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Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast
Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated,
for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery
and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable
technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics
tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking.We present a complete workflow for the calculation
of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the
FASTQ format and provides splicing efficiency values for the 5󸀠 and 3󸀠 splice junctions of each intron. The pipeline is based on up-
to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use
form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow
should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

1. Introduction

In eukaryotes, coding parts of genes, the exons, are inter-
rupted by noncoding parts, the introns. The process through
which introns are removed and exons are joined together
is called splicing. It occurs via two consecutive transester-
ification reactions which are catalysed by the spliceosome,
a large dynamic ribonucleoprotein complex composed of
five snRNP particles (U1, U2, U4/U6, and U5) and other
associated protein complexes, like the Nineteen Complex
(NTC in yeast; CDC5L in mammals) (reviewed in [1]).
Splicing must occur very precisely as even a single nucleotide
shift may lead to a frameshift, which could cause many
disorders, including cancer [2, 3]. Therefore, regulation of
splicing has an important role in gene expression.

Introns are defined by core sequences comprising the 5󸀠
splice site, branch site, and the 3󸀠 splice site. In metazoans,
additional sequences are needed for recruiting various trans-
acting regulatory factors, which modulate the binding of
spliceosome subunits and splice site choice and efficiency,

deciding on the splicing outcome.This is important especially
for alternative splicing (reviewed in [4]).

In contrast to higher eukaryotes, whose genes typically
contain multiple short exons alternating with introns up to
several kilobases long [5], gene structure in the budding
yeast Saccharomyces cerevisiae is much simpler. Only five
percent of the almost 6000 yeast genes contain introns,
usually just one [6]. However, the intron containing genes
are very highly expressed. As a result, about one-third of all
transcripts are spliced [7]. The consensus sequences of the
yeast core spliceosome signals are well defined (GUAUGU
for the 5󸀠 splice site, UACUAAC for the branch site with the
branching A in bold, and AG for the 3󸀠 splice site) [6]. Also,
there are only few cases of alternative splicing in budding
yeast (reviewed in [8]), and regulation of splicing efficiency
plays a more prominent role, for example, during meiosis
[9] or under environmental stress [10, 11]. For example, the
constitutively transcribed intron containing genes REC107,
AMA1, SPO22, and MER3 are efficiently spliced and pro-
cessed to form functional mRNAs only during meiosis, when

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 4783841, 9 pages
http://dx.doi.org/10.1155/2016/4783841

http://dx.doi.org/10.1155/2016/4783841


2 BioMed Research International

Table 1: RNA-seq datasets used in this study.

Genotype ArrayExpress acc. numbera ENA acc. numberb Read length (nt) Total reads Reads with MAPQ
≥ 10

% reads with MAPQ
≥ 10

WT E-MTAB-5149 ERR1709739 100 27 789 829 25 329 092 91,2%
ERR1709740 100 22 000 062 20 402 556 92,7%

prp45(1-169) E-MTAB-5149 ERR1709737 100 27 842 215 25 491 566 91,6%
ERR1709738 100 25 156 639 23 359 541 92,9%

WT E-GEOD-44219 SRX233529 100 21 012 048 17 127 536 81,5%
prp4-1 E-GEOD-44219 SRX233535 100 17 142 559 14 457 015 84,3%
WT E-GEOD-49966 SRR953535 101 35 203 753 7 655 225 21,8%
prp40-1 E-GEOD-49966 SRR953537 101 17 326 529 3 596 304 20,8%
aAccession number for the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/).
bAccession number for the European Nucleotide Archive (http://www.ebi.ac.uk/ena).

the Mer1 splicing factor is expressed [9, 12–14]. Also, various
environmental stresses can lead to differential changes in
splicing efficiency in specific groups of genes: amino acid
starvation inhibits splicing of the ribosomal protein genes,
while ethanol stress has no effect on this group of genes but
alters splicing in another group [10, 11].

The yeast spliceosome consists of ∼90 proteins, that
is, around half of the proteins identified in the human
spliceosome. However, nearly all of the yeast spliceosome
components have counterparts in human. Therefore, it was
suggested that the S. cerevisiae spliceosome represents an evo-
lutionarily conserved core of the splicingmachinery. Accord-
ingly, many of the human-specific spliceosomal proteins are
needed for the regulation of alternative splicing, a feature
almost missing in the budding yeast [15]. This, together with
the ease of cultivation and genetic manipulation, led to the
establishment of the budding yeast as a favourite model for
studying the basic mechanisms of pre-mRNA splicing.

