGGTGGACCAGTTGGTGATT
TTAAACCTGATGCCCGATATG
TGACCAAGCCTCTCAGTTTG
ACAGCCGAATTTGCTTCACT
GATAGCGGCCCTACAGAGG
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kind gift of Dr. C. D. Skory of the USDA, Peoria, IL. The
nucleotide sequences of all fragments were verified by DNA
sequence analysis (Baseclear BV, Leiden, The Netherlands).

Transformation of R. oryzae and stability
assay of transformants

Transformation of R. oryzae M16 spores was achieved by
particle bombardment. M5 tungsten particles (Bio-Rad,
Hercules, CA) were coated with plasmid DNA according
to the manufacturer's instructions. The particles were
delivered by the PDS-1000/He Biolistic Particle Delivery
System (Bio-Rad, Hercules, CA), having a distance between
the rupture disc and the particles of 1.6 cm. The distance
between the particles and the spores was 6 cm. Spores (10°)
of R. oryzae M16 were plated on RZ medium and
bombarded. The pressure was set with a rupture disc at
1,100 psi. To allow the formation of biomass and spores, the
plates were incubated at 30°C for 5 to 7 days. After
sporulation, the spores were harvested, and serial dilutions
were made that were used to inoculate RZ plates with one
spore. This process was repeated to ensure single progeny. In
order to determine the stability of the transformants, serial
dilutions of the spores grown from the glycerol stocks were
made ranging from 8 to 8% 10° spores per plate. The spores
were plated on RZ medium containing 5-fluoroorotic acid
(5-FOA) and 5-FOA complemented with 0.5 mg/ml uracil.

Transcript analysis

To determine the presence of cphd mRNA in the trans-
formants, liquid cultures were grown as described in the
previous section. Mycelium was harvested after 72 h,
frozen in liquid nitrogen, and ground using a Braun
micro-dismembrator (Braun, Melsungen, Germany). RNA
was isolated and cDNA was generated as described by
Oliveira et al. (2008). The cDNA served as the template for
quantitative real-time PCR (qPCR). Primers were designed
with the Primer3 program to have a specific melting
temperature of 60+1°C, GC content of 50+5%, and
amplicon sizes between 139 and 150 bp. The primers used
were 7120gF, 7120qR, 7120coqF, 7120coqR 6803qF, and
6803qR. Two reference genes were used; as an external
reference gene kanamycin, the primers were kanqF and
kangR (Table 2) and as an internal reference gene pyruvate
decarboxylase was used with the primers PDCqF and
PDCqR (Table 2). The PCR mixes were pipetted with the
CAS-1200 robot (Corbett Life Science, Sydney, Australia).
Reaction mixtures for real-time PCR had a total volume of
16 ul and contained 4 pl cDNA (2.5 ng/ul), 1.2 pl of each
primer (1.2 uM), and 10 pul ABsolute QPCR SYBR Green
Mix (ABgene, Epsom, UK). The Rotor-Gene 3000 (Corbett
Life Science) was used for thermal cycling and real-time
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detection of the DNA. The melting analysis feature was
used to determine primer—dimer formation, and the com-
parative quantitation feature was used to determine take-off
and amplification values. Relative expression was calculated
by the Pfaffl method (Pfaffl 2001). Normalization was
performed on the basis of the added kanamycin external
transcript proportional to the total RNA used for cDNA
synthesis. Additionally, normalization was performed on the
basis of pyruvate decarboxylase (PDC).

Cyanophycin synthetase activity assay

CphA activity was determined in cell-free extracts by a
scintillation assay performed as described by Aboulmagd et
al. (2000) using L-[2,3,4,5->H] arginine monohydrochloride
(GE Healthcare, Piscataway, NJ) with a specific activity of
1.59 TBg/mmol. The cell-free extract was obtained by
centrifugation of a suspension of 100 mg grinded mycelium
in 500 pl 20 mM Tris/HCI buffer pH 7.5 (4°C, 16,100 g). To
determine the effect of protease activity, 12.5 pl protease
inhibitor cocktail (P8215) (Sigma-Aldrich, St. Louis, MO)
was added to the cell-free extract. The activity was measured
by adding the reaction mixture in a 1 to 10 ratio to Ultima
gold scintillation liquid (Perkin-Elmer Life Sciences, Boston,
MA) and scintillation counting in a model 1600 TR Tri-Carb
liquid scintillation counter (Packard Instrument Company,
Meriden, CT). To determine the specific activity, the protein
concentrations in the cell-free extract were determined with a
Bradford protein assay (Bio-Rad, Hercules, CA). The protein
standards were prepared with bovine serum albumin. All
experiments were performed in triplicate. The specific enzyme
activity was expressed in units per milligram, which repre-
sents the incorporation rate of L-arginine in nanomoles per
minute per milligram of total protein in the cell-free extract.

