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Abstract: Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first
identified ~25 years ago, are small, 6–30 amino acid long, synthetic, or naturally occurring peptides,
able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their
initial description and characterization, the field of cell penetrating peptides as vectors has exploded.
The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids
including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and
other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history,
classification system, and mechanism of transduction followed by a summary of the existing literature
on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small
interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.

Keywords: cell penetrating peptides; protein transduction domains; gene therapy; small
interfering RNA

1. Introduction

The plasma membrane of a cell is essential to its identity and survival, but at the same time
presents a barrier to intracellular delivery of potentially diagnostic or therapeutic cargoes. Therefore,
the development of approaches to deliver functional cargoes, be they peptides, proteins, nucleic acids,
or nanoparticles across cell membranes, a process termed protein transduction, has wide-reaching
research and clinical implications. The ability of Trans-Activator of Transcription (Tat) protein of the
Human Immunodeficiency Virus (HIV) to transduce cultured cells and lead to viral gene expression [1,2]
without requiring a receptor was the first example of a protein that naturally employs a portion of itself
to achieve cell penetration and lead to intracellular delivery of the entire HIV viral particle. The chemical
cross-linking of a full-length Tat protein to multiple different proteins such as horseradish peroxidase,
ß-galactosidase, RNase A and domain III of Pseudomonas exotoxin A served to demonstrate the
ability of Tat protein to ferry other large cargoes across the cell membrane [3]. Similarly, the homeobox
Antennapedia (Antp) transcription factor of Drosophila melanogaster was demonstrated to enter nerve
cells in a receptor independent manner where it could then regulate neural morphogenesis [4]. Mapping
of the domains within Tat and Antp responsible for the observed transduction led to the identification
of the first two cell penetrating peptides (CPPs): the 11 amino acid cationic domain of HIV-1 Tat
protein (YGRKKRRQRRR) [5] and the 16 amino acid sequence from the third helix of the Antennapedia
domain (RQIKIWFQNRRMKWKK) termed Antp or penetratin [6]. Subsequently, the ability of the
small part of the full-length Tat protein to deliver cargoes, including other full length proteins and even
large multimeric protein complexes across cell membranes in culture and in vivo following systemic
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delivery in mice [7] was documented, further highlighting the delivery potential of these unique
peptides. Since then, the number of peptides, both cell-specific and non-specific, reported as having
cell penetrating properties has increased exponentially [8]. This is particularly true for a wide spectrum
of cationic peptides that primarily rely on their cationic charge to interact with proteoglycans on the
cell surface (see below). There has been intense interest in identifying both new cell-specific CPPs,
as well as strategies to make Tat and other non-specific CPPs act in a more cell-specific manner by
taking advantage of tissue characteristics, mostly in the context of cancer. With the accompanying
interest and explosion in the number of studies, it has become impossible to provide a comprehensive,
all-encompassing single review of these unique peptides. Therefore, out of necessity, the authors chose
to provide only a very broad overview of classification, mechanism of transduction and highlight
applications of CPPs as vectors for gene and nucleic acid delivery only. Readers are referred to an
earlier review of CPPs by the authors [8] as well as several other excellent reviews [9–11].

2. Types of CPPs

2.1. Non-Cell-Specific CPPs

CPPs are broadly categorized into non-cell-specific and cell-specific peptides with great sequence
heterogeneity (Table 1). The non-cell-specific CPPs can be sub-classified into three classes: cationic,
hydrophobic, and amphipathic. Tat and Antp are cationic peptides, rich in arginine and lysine, with the
longer Antp peptide having a more defined 3D structure. In addition to these naturally occurring CPP
sequences, synthetic cationic peptides including homopolymers of arginine [12], lysine [13] and/or the
cationic, amino acid ornithine [14] were demonstrated to function as effective transduction peptides.
Even histidine, which becomes protonated at low pH, can function as a CPP at pH below 6.0 and has
been used for delivery into tumor cells with lower pH [15]. Arginine-based homopolymers ranging
from 6 to 12 amino acids function as CPPs with 8–10 amino acid length identified as having the highest
transduction ability [16]. Similarly, 8-mer homopolymers of lysine transduce a variety of cell types
with similar efficiencies as homopolymers of arginine [17]. There is a definite optimum length for these
homopolymers with greater than 12 amino acids showing reduced transduction efficiency. Unlike the
acute cellular toxicity elicited by long poly-lysine molecules, short lysine homopolymers (6–12 mers)
have no demonstrable cytotoxic effects, even at high concentrations [13]. Thus, it appears that too little
or too much cationic charge within a short region negatively affects transduction.