To study the influence of genetic perturbations or envi-
ronmental conditions on splicing, it is important to quantify
the splicing efficiency. Splicing efficiency is traditionally
calculated as the amount of mRNA divided by the amount
of pre-mRNA. The gold standard for mRNA and pre-mRNA
quantification is the use of quantitative PCR (RT-qPCR) with
primers spanning exon-intron and exon-exon junctions (e.g.,
[16]).However, this approach is feasible formeasuringmRNA
and pre-mRNA levels for only a limited number of genes.
By contrast, ultrahigh-throughput sequencing of RNA (RNA-
seq) allows comprehensive splicing analysis at the genome-
wide scale [17–19].There are multiple paradigms for calculat-
ing splicing efficiency from RNA-seq data, which are based
on comparing sequencing read counts from intronic and
exonic regions or also take into account exon-exon junction
reads (transreads).Themethods also vary in the length of the
window considered (e.g., 25 bp around a splice site versus a
whole exon) [17, 18, 20–24]. RNA-seq is a simple, robust, and
affordable technique and there is now a wealth of publicly
available RNA-seq datasets [25, 26]. Together, this makes
RNA-seq a convenient method for genome-wide determi-
nation of splicing efficiency, although the bioinformatics
analyses involved might be challenging for nonspecialists.
Here, we present a complete and documented up-to-date

workflow for semiautomatic calculation of genome-wide
splicing efficiencies from strand-specific RNA-seq data in S.
cerevisiae.

2. Materials and Methods

2.1. RNA-seq Datasets. Sequencing reads from strand-
specific transcriptome profiling of splicing mutants (prp45(1-
169), prp4-1, and prp40-1) and their corresponding wild-type
S. cerevisiae strains [17, 24] were downloaded from the
European Nucleotide Archive (http://www.ebi.ac.uk/ena)
in FASTQ format (more information about the various file
formats used in this study can be found at https://genome
.ucsc.edu/FAQ/FAQformat.html) and experiment metadata
were obtained from ArrayExpress (https://www.eabi.ac.uk/
arrayexpress/). The relevant database accession numbers
are given in Table 1. Importantly, to simplify downstream
analyses, only “read 1” FASTQ files were used from paired-
end sequencing datasets.

Thepipeline requires that strand-specific sequencing read
data are used (true for most currently generated RNA-
seq datasets). As pervasive antisense transcription has been
reported in many eukaryotic organisms, including yeasts
[27], strand specificity of sequencing reads helps to separate
the contributions of potential overlapping sense/antisense
transcripts.

Sequencing read quality and potential contamination by
adapters and/or PCR primers was checked with FastQC
0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). All datasets were found suitable for further anal-
yses. However, if needed, contaminating and low-quality
sequences can be filtered and/or trimmed using tools such as
Trimmomatic [28].

2.2. Read Mapping. Reads were aligned to S. cerevisiae
genome (Ensembl R64-1-1) with the fast, splice-aware
HISAT2 aligner (version 2.0.4) using S. cerevisiae genome
index containing transcript structures [29]. Minimum and
maximum intron length parameters were set to 20 and
10000 nt, respectively. More details on HISAT2 parameter
settings can be found in the “workflow.sh” shell script in the
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/4783841.

https://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
https://genome.ucsc.edu/FAQ/FAQformat.html
https://genome.ucsc.edu/FAQ/FAQformat.html
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1155/2016/4783841
http://dx.doi.org/10.1155/2016/4783841
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Subsequently, samtools 1.3.1 were used to filter reads by
their mapping quality score (MAPQ ≥ 10) to keep only reads
that aligned unambiguously to a single locus and to sort and
index the resulting BAM files [30]. Read mapping was also
assessed visually in the IGV browser 2.3.69 [31].

We also tried aligning reads from the PRP45-related
datasets with TopHat2 [32], the widely used predecessor of
HISAT2. Compared to TopHat2, the HISAT2 alignment step
was ∼2-fold faster, and the mapping supported identification
of ∼11% more transreads and calculation of splicing efficien-
cies for ∼4% more splice sites.