Isolation and analysis of cyanophycin

Water-soluble and water-insoluble CGP was extracted using a
modified method of Ziegler et al. (2002). Mycelium was
harvested and disrupted as described in a previous section and
1 g (wet weight) was resuspended in 10 ml 20 mM Tris/HCI
buffer pH 7.5. The suspension was centrifuged for 20 min at
4,600 g and 4°C. The cell-free extract was separated from the
pellet, and water-soluble CGP was extracted from the cell-free
extract. The soluble fraction was incubation at 65°C for
20 min and centrifuged for 20 min at 4,600 g at 4°C. The
supernatant was incubated overnight with proteinase K after
which the proteins were precipitated with ice-cold ethanol,
washed with acetone, and air-dried.

Water-insoluble CGP was isolated from the biomass
pellet obtained during the isolation of water-soluble CGP.
This pellet was resuspended in 0.1 M HCl until the CaCO5 was
dissipated and the pH of the sample was 1. The sample was
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centrifuged for 20 min at 4,600 g at 4°C. The supernatant was
neutralized with 0.1 M NaOH and re-centrifuged. The pellet
was washed twice with demineralized water and dried. At
each step, the dry weight of the removed material was
gravimetrically determined to calculate the weight percentage
of the accumulated CGP. The molecular mass of the CGP was
determined by SDS-PAGE analysis using an 11.5% (w/v)
polyacrylamide gel as described by Laemmli (1970) with
50 ug of dried protein per slot. The protein marker used was a
precision plus protein standard from Bio-Rad (Bio-Rad,
Hercules, CA). The gels were stained with Coomassie
Brilliant Blue R-250. To determine the amino acid composi-
tion, the isolated protein was hydrolyzed in 6 M HCI with 1%
w/v of phenol at 110°C for 24 h under nitrogen atmosphere.
The individual amino acids were derivatized with OPA-
reagent (o-phthaldialdehyde) and FMOC (9-fluorenylmethox-
ycarbonyl chloride) (Sigma-Aldrich, St. Louis, MO). The
amino acid analysis was done using the Dionex rapid
separation liquid chromatography (RSLC) system (Dionex
Corporation, Sunnyvale, CA) with an Acquity UPLC" BEH
C18 reversed phase column (Waters, Milford, MA) using an
Ultimate 3000 variable wavelength detector (Dionex Corpo-
ration, Sunnyvale, CA).

Results
Transformant stability

The stability of transformants generated in this study for the
pyrF phenotype was determined with the aid of 5-fluoro-
orotic acid (5-FOA) and uracil selection. If the selection
marker is lost, pyrF transformants are unable to metabolize
5-FOA, thereby preventing cell death, and uracil in the
plates would facilitate cell growth. None of the trans-
formants or the wild type were able to grow on the plates
containing 5-FOA and uracil. This shows that all generated
transformants were stable for the pyrF phenotype.

CphA expression in R. oryzae transformants

The cphA-encoding genes from Anabaena sp. strain
PCC7120 (cphAq150) and Synechocystis sp. strain PCC6803