Amphipathic CPPs are chimeric peptides generated by attaching the hydrophobic domain of
the CPP to a nuclear localizing signal (NLS) such as the SV40 NLS through a covalent bond [18].
Usually, hydrophobic CPPs are derived from signal peptide sequences. Signal peptides that allow
proteins to be secreted from cells can also facilitate entry of the proteins back across the membrane
into cells. Examples of hydrophobic transduction peptides identified to date include leader sequences
for keratinocyte growth factor and fibroblast growth factor [19], but likely most leader sequences of
secreted proteins could potentially function as CPPs.

Interestingly, even certain pathogenic bacteria use CPPs for delivery of bacterial effector proteins
into different types of mammalian cells. For example, the pathogenic bacteria Yersinia enterocolitica
encodes for the anti-inflammatory protein YopM with two alpha helices, α1H and α2H, in its amino
terminus that function as CPPs similar to Antp [20–22]. Similarly, Shigella and Salmonella encode for
immune effector proteins that can also enter cells efficiently to modulate the immune response [22].

2.2. Cell-Specific CPPs

The other major sub-classification is cell-specific CPPs, identified through different screening
methods including plasmid, microorganism surface, ribosome, or phage display of large peptide
libraries. The advantage of this approach is that a priori knowledge of a binding partner is not
necessary. Such cell-specific CPPs circumvent the issues associated with the non-cell specific CPPs,
namely non-specific cellular uptake leading to off-target side effects and the need to administer high
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doses of CPPs to achieve adequate levels in target organs or cell types of interest. Such high doses are
necessary in order for a small fraction of CPPs to escape the liver, kidney, and the reticuloendothelial
system to reach the target organ of interest. Such an approach would be particularly troublesome if the
target is the brain or a poorly vascularized tissue. Thus, developing tissue or cell-specific CPPs would
be particularly attractive as it would improve the efficacy of the delivered cargo with less off-target
effects while reducing the overall dose needed, which would be particularly beneficial when scaling
up from small to larger animal models, and ultimately for human clinical trials.

Another approach to circumventing this issue is by delivering non-tissue specific CPP bearing
cargo in a pro-drug fashion that can be activated under certain conditions or specific environments.
This is only feasible if a specific cell type expresses a unique enzymatic activity such as viral or
disease specific proteases [23]. Another approach is local delivery (e.g., intra-tumoral, intra-articular,
intra-muscular, intra-ocular, intra-tracheal, intra-dermal, etc.) to limit the transduction activity of
non-specific CPPs to specific sites. This would depend on and be limited to a specific application
or situation and would be feasible only if the target cell is located in an accessible site with limited
diffusion such as topical delivery for dermatological applications, the eye for ophthalmological
applications [24–26], joints for arthritis/degenerative conditions [27], and directly into tumors [28].