2.3. Splice Site Identification and Counting of Transreads. Pu-
tative splicing events were detected by regtools 0.2.0 (https://
regtools.readthedocs.io/en/latest/). These tools look for pre-
sumed transreads (reads spanning exon-exon junction) in
BAMfiles, compile a table of all identified putative splice sites
and their characteristics, and provide the counts of transreads
spanning these splice sites. Minimum and maximum intron
length parameters were set to 20 and 10000 nt, respectively.
Detected splice sites were also annotated and classified as
known or novel using regtools and S. cerevisiae genome
annotation (Ensembl R64-1-1) in GTF format. The output
from regtools was further processed and coordinates of bases
at the very 5󸀠 and 3󸀠 ends of each known intron were
extracted (into BED format) by a custom R script (R version
3.3.1, https://www.r-project.org/). See the “workflow.sh” and
“junctions.R” scripts in the SupplementaryMaterial for more
details.

2.4. Determination of 5󸀠 and 3󸀠 Intron End Coverage. Read
coverage of the very first (5󸀠 end) and the very last (3󸀠 end)
base of each known intron was determined from all BAM
files in parallel using bedtools 2.25.0 (bedtoolsmulticov) [33].
It is critical to set the -split parameter to avoid including
transreads in the intronic read counts. It is also important to
correctly set the -s/-S parameters according to the sequencing
library preparation protocol employed to ensure that only
reads mapped to the “sense” strand will be counted (see the
“workflow.sh” script in the Supplementary Material).

2.5. Splicing Efficiency Calculation. The method for splicing
efficiency calculation was derived from the “3󸀠 splice site
ratio” method described in [20]. For each intron, splicing
efficiency was determined separately for the 5󸀠 splice site and
3󸀠 splice site using the following formulas:

Efficiency 5󸀠 = transread count
5󸀠 intron end first base coverage

,

Efficiency 3󸀠 = transread count
3󸀠 intron end last base coverage

.

(1)

Transreads only arise from spliced transcripts and thus
reflect directly the abundance of mRNA molecules in which
the particular intron has been spliced out. By definition,
transreads must cover at least the very last base of exon X and
the very first base of exon X + 1. To match this single-base
resolution while counting intronic reads, only those reads

covering the very first (for 5󸀠 splice site) and the very last (for
3󸀠 splice site) base of the corresponding intron are counted.
This allows direct comparison of pre-mRNA and spliced
mRNA molecule levels (an approach most similar to the RT-
qPCR gold standard; see below) and separate calculation of
splicing efficiencies at the 5󸀠 splice site and 3󸀠 splice site of
each intron, reflecting the efficiencies of the two splicing
steps.

We note that, for some genes, our method may use only a
fraction of all available intronic reads (e.g., for mitochondrial
genes with long introns). Importantly, the introns of some
genes harbour nested snoRNAs or are predicted to contain
potential stable structures, suggesting the presence of so far
uncharacterised nested noncoding RNAs. It was shown that
such introns can be maintained in the cell after splicing [34],
potentially affecting the determination of splicing efficiency
when sequencing reads along the whole intron are consid-
ered.

Depending on the sequencing library size, strain geno-
type, or cultivation conditions, many introns typically have
very low read coverage, which might produce unreliable
splicing efficiency data. Therefore, in the final spreadsheet,
we do not report splicing efficiency values for junctions with
read counts below an arbitrary threshold of 5 reads for both
transread count and intron end read count. Usersmay change
this threshold if required; see the “efficiency.R” script in the
Supplementary Material for more details.

2.6. Yeast Strains and Cell Cultivation. Wild-type (BY4741-
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and the prp45(1-
169) mutant (AVY17-MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
prp45(1-169)-3-HA::NatMX6) strains were grown in the
YPADmedium (2% peptone, 1% yeast extract, 0.01% adenine,
and 2% glucose) at 30∘C to 1.5 × 107 cells/mL. Two millilitres
of each culture was harvested by centrifugation and cell
pellets were stored at −80∘C.