(cphAesgoz) were selected for expression in R. oryzae 99-880
on basis of their close codon usage. The GC difference in the
first three bases for c¢phd;150 was 3%, 3%, and 13% for
cphAegos, the difference was 2%, 2%, and 2%. To further
increase the efficiency of gene translation, codon-optimized
genes were designed and cloned by DNA 2.0 (Menlo Park,
CA). All the genes were cloned into the R. oryzae expression
vector pPdcExPyrF (Table 1). It was impossible to obtain a
vector containing the codon-optimized gene of cphdegos,
despite the fact that several E. coli strains were used as a host
for plasmid propagation. The transformation of R. oryzae
spores with the expression vectors was accomplished by the
biolistic transformation method. In total, 40, 14, and 38
transformants were isolated with the unmodified cphAds;,,
the codon optimized cphA;159 and the cphAggos-encoding
genes, respectively (Table 3). The total number of trans-
formants isolated directly after the transformation with the
codon-optimized gene was 60, yet many failed to grow or
sporulate in the isolation process for single progeny. All
generated transformants were grown in liquid RZ medium
for 72 h after which the mycelium was harvested for RNA
extraction and protein analysis. The transformants were
screened with quantitative real-time PCR (qPCR) for the
presence and the amount of the specific cphA transcript. Not
all isolated transformants expressed the cphA-encoding 8 out
of 40 for cphA7120, 1 out of 14 for codon optimized
cphAq10, and 14 out of 38 for cphAggos (Table 3). The
transcript levels for the cphA;1,9-encoding genes represented
0.01% to 0.4% of the PDC transcript. For the transformants,
expressing the cphAggosz-encoding gene was much higher,
ranging from 0.8% to 39.5% of the PDC transcript. In the
wild-type strain, the apparent transcript level of the cphd-
encoding genes represented 1%o of the PDC gene; this was
considered to be an a-specific transcript.

CphA activity in R. oryzae transformants

Transformants in which a cphA transcript was detected were
further analyzed for CphA activity as determined with the
scintillation assay. In two transformants, both expressing the
cphAesgos gene, specific enzyme activity was detected. These
transformants were named transformant cphAggos# land
transformant cphAggos#2. Both transformants had a specific

Table 3 Number of transfor-

mants generated and tested Cod opt; codon optimized

positive at various stages in

the experiment cphA variant Number of Transformants with Transformants Transformants
generated transcript level with CphA activity with CGP
transformants accumulation
Cpl’lA71 20 40 8 0
Cp/’lA7120 cod Opt 14 1 0
CphA6803 38 11 2 1
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enzyme activity of 1.5 mU/mg proteins, which was much
higher than the wild-type in which an activity of 0.27 mU/mg
protein was measured (Table 4). To determine if protease
activity was the cause of the low specific enzyme activity, a
broad-spectrum protease inhibitor cocktail was added to
fresh cell-free extract. This did not lead to an increase in the
enzyme activity (data not shown).

Determination of the presence of CGP

CGP was extracted using the protocols for water-soluble and
insoluble CGP. Only in transformant cphAggostt1 water-soluble
and insoluble CGP was detected by SDS-PAGE analysis
(Fig. 2). This transformant accumulated mainly water-soluble
CGP to a maximal amount of 0.5% dry weight of the biomass
(Table 4). The water-insoluble CGP was accumulated in such
small quantities that it was impossible to accurately determine
the dry weight percentage. The protein fractions were
analyzed on SDS-PAGE gel. Both forms of CGP appeared
to be poly-disperse in molecular mass. The molecular mass of
the water-insoluble CGP ranged from 25 to 37 kDa, whereas
the molecular mass of the water-soluble CGP ranged between
10 and 20 kDa (Fig. 2).

Amino acid composition of CGP

The amino acid composition of the isolated CGP was
determined by rapid separation liquid chromatography
(RSLC). The samples were first hydrolyzed by acid hydroly-
sis, and as a result, it was not possible to discriminate between
aspartic acid and asparagine, nor between glutamic acid and
glutamine. The amino acid composition of the water-soluble
CGP comprised of equimolar amounts of arginine and aspartic
acid/asparagine. These fractions represented 70.4 mol% of the
total protein fraction. The remainder of the sample consisted
primarily of leucine, glycine, serine, and lysine, with trace
amounts of other amino acids. A sample from the wild-type
strain extracted by the same method was also analyzed as a
reference sample. In this sample, the combined fractions of
aspartic acid/asparagine and arginine represented only
16.4 mol% of the total protein present in the sample. The

Table 4 Specific activities of cell-free extract

A B
1 2 3 4 5 ,p, 1 2 3 4 5
b—. Dot
w50
: 37
| Il
20
15
10

Fig. 2 Water-soluble and insoluble CGP extracted from R. oryzae
transformants SDS-PAGE analysis of the CGP accumulated in
transformants of R. oryzae M 16 expressing cphA-encoding gene
from Synechocystis sp. Strain PCC6803. a The water-soluble CGP
samples. b The water-insoluble samples. Per lane, 50 pg sample of
each of the different transformants was loaded. a Lane 1; 20 ng CGP
from S. cerevisiae G175 expressing the cphA-encoding gene from
Synechocystis sp. strain PCC6308 (Broker et al. 2008), lane 2; R.
oryzae 99-880, lane 3; R. oryzae M 16 transformant cphdsggs #2, 4; R.
oryzae transformant M16 cphAgsps #1; S, protein marker. b Lane 1;
20 ug CGP from S. cerevisiae G175 expressing the cphA-encoding
gene from Synechocystis sp. strain PCC6308 (Broker et al. 2008); lane
2; protein marker, lane 3; R. oryzae 99-880, lane 4; R. oryzae M16
expressing cphAggos #1

