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Abstract

Calcium signaling plays a key role in many essential processes in almost all eukaryotic sys-

tems. It is believed that it may also be an important signaling system of the protist parasite

Entamoeba histolytica. Motility, adhesion, cytolysis, and phagocytosis/trogocytosis are

important steps in invasion and pathogenesis of E. histolytica, and Ca2+ signaling is thought

to be associated with these processes leading to tissue invasion. There are a large number

of Ca2+-binding proteins (CaBPs) in E. histolytica, and a number of these proteins appear to

be associated with different steps in pathogenesis. The genome encodes 27 EF-hand–con-

taining CaBPs in addition to a number of other Ca2+-binding domain/motif-containing pro-

teins, which suggest intricate calcium signaling network in this parasite. Unlike other

eukaryotes, a typical calmodulin-like protein has not been seen in E. histolytica. Though

none of the CaBPs display sequence similarity with a typical calmodulin, extensive structural

similarity has been seen in spite of lack of significant functional overlap with that of typical

calmodulins. One of the unique features observed in E. histolytica is the identification of

CaBPs (EhCaBP1, EhCaBP3) that have the ability to directly bind actin and modulate actin

dynamics. Direct interaction of CaBPs with actin has not been seen in any other system.

Pseudopod formation and phagocytosis are some of the processes that require actin

dynamics, and some of the amoebic CaBPs (EhC2Pk, EhCaBP1, EhCaBP3, EhCaBP5)

participate in this process. None of these E. histolytica CaBPs have any homolog in organ-

isms other than different species of Entamoeba, suggesting a novel Ca2+ signaling pathway

that has evolved in this genus.

Introduction

The protist parasite Entamoeba histolytica causes human amebiasis, a major public health

problem in developing countries. Though great strides have been made in understanding the

pathobiological mechanisms of the disease in the last few decades, details about the molecular

pathways that are involved in tissue invasion and damage during both intestinal and extrain-

testinal diseases are not clear. Because only a fraction of infected individuals (about 10%)
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display invasive disease, an understanding of the signaling system that triggers invasion by the

parasite is needed for the development of better therapeutic molecules. Clear linkage between

the genotype of the parasite with invasive disease or with extraintestinal invasion has not been

seen, though a number of virulence factors have been identified in recent years [1]. The host–

parasite relationship in amebiasis is also modulated by host factors, which include host genes

(such as leptin) and gut microflora [2]. Gut bacteria provide not only feeding material but also

an anaerobic environment and pH conducive for the trophozoites to multiply and differentiate

into cysts [3]. It is increasingly believed that the gut environment and parasite genotype, along

with the host genotype, all interact to create the right environment for E. histolytica to invade

[3,4]. However, we do not have any clear idea about the nature of these interactions and how

these eventually influence the parasite’s ability to invade tissues.

Ca2+ homeostatic mechanism in E. histolytica

Ca2+ is one of the versatile, ubiquitous second messengers that mediate pathways by altering

the shape, charge, and electrostatic interaction of downstream effector molecules [5]. In order

to mediate response in the presence of a stimulus, cells have developed a “signaling toolkit” to

sequester or compartmentalize Ca2+ and release it as and when needed [6]. This toolkit com-

prises Ca2+-mobilizing signals that regulate the level of Ca2+ in different cellular compartments

by activating various ion channels and transporting systems. Once Ca2+ is released, a reper-

toire of CaBPs, Ca2+ buffers, and Ca2+-regulated enzymes subtly translate these Ca2+ signals

into a cellular response. After initiation of a response by activating the appropriate pathway,

Ca2+ is rapidly removed from the cytoplasm by various pumps and exchangers [6]. It is not

clear whether E. histolytica encodes most of the molecules needed for release and sequestering

of Ca2+ in response to a signal. Only a handful of molecules have been reported. A figure sum-

marizing our current understanding and the molecules involved is shown in Fig 1. There are 5

genes encoding putative Ca2+-ATPases, out of which 3 belong to plasma membrane Ca2