2.7. RNA Isolation, Reverse Transcription, and RT-qPCR
Analysis. Total RNA was isolated with the MasterPure Yeast
RNA Isolation Kit (Epicentre) according to the manufac-
turer’s protocol. cDNA was prepared from 2 𝜇g of the total
RNA using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific) with random hexamer primers.
RT-qPCR was performed using LightCycler 480 II (Roche).
Each reaction (total volume of 10 𝜇L) was performed in
triplicate and consisted of 5 𝜇L of the MESA GREEN qPCR
MasterMix Plus for SYBR Assay, No-ROX (Eurogentec), 4 𝜇L
of 100-fold diluted cDNA, and a pair of primers 0.3mM each
(for sequences, see the SupplementaryMaterial). Primer pairs
were designed to specifically amplify either the spliced or the
unspliced transcripts of the ECM33, ACT1, COF1, RPL22A,
and RPL22B genes. Amplicons from unspliced transcripts
covered the 3󸀠 splice junction in ECM33, while the 5󸀠 splice
junction was covered in the other four genes. Four to six
biological replicates were analysed for each gene, and the
TOM22 and SPT15 genes were used as reference controls.
Relative pre-mRNA andmRNA quantities were calculated by
the ΔΔCt method [35].

https://regtools.readthedocs.io/en/latest/
https://regtools.readthedocs.io/en/latest/
https://www.r-project.org/
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3. Results and Discussion

3.1. Pipeline for Determination of Splicing Efficiency. We have
put together a workflow for calculating splicing efficiency
of each intron from standard RNA-seq data in S. cerevisiae
(Figure 1). The pipeline consists mostly of established open-
source tools formanipulation and analysis of next-generation
sequencing data (FastQC, HISAT2, samtools, regtools, and
bedtools) and simple custom scripts (Linux shell and R). All
scripts including parameter settings for all tools are available
in the Supplementary Material.

Briefly, after input quality control (FastQC), reads are
mapped into S. cerevisiae reference genome (HISAT2, [29])
and filtered, keeping only uniquely mapped reads (samtools,
[30]; MAPQ ≥ 10). Positions of splice junctions (both known
and novel) and transread counts for these junctions are
extracted (regtools). Read coverage of the 5󸀠 and 3󸀠 intron
end base is determined (bedtools, [33]) and splicing efficiency
calculated for each intron at both 5󸀠 and 3󸀠 splice junction,
corresponding to the efficiency of the first and the second step
of splicing, respectively.

The description of folder structure and content, both
required before starting the analysis and produced dur-
ing the analysis, is given in the file “folders readme” in
the Supplementary Material. Users need to supply genome
sequence (in FASTA format), annotation (in GTF format),
and HISAT2 genome index containing transcript struc-
tures (in the “genome” folder). A ready-made S. cerevisiae
genome index can be downloaded from the HISAT2 website
(“genome tran”; https://ccb.jhu.edu/software/hisat2/). Users
further need to supply RNA-seq reads in FASTQ format (in
the “FASTQ” folder); the pipeline is designed for single-
end, strand-specific sequencing data. Depending on the
protocol for sequencing library preparation that was used,
users might need to adjust strandness-related parameters for
HISAT2 and bedtools (see theMaterials andMethods and the
“workflow.sh” file in the Supplementary Material) to obtain
correct read counts and splicing efficiency values.

The main outputs of the pipeline are

(1) a table (CSV format) of transread counts from all
samples for known splice junctions (folder “tran-
sreads”; file “splice junctions coverage.known.csv”;
note that only junctions of expressed genes for which
transreads were detected are reported in all analyses);

(2) tables of read coverage from all samples for 5󸀠 and
3󸀠 terminal bases of known introns (folder “in-
trons”; files “introns known 5ss.bed.counts.csv” and
“introns known 3ss.bed.counts.csv”);

(3) tables of read threshold-filtered splicing efficiencies
in all samples calculated separately for 5󸀠 and 3󸀠
splice sites of known introns (folder “efficiency”;
files “splicing efficiency 5ss conf.csv” and “splic-
ing efficiency 3ss conf.csv”).

Users can also define a set of sample (FASTQ filename) pairs
to be compared (e.g., mutant versus wild type; see the “effi-
ciency.R” script in the SupplementaryMaterial).The pipeline
then produces a table of “relative” splicing efficiencies (folder

“efficiency”; files “relative splicing efficiency 5ss conf.csv”
and “relative splicing efficiency 3ss conf.csv”) and scatter-
plot images (folder “images”; PDF format; see Figure 2 for an
example).