3. Identification of Tissue Specific CPPs

Cell-specific CPPs were identified predominantly by using peptide phage display libraries to
screen for peptides able to target specific cell types. The concept of phage display was first proposed
by Smith in 1985 [29]. Following this initial report, combinatorial peptide libraries of various lengths
using different types of phages (M13, T7) have been used successfully to identify peptides able to
facilitate internalization of intact phage. Alternatively, plasmid, antibodies, microorganism surface or
ribosome displays of peptide libraries have been employed as well. Phage display requires exposing
the target cell or tissue of interest to a large, randomized phage library in which one of the envelope
proteins used by the phage for internalization has been modified to display linear or cyclic peptides
of various lengths and randomized amino acid sequences [30]. The internalized phage can then be
isolated, expanded and used in subsequent rounds of screening. Usually 3–5 rounds of screening
results in enrichment of a small number of peptides identifiable by DNA sequencing of the recovered
phage. This approach requires enriching for a specific, small subset of phage from a very large library.
As such, false positives are a concern and have to be discerned from phage that is indeed bound
and internalized by the target cell type. One approach to circumvent this problem is to carry out the
first cycle in cell culture using relevant cell types in order to reduce the likelihood of false positives.
Subsequent cycles can then be carried out in vivo using the enriched pool from the in vitro cycle [30–32].
Such an approach has led to the identification of peptides targeting vascular endothelium [33], synovial
tissue [27], dendritic cells [34], pancreatic islet cells [35] and cardiac myocytes [31], and has identified
NRG (Asparginine-Arginine-Glycine) and RGD (Arginine-Glycine-Aspartic acid) motifs that target
phage to tumor vasculature in nude tumor-bearing mice [36].

4. Mechanisms of Transduction

Despite intense study of CPPs, the specific pathway(s) involved in facilitating transduction remain
elusive. CPPs are short in length, making the use of standard techniques for identifying binding targets
on the cell surface more challenging. Additionally, their rapid cell entry, occurring within minutes at
physiological conditions, makes analysis difficult. It is likely that a non-cell specific CPP such as Tat
that crosses the blood brain barrier will not share a cell entry pathway with a cell-specific CPP. Even
for a particular CPP the mechanism of transduction likely varies depending on the specific cargo fused
to it, with changes in parameters such as local milieu and pH almost certainly playing a part. This is
further complicated by recent data suggesting that the local concentration of a CPP may influence
the internalization pathway used [37–39]. It should be noted that elucidation of the mechanism of
transduction is not only of theoretical interest as the loading of cargoes must be achieved in a way as to
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not interfere with either the binding or cell internalization mechanism of CPPs. For example changing
the hydrophobicity, but not the cationic charge, of a guanidine-rich homo-polymer significantly
changed its transduction abilities and ability to internalize cargoes [40].

Although the exact transduction mechanism of CPPs remains elusive, extensive work from
multiple investigators has shed considerable light. There is evidence both for mechanisms that are
non-endocytic/energy independent or endocytic/energy-dependent [41]. The broad range of cells that
are readily transducible by non-specific CPPs such as Tat suggests a role for ubiquitously shared cellular
structures such as surface binding to plasma membrane phospholipids or, in particular proteoglycans
through electrostatic interactions, as a first step towards cell entry [42,43]. Cell lines deficient in heparan
sulfate have significantly reduced transduction by cationic peptides [13,44,45]. This reduction suggests
that electrostatic interactions on the cell surface, separate from CPP-lipid interactions, contribute to
protein transduction. It is likely that transduction is a two-step process, with the first step being
electrostatic interaction of non-specific CPPs with anionic elements, such as glycosaminoglycans on the
cell surface that draw the CPPs into close proximity to the plasma membrane. Subsequently, cationic
CPPs bearing small cargoes likely enter cells via direct translocation, with uptake of larger cargoes
mediated by micropinocytosis, a more energy-dependent and slower process [46]. Transduction
has been shown to occur at 4 ◦C and after depletion of the adenosine triphosphate (ATP) pool [13],
albeit at a reduced level, suggesting that it is not exclusively an energy-dependent process. Research
also suggests that increasing hydrophobic characteristics of a CPP, as in the case of Tat, increases its
efficiency as a transporter [47].