+-ATPase (PMCA) and 2 to sarcoendoplasmic reticulum ATPase (SERCA), and these are pres-

ent in vacuoles and in the cytoplasmic network, respectively [7,8]. More recently, 2 Ca2

+-ATPases from E. histolytica (Eh), namely EhSPCA (secretory pathway calcium ATPase) and

EhCCX (Ca2+/cation exchanger), have been identified. These are present on the membrane of

some cytoplasmic vesicles [9,10]. Interestingly, overexpression of EhCCX enhanced the viru-

lence and reduced the cell death of trophozoites [9].

E. histolytica has ionophore-releasable Ca2+, comprising around 70% of the total Ca2+ pool

that can be divided into 2 parts. One is stimulated by the second messenger inositol 1,4,5-tri-

phosphate (Ins(1,4,5)P3) releasing internal Ca2+ from endoplasmic reticulum-like structures

[11]. The second one is sensitive to Ins(1,3,4,5)P4 [12]. Though it appears that both these sec-

ond messengers act on 2 different Ca2+ stores, it is not clear whether there is a link between

them in this organism. E. histolytica also encodes a calpain-like protein and many nucleotid-

ases that require Ca2+, such as Ca2+-dependent ATPase/ADPase, Ca2+-dependent thiamine

pyrophosphatase, and acid phosphatase. The calpain-like protein is thought to be associated

with apoptosis of the parasite because its level is increased during programmed cell death of

trophozoites. It was also found in the cytoplasm and near the nucleus [13,14], whereas some of

the nucleotidase enzymes are present in the inner membrane of cytoplasmic vacuoles that may

or may not be phagolysosomes [15–17]. It is also not clear whether these enzymes participate

in calcium homeostasis in this organism. Genomic analysis identified a repertoire of 27 multi-

EF-hand–containing CaBPs in E. histolytica [18]. Some of these proteins are suspected to be

Ca2+ buffers, thereby participating in the regulation of Ca2+ concentration in different cellular

compartments.
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Role of Ca2+ in the pathogenesis of E. histolytica

The initial step during the process of invasion is adherence to the target cells after the contact

has been made. A number of molecules that are involved in this process have been identified.

The most prominent among them is galactose-and N-acetyl-d-galactosamine (Gal/GalNAc)

lectin, a 260-kDa heterodimeric cell-surface protein consisting of a 170-kDa heavy chain (hgl)

bound to a 35/31-kDa light chain (Igl) through disulfide linkage [19]. The light subunit is

thought to attach to the membranes through glycophosphoinositol anchors. The 260-kDa lec-

tin is in complex with a 150-kDa intermediate subunit. The heavy chain has the carbohydrate

recognition domain (CRD) displayed at the cell surface [20]. CRD recognizes target cells and

ligand molecules through this domain. Overexpression of a mutant heavy chain subunit lack-

ing essentially extracellular N-terminal domains (that is, mostly CRDs) conferred a dominant

negative phenotype displaying reduced adherence and virulence in animal models [21]. Light

subunits are also involved in adherence and virulence. Expression of mutated forms of lgl

Fig 1. Model depicting the intracellular calcium dynamics in E. histolytica. Model summarizes the possible pathways of intracellular calcium dynamics after stimulus.

The activation of receptor/channel leads to release of calcium from the ER-like structures into the cytosol. Second messengers such as Ins(1,4,5)P3 helps in the release of

the internal Ca2+ pool in the cytosol. CaBPs, calpain-like protein, Ca2+-nucleotidase, CaM kinases, and other proteins modulates these Ca2+ signals into cellular

response. Later on, Ca2+ is sequestered back into the internal sources by Ca2+-ATPase pumps such as SERCA and PMCA, which are located on the membrane of ER-like

structures and in vacuoles, respectively. CCXs and SPCAs are other pumps localized on the vesicles of many organisms. Dotted arrows (in red) show the speculated Ca2+

ion flow. Because of the lack of evidence, it is difficult to speculate on the localization of different pumps on the vesicles, and the schematic diagram has been simplified

for clarity. CaBP, Ca2+-binding protein; CaM kinases, Ca2+ modulated protein kinases; CCX, Ca2+/cation exchanger; ER, endoplasmic reticulum; Ins(1,4,5)P3, inositol