Multiple approaches have been used in the past to
determine splicing efficiency from yeast RNA-seq data, for
example, [17, 18, 21, 24]. However, the bioinformatics tools
used are often outdated now in terms of speed of processing
and their abilities to work with split reads (transreads).
Also, the complete workflow, including all relevant scripts,
is usually not provided. By contrast, the pipeline presented
in this study is based upon the latest tools with advanced
capabilities for fast and accurate split read processing, suitable
for studies of splicing efficiency [29, 30, 33]. The pipeline
also allows convenient processing of multiple FASTQ files
(samples) with very limited input from the user required.
In case of the PRP45-related datasets mentioned below, ∼55
million 100 nt reads were processed by the pipeline in 38
minutes on a standard desktop PC (quad-core AMDA8-3870
APU CPU with 8GB RAM) running 64-bit Ubuntu 16.04.

While the scripts provided in the SupplementaryMaterial
are customized for analysis of S. cerevisiae RNA-seq data,
the pipeline can be easily adapted for other yeast species
by providing the corresponding genome sequence, genome
annotation, and genome index (built using hisat2-build
[29]) files and altering the relevant filename variables in
the “workflow.sh” script accordingly. The Supplementary
Material contains one such example adaptation of the pipeline
for the fission yeast Schizosaccharomyces pombe.

3.2. Analysis of Splicing Efficiency in Spliceosome Mutants.
As we are primarily interested in studying altered splicing
patterns in various spliceosome mutants, we selected three
publicly available RNA-seq datasets for S. cerevisiae spliceo-
some mutants, which show global reductions in splicing
efficiency, to demonstrate the function of our workflow. All
datasets contain samples with roughly similar amounts of
sequencing reads (∼17–35 million) of very similar length
(∼100 nt) but differ markedly in data quality in terms of the
percentage of uniquely mappable reads (Table 1).

The first example dataset is focused on Prp45, an essential
splicing factor and a component of the so-called NTC-related
complex [36]. Based on cryo-EM structural information,
Prp45 stabilizes the catalytic centre of the spliceosome
through interactions with many proteins and with all three
spliceosomal snRNAs [37]. Cells bearing the C-terminally
truncated prp45(1-169) allele are temperature-sensitive and
have deformed shapes [38]. We analysed two biological
replicates of RNA-seq data for wild-type and prp45(1-169)
cells grown at permissive temperature (30∘C). First, we
used the data pooled by genotype and found a global
decrease of splicing efficiency in the mutant (Figures 2(a)
and 2(b)). Next, we calculated relative splicing efficiencies
(i.e., mutant normalized to wild type) in each replicate
separately to assess reproducibility. Results for introns with
sufficient splice junctions coverage (≥5 transreads and ≥5
reads covering intron end base) showed good agreement
between the two independent replicates (Figures 2(c) and
2(d)). Finally, to validate the results of our pipeline, we used

https://ccb.jhu.edu/software/hisat2/
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Figure 1: Workflow for calculating splicing efficiency from RNA-seq data. Files and datasets are represented by blue parallelograms (file
formats given in parentheses), and processing steps are represented by orange rectangles (tool names given in parentheses). Some files/datasets
are used repeatedly in several steps of the workflow as signified bymultiple flow lines going from these files/datasets.The diagramwas created
using draw.io (https://www.draw.io/).
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Figure 2: Splicing efficiency in the prp45(1-169) mutant. Splicing efficiencies for all known introns (for 5󸀠 and 3󸀠 splice sites separately) were
calculated using the pipeline described in Figure 1. (a, b) Results for two pooled biological replicates of the prp45(1-169) mutant and its
corresponding wild-type strain. Higher values correspond to more efficient splicing. Full circles represent values for introns with sufficient
coverage (≥5 transreads and ≥5 reads covering intron end base); open circles represent low-confidence values for introns with low sequencing
read coverage. (c, d) Relative splicing efficiencies (prp45(1-169) normalized to wild type) at the 5󸀠 and 3󸀠 splice sites were calculated for
each biological replicate separately. Only introns with sufficient read coverage were considered. Pearson’s 𝑟 values for the two replicates are
indicated. (e) Comparison of relative splicing efficiencies at the 5󸀠 and 3󸀠 splice sites of selected genes calculated from the pooled RNA-seq
data with relative splicing efficiencies determined by RT-qPCR (means of 4–6 independent RT-qPCR experiments ± SD).
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Figure 3: Splicing efficiency in the prp4-1 and prp40-1mutants. Splicing efficiencies for all known introns (for 5󸀠 and 3󸀠 splice sites separately)
were calculated using the pipeline described in Figure 1. (a, b) Results for the prp4-1 mutant and its corresponding wild-type strain [17].
(c, d) Results for the prp40-1 mutant and its corresponding wild-type strain [24]. Higher values correspond to more efficient splicing. Full
circles represent values for introns with sufficient coverage (≥5 transreads and ≥5 reads covering intron end base); open circles represent
low-confidence values for introns with low sequencing read coverage.