most abundant amino acid fractions were glutamic acid/
glutamine, aspartic acid/asparagine and alanine representing
11.4, 11.2, and 10.8 mol%, respectively. Lysine represented
7.2 mol% of the protein fraction in the wild-type sample and
only 5.7 mol% in the CGP sample. The amino acid
composition of the water-insoluble CGP was not accurately
determined due to the low CGP content in the sample.

Discussion

CGP production in R. oryzae

The goal of this study was to produce the polypeptide CGP
in the filamentous fungus R. oryzae. The transcript levels of

Strain and Relative cphA Mean Mean CphA sp. Percent dry weight water-soluble
transformants transcript DPM+SD act. (mU/mg)+SD CGP/insoluble CGP

Wild-type 1.42E-05 448+317 0.27+0.066 0/0

cphAggostt] 1.2E+01 1,838+436 1.5+0.36 0.5/0

cphAggostt2 2.5E+01 2,220+504 1.5+£0.35 0/0

All assays were performed in triplicate. Transcript levels are relative to the PDC gene transcript. One unit is defined as the amount of L-arginine
incorporated in nanomole in 1 min per milligram protein (Ziegler et al. 1998)

SD standard deviation
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the different cphA-encoding genes varied strongly in the
transformants and in only two transformants expressing
cphAegos was specific enzyme activity detected. The
specific activity of CphA in the two transformants was
1.5 mU/mg protein. This is about 1,000 times lower than
described for other eukaryotic microorganisms. In S.
cerevisiae (Broker et al. 2008) and P. pastoris (Broker et
al. 2010) both expressing cphAeszos, the CphA activity was
0.91 and 2.01 U/mg, respectively. In addition, no correla-
tion was detected between transcript levels and the
measured enzyme activity for the R. oryzae transformants.
This in contrast to the results described in a study by
Mertens et al. (2006) with R. oryzae NRRL395 using the
same promoter. Here, a clear correlation was observed
between transcript levels and Green Fluorescence Protein
(GFP) accumulation. Furthermore, CGP only accumulated
in one of the two transformants which displayed enzyme
activity.

There are several possible explanations for the low
enzyme activity and CGP accumulation in the cphd
transformants of R. oryzae. One option is a putative
instability of the introduced construct. Kroll et al. (2011)
reported a much lower CGP production by engineered E.
coli cells grown on mineral medium compared to those
grown in complex media. It was hypothesized that this was
due to the instability of the introduced plasmid. Apparently,
the production of CGP in mineral medium, also applied in
our study, is a strong metabolic burden resulting in an
unstable genotype. A comparable phenomenon was ob-
served in CGP producing transformants of S. cerevisiae.
Here, a loss in enzyme activity and CGP accumulation
occurred in transformants after several cultivation rounds,
whereas the gene itself remained present in the cells (Dr. A.
Broker, personal communication). The isolation of single
progeny transformants and biomass generation with R.
oryzae in this study requires three consecutive sporulation
events and are equivalent to many cultivation rounds. A
loss comparable to that of S. cerevisiae's enzyme activity
after prolonged cultivation can explain the absence or low
amounts of active enzyme and CGP. Another option can be
a putative toxicity of the cphA4-encoding gene products. The
putative toxicity can also be a reason why there is a
discrepancy between the mRNA levels and enzyme activity.
Yet the discrepancy can also be a result of the direct
inactivation of the CphA protein by, e.g., proteolytic
activity.

Currently, a limited number of heterologous genes were
successfully expressed in R. oryzae. These are genes coding
for GFP (Mertens et al. 2006) and lactate dehydrogenase A
from R. oryzae NRRL395 in R. oryzae in 99-880 (Skory
and Ibrahim 2007). These genes are either small or
originate from closely related organisms. The cphAegos-
encoding gene from cyanobacteria is phylogenetically more

distant and with a size of approximately 3 kbp significantly
larger than the previously expressed genes. This demon-
strated that larger heterologous genes can also be success-
fully expressed in R. oryzae.
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