1,4,5-triphosphate; PMCA, plasma membrane Ca2+-ATPase; SER, smooth endoplasmic reticulum; SERCA, sarco/endoplasmic reticulum ATPase; SPCA, secretory

pathway calcium ATPase.

https://doi.org/10.1371/journal.ppat.1008214.g001
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(part of C-terminal deletion) showed a dominant negative phenotype. The heterodimeric com-

plex of mutant lgl with hgl is formed, but this complex is functionally inactive [22]. The glyco-

syl-phosphatidyl-inositol (GPI) anchor of lgl may be important for the formation of a complex

with hgl because an expression of C-terminal (GPI anchor region)-deleted molecules did not

lead to a 260-kDa complex. In addition to Gal/GalNAc lectin, a number of other cell-surface

molecules that are involved in adherence have been identified. Among these, Lysine and glu-

tamic acid-rich protein 1 (KERP1) and cysteine protease adhesin (CPADH112) have been

described in more detail [23].

Ca2+ also participates in the binding of ligands by Gal/GalNAc lectin [20]. CRD has a Ca2+

binding site, and in one study, it was shown that Ca2+ binding is required for interaction with

the ligand [24]. In a more recent study, a Ca2+ binding site was identified, and a mutant that

lost the ability to bind Ca2+ was generated. Though carbohydrate-binding function was

retained by the mutant protein, the ability to agglutinate red blood cells (RBCs) was lost, sug-

gesting that some properties of Gal/GalNAc lectin are modulated by Ca2+ ions [25]. The Ca2

+-binding chaperone protein calreticulin (CRT) is an E. histolytica cell-surface protein that

binds complement component 1q (C1q) [26]. It participates in the phagocytosis of apoptotic

immune cells, but not adherence or killing of normal cells such as Chinese hamster ovary

(CHO) cells [26]. Moreover, the 2.15-Å X-ray structure of EhCRT showed a closed conforma-

tion of CRT with the dual carbohydrate and/or protein substrate-binding properties of lectin

and that of chaperonin [27]. The pathway does not appear to be through Gal/GalNAc lectin

and provides an alternate cell-surface–interacting system regulated by Ca2+.

Cytolysis of target cells

It has been shown very clearly that adherence of E. histolytica to target cells is required for sub-

sequent cell lysis and tissue invasion [28–30]. Death of the target cells can be directly mediated

through hydrolytic and toxin molecules of E. histolytica or through stimulation of apoptotic

pathway initiated after contact with the parasitic cells [31]. Amebic cells encode and express a

large number of different genes that have proteolytic activity [32]. Among these, cysteine pro-

teinase 5 (Ehcp5) has gained attention because it is located on the cell surface and because of

the absence of a functionally active homolog in the nonpathogenic species E. dispar [33].

Porin-like proteins of E. histolytica, amebapores, were also implicated in cytolysis carried out

by amebic cells [34–36]. One of the consequences of the interaction of E. histolytica with target

cells is a dramatic rise of Ca2+ levels in the latter after contact. Blocking target cell Ca2+ chan-

nels inhibited cell death. This is thought to be initiated by Gal/GalNAc lectin because the puri-

fied protein itself enhances Ca2+ levels in target cells [29,37]. However, the mechanism of

target cell Ca2+ release on contact with E. histolytica is not clear.