RT-qPCR to measure the levels of spliced and unspliced
transcripts for five selected genes showing various degrees
of splicing impairment in the prp45(1-169) mutant RNA-
seq dataset. Reassuringly, the splicing efficiencies calculated
by our pipeline were concordant with those determined by
RT-qPCR, pointing to possible differential requirements for
Prp45 in pre-mRNA splicing of specific genes (Figure 2(e)).

Next, we analysed data for Prp4, a structural component
of the U4/U6 di- andU4/U6-U5 tri-snRNP particles [39, 40].

The prp4-1 temperature-sensitive allele blocks U4 snRNP
dissociation during the catalytic activation of the spliceosome
[41, 42]. Using splicing-sensitive microarrays, it was shown
that this mutation causes a genome-wide splicing defect even
at the permissive temperature of 26∘C [43]. We used the
prp4-1 RNA-seq dataset from [17] and we confirmed the
global impairment of splicing efficiency in this mutant at
permissive temperature (Figures 3(a) and 3(b)). However,
for a number of introns, splicing efficiency could not be
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convincingly determined (especially at the 5󸀠 splice site)
due to low read coverage at the splice junctions. This was
unexpected since the prp4-1 sequencing library sizes and
mappability were comparable to the prp45(1-169) dataset
(Table 1). Furthermore, the whole distribution of splicing
efficiencies at the 3󸀠 splice site (for both prp4-1 and its
wild-type control) was shifted compared to the other two
splicing mutants we analysed. Visual inspection of mapped
prp4-1 reads revealed decreasing coverage towards 5󸀠 ends
of genes, where introns are typically located in S. cerevisiae,
suggesting possible problems with RNA sample preparation
and/or processing.

The third example relates to Prp40, a component of
the U1 snRNP particle [44]. Through interactions with
many spliceosome subunits and with the phosphorylated C-
terminal domain of the RNA polymerase II, the Prp40 pro-
tein is important for cotranscriptional spliceosome assem-
bly (reviewed in [45]). The prp40-1 temperature-sensitive
mutant [44] exerts a global splicing defect when shifted
to nonpermissive temperature [24], which we confirmed
by running the published RNA-seq dataset through our
pipeline (Figures 3(c) and 3(d)). It should be noted that
this dataset had poor mappability (Table 1) and yielded
relatively low read coverage, decreasing the number of
junctions for which splicing efficiency could be calculated
convincingly.

Thus, these three proof-of-principle scenarios demon-
strated that our workflow is able to recapitulate previously
identified genome-wide decreases in splicing efficiency using
RNA-seq data. The results also highlight a critical require-
ment for sufficient sequencing library quality and size for
successful analysis.

4. Conclusions

We present a complete bioinformatics workflow for deter-
mining splicing efficiency in the budding yeast S. cerevisiae
using data produced by the simple and affordable RNA-seq
technique. Starting with strand-specific sequencing reads in
the FASTQ format, our pipeline is able to calculate splicing
efficiency at the 5󸀠 and 3󸀠 splice junctions of each intron,
with very limited input required from the user. All relevant
scripts are provided in a documented and ready-to-use form.
Theworkflow should prove useful for studies of yeast splicing
mutants or of regulated splicing, for example, under various
growth conditions.
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vol. 353, no. 6302, pp. 895–904, 2016.
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