A number of studies suggest that Ca2+ signaling is also involved in the ability of E. histoly-
tica to initiate target cell killing. Blocking the rise of intracellular Ca2+ in the parasite prevents

the initiation of the process of cytolysis [28,29,38,39]. Direct involvement of Ca2+ in amebic

virulence was seen when a Ca2+-binding transcription factor upstream regulatory element 3

binding protein (URE3BP) was found to regulate gene expression of virulence-associated

genes. UREBP binds the promoter element of Gal/GalNAc lectin gene hgl5 [40,41]. It has 2

Ca2+-binding EF-hand motifs and negatively regulates transcription in presence of Ca2+; that

is, it binds the promoter DNA motif only in the absence of Ca2+ [40,42]. A Ca2+-binding–

defective mutant displayed a dominant positive phenotype, and cells expressing the mutant

protein were more virulent [43]. URE3BP is likely to have a much wider role because a large

fraction of amebic genes contain the URE3 motif recognized by URE3BP, thereby controlling

expression of a number of genes [43]. URE3BP also shows an unusual localization at the
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plasma membrane of trophozoites apart from that in the nucleus. Membrane association is

regulated by a 22-kDa Ca2+-dependent binding partner known as EhC2A [44]. Apart from

these proteins, the ameba also displays a Ca2+-dependent phospholipase activity that may have

a role in virulence [45].

Phagocytosis and trogocytosis

Phagocytosis is intimately associated with the biology of E. histolytica. It displays a high rate of

pinocytosis and phagocytosis that results in plasma membrane renewal every 30 min [46]. It

phagocytoses a number of different cells that include RBCs, mammalian live and apoptotic

cells, and bacterial cells. A number of reports have pointed out that phagocytosis plays a critical

role in amebic virulence. Most of the evidence is based on the observed direct positive relation-

ship of virulence potential with the phagocytic ability of an isolate. Generally, low phagocytic

potential is correlated with less virulence. Moreover, a mutant defective in phagocytosis was

found to be avirulent [47,48]. When this mutant was analyzed, it was observed that the level of

EhCaBP1 was reduced several-fold in this mutant, suggesting that EhCaBP1 may be involved

in phagocytosis [49]. Moreover, the essential role of Ca2+ in phagocytosis was also seen when

chelation of Ca2+ in the cytoplasm led to inhibition of the process [50,51]. In the last few years,

results from a number of studies have helped to outline a tentative molecular pathway of

phagocytosis in E. histolytica [57]. It is clear from all these studies that Ca2+ plays a critical role

from the initiation stage to the formation of phagosomes.

Phagocytosis is initiated by the recruitment of a C2-domain–containing protein kinase

(EhC2PK) at the particle attachment site [52]. This recruitment requires Ca2+ and C2 domains

and takes place when C2 binds membranes in the presence of Ca2+ [52,53]. We believe that the

recruitment and enrichment of EhC2PK is the trigger for further assembly of the phagocytosis

complex that starts with cups proceeding towards phagosomes. The formation of the phagocy-

tosis complex requires multiple EhCaBPs, namely EhCaBP1, EhCaBP3, and EhCaBP5.

EhC2PK recruits EhCaBP1 at the phagocytic stage, and Ca2+ is not required at this step. Once

EhCaBP1 is at the phagocytic initiation site, it binds and recruits the atypical protein kinase

EhAK1 in presence of Ca2+ [54,55]. EhAK1 is responsible for recruiting actin-related protein

(Arp 2/3) complex proteins through the subunit EhARPC1 [56]. Arp2/3 complex proteins in

turn bind calmodulin-like CaBP EhCaBP3, and this step requires the presence of Ca2+ [57]. A

typical calmodulin is thought to be absent in E. histolytica because no conserved gene has been

seen in this system. EhCaBP3 is thought to be the closest homolog because it displays the high-

est degree of sequence similarity (about 49%) with calmodulins [58]. Both EhCaBP3 and

EhCaBP5 bind atypical myosin 1B in the presence of Ca2+ [58,59]. Myosin 1B has been shown

to be an important component of phagocytic machinery [46]. Imaging experiments have

clearly shown that the myosin 1B–EhCaBP3 complex participates in the pseudopod fusion and

subsequent separation from the membrane [58]. The role of EhCaBP5 in the context of its

interaction with myosin 1B is not clear, though the results do indicate involvement in pseudo-

pod fusion [59]. It is tempting to speculate that EhCaBP3 and EhCaBP5 regulate myosin 1B

function and probably have different roles during phagocytosis [58,59]. Overexpression of Ca2

+-binding–defective mutants of all these proteins helped to delineate the participation of Ca2+

in different steps. Generally, these mutants display a dominant negative phenotype with

respect to phagocytosis. Interestingly, overexpression of Ca2+-binding–defective EhCaBP1 did

not interfere with the formation of phagocytic cups or the process of recruitment, but the pro-

cess of transition from cups to phagosomes was blocked, thereby indicating that EhCaBP1

recruitment is independent of Ca2+ [50]. Therefore, it appears that Ca2+ has both direct and

indirect roles in the phagocytosis of E. histolytica.
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Trogocytosis has recently been shown to be a novel mechanism of target cell killing and vir-

ulence of E. histolytica [60,61]. The trophozoites tend to ingest fragments of live human target

cells that lead to target cell death. This process has been termed amebic trogocytosis [61]. The

process is likely to be initiated through the AGC family kinase 1 gene that is present only dur-

ing the trogocytic event, but not during phagocytosis [62]. Subsequently, an EhC2PK-medi-

ated pathway, similar to that observed for phagocytosis, is involved in the process [61].

Therefore, Ca2+ also plays an important role in trogocytosis.

Other CaBPs

A number of as yet functionally uncharacterized CaBPs have been described in E. histolytica. The

most prominent among these are 2 novel granule proteins grainin 1 and 2, which not only show a

considerable structural similarity to EF-hand-motif–containing CaBPs but also bind Ca2+ [63–

Fig 2. Domain organization of CaBPs. (A) Schematic representation of the domain organization of different CaBPs. (B) The linker regions of

EhCaBP1 and EhCaBP2 between EF II and EF III are shown. Though EF sequences are highly conserved, the linker region sequences have extensive

variation. aa, amino acid; CaBP, Ca2+-binding protein; EhCaBP, E. histolytica Ca2+-binding protein.

https://doi.org/10.1371/journal.ppat.1008214.g002
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65]. These proteins are thought to be involved in vesicular maturation and exocytosis. However,

there is no evidence in support of these activities. Recent studies have suggested the involvement

of grainin 2 in amebic virulence because it was found to be present differentially in virulent organ-

isms [63]. EhCaBP2 displays 79% sequence identity with EhCaBP1 and also has 4 Ca2+-binding

EF-hand domains [66] (Fig 2). The central linker region between EF-hand domains 2 and 3 is

most varied between EhCaBP1 and EhCaBP2 (Fig 2B). This region is thought to be involved in

binding target molecules [66], suggesting that these 2 CaBPs are functionally different [67]. Unlike

EhCaBP1, EhCaBP2 is involved in neither phagocytosis nor pseudopod formation. Moreover,

these 2 proteins activate different sets of endogenous kinases and probably bind different sets of

proteins in a Ca2+-dependent manner [66–68]. However, the functional role of EhCaBP2 is yet to

be deciphered. A nuclear-localized CaBP, EhCaBP6, was also characterized [69,70]. It was found

to be involved in cell division by modulating microtubule dynamics by increasing the rate of tubu-

lin polymerization through binding to E. histolytica beta-tubulin.

Conclusion and future directions

Calcium is known to be involved in many cellular processes in almost all eukaryotic systems.

Therefore, it is not surprising that Ca2+ is also required for a number of processes, including

Table 1. List of proteins that interact with calcium and play a role in amebic homeostasis and pathogenesis.

Name of Protein Function/Role Reference

EhPMCA It is present in vacuoles and in cytoplasmic network; however, function is unknown. [7]

EhSERCA It is present in vacuoles and in cytoplasmic network. Function is unknown. [8]

EhSPCA Putative Ca2+-ATPase that is localized in vacuoles stained with NBD C6-ceramide, a Golgi apparatus marker.

Function is unknown.

[10]

EhCCX CCX that plays a role in programmed cell death and in virulence. [9]

Ca2+-dependent ATPase/ADPase They are localized in the inner membrane of cytoplasmic vacuoles that may or may not be phagolysosomes.

Function is unknown.

[15,17]

Calpain-like protein Ca2+-dependent cysteine protease involved in programmed cell death. [13,14]

Ca2+-dependent thiamine

pyrophosphatase

They are localized in the inner membrane of cytoplasmic vacuoles that may or may not be phagolysosomes.

Function is unknown.

[16]

Gal/GalNAc It is involved in the process of invasion because it helps in adhering to the target cells. [19–

22,24,25]

EhCRT Amebic CRT is involved in the phagocytosis of apoptotic immune cells. [26,27]

UREBP It regulates the transcription of amebic genes and inhibits transcription in the presence of Ca2+. [40,43,44]

EhC2A It helps in localization of UREBP to the membrane apart from the nucleus. [44]

EhC2PK C2PK that is involved in initiation of phagocytosis. [52,53]

EhCaBP1 Calcium-binding protein 1 that directly regulates erythrophagocytosis and actin dynamics. [49,50,72]

EhCaBP2 It is 79% identical to EhCaBP1 but neither involved in phagocytosis or pseudopod formation. Function is not

known.

[66–68]

EhCaBP3 Calcium-binding protein 3 interacts with the Myosin IB and Arp2/3 complex and plays a role in

erythrophagocytosis.

[57,58]

EhCaBP5 Calcium-binding protein 5 is likely to be a light chain of myosin IB that is involved in phagocytosis. [59]

EhCaBP6 Calcium-binding protein 6, which is involved in cell division and modulates microtubule dynamics. [69,70]

Grainin1 and 2 EF-hand-motif–containing calcium-binding proteins involved in amebic virulence. It is also speculated they are also

involved in vesicle maturation and exocytosis.

[63,64]

EhCaBP7–27 Other calcium-binding proteins encoded in the E. histolytica genome. Function is not deciphered yet. [18]

Abbreviations: CaBP, Ca2+-binding protein; CCX, Ca2+/cation exchanger; CRT, calreticulin; C2PK, C2-domain–containing protein kinase; Eh, E. histolytica; Gal/

GalNAc, galactose- and N-acetyl-d-galactosamine; NBD 6-ceramide, (6-((N-(7-nitrobenz-2-oxa-1,3-diazolyl)amino)hexanoyl)sphingosine); PMCA, plasma membrane

Ca2+-ATPase; SERCA, sarcoendoplasmic reticulum ATPase; SPCA, secretory pathway calcium ATPase; UREBP, upstream regulatory element binding protein.

https://doi.org/10.1371/journal.ppat.1008214.t001
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pathogenesis in E. histolytica. The surprising part is the extensive participation of Ca2+ and

CaBPs in a few systems such as phagocytosis not observed in any other eukaryotic systems (see

Table 1). Moreover, direct involvement of CaBPs in regulating actin dynamics as shown in this

organism is also quite unique. Evolution of this novel pathway regulating phagocytosis may be

for adapting to a situation in which there is a very high rate of phagocytosis/endocytosis, leading

to complete recycling of membrane every 30 min [71]. Analysis of live-cell imaging data does

indicate that phagocytosis of a red blood cell is complete within 30 s after attachment. Ca2+ sig-

naling is a rapid response, and mobilization of these EhCaBPs may not cause time delays after

binding of a particle to the cell surface. Fast imaging of mobilization of different proteins during

phagocytosis may help us to understand the nature of this rapid assembly process. The involve-

ment of Ca2+ in many other amebic processes has not been investigated. Given the large number

of CaBPs encoded by the E. histolytica genome, it will not be surprising to find Ca2+ signaling

regulating a large number of pathways affecting the overall biology of E. histolytica.
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