5. Cell Penetrating Peptides as Gene Delivery Vectors

Although CPPs have been used as vectors for delivery of drugs [48–51], other peptides of
therapeutic potential [52–60], proteins [56,61–65], radioisotopes [66–69], quantum dots [70,71] and
photosensitizers [72,73], this review will focus on use of CPPs as vectors for nucleic acid delivery,
be they genes, oligonucleotides, peptide nucleic acid conjugates, small interfering RNA (siRNA) or
the newest application with DNA origami. Although there is literature on all of these applications,
most interest and work done to date has been with siRNA. The necessary factors to consider in
these applications is the platform’s ability to successfully conjugate nucleic acids to CPPs, escape
from enzymatic degradation in serum, escape the reticuloendothelial compartments, successfully
cross cell membranes, escape from endocytic degradation and, in cases of gene delivery, achieve
nuclear localization. All of these hurdles have been addressed with creative strategies that we will
try to summarize here. Even though CPPs are attractive alternatives to viral gene delivery, we will
begin by briefly summarizing the literature on use of CPPs to modify viral vectors for the purpose of
gene therapy.

5.1. Viral Vectors

Adenovirus is commonly employed as a vector for gene delivery due to its high transduction
efficiency, although it is dependent on the presence of coxsackievirus and adenovirus receptors (CAR)
for internalization. Chemical conjugation of adenovirus to Tat, octa-arginine or proline rich CPPs, led
to 1–2 log-fold higher transduction of CAR-negative cells in vitro than unmodified adenovirus [74–76].
Electrostatic formation of complexes between negatively charged adenoviral particles and positively
charged CPPs, such as Tat, penetratin, poly-arginine and Pep1, led to 100-fold greater transduction of
CAR-negative cells compared to unmodified adenovirus, though again only in vitro [77]. In contrast,
oncolytic adenovirus-serotype 5 modified to express an SCG3 promoter/ASH1 enhancer driven
E1A gene expression, further modified to express Tat in the viral capsid protein, led to delays in
tumor growth and prolonged survival of nude mice harboring subcutaneous human neuroblastoma
xenografts [78]. In a very interesting application, brain-derived neurotrophic factor was fused with
Tat and another CPP, HA2, and packaged into adeno-associated virus. Upon intranasal delivery to
mice subjected to chronic mild stress, there was significant amelioration of depressive symptoms and
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increased hippocampal protein levels of brain-derived neurotrophic factor [79]. In another application,
Tat was displayed on surface of MS2 bacteriophages carrying miRNA-122. Not only were there tumor
inhibitory effects seen in multiple hepatocellular cancer cell lines, but also decreased tumor growth in
nude mice bearing the hepatocellular cancer xenografts after they received an injection of the modified
bacteriophage [80]. More recently, Sun and colleagues generated a recombinant PP7 bacteriophage
using a one-plasmid double expression system to carry pre-microRNA-23b and displaying a CPP
peptide that was able to inhibit hepatoma cell migration in vitro via down-regulation of liver-intestine
cadherin expression [81]. Tobacco mosaic virus, a plant virus, decorated with Tat was able to carry
enhanced green fluorescent protein (EGFP) silencing siRNA in vitro and to transduce EGFP expressing
highly metastatic hepatocellular carcinoma cell lines in vivo in mice, with treatment for 10-days
achieving over 80% EGFP-negative rates in tumors [82].

5.2. Plasmid DNA

As early as 2003, investigators realized the potential of delivering plasmid DNA using CPPs [83,84].
As Tat is rich in positively charged arginine and lysine residues, electrostatic interactions between
Tat and negatively charged plasmid DNA allows for complexes to be formed between Luciferase or
EGFP expressing plasmids and Tat. Though there was uptake in cells in vitro, it was via an endocytic
pathway. Additionally, in vivo transfection rates were low with the internalization of complexes
hindered by serum albumin [83]. To escape from endosomes after internalization, stearylation of CPPs
has been used [85,86]. Stearyl-transportan 10 formed stable nano-complexes with plasmid DNA, was
non-cytotoxic, non-immunogenic, and mediated transfer/expression of Luciferase reporter plasmid,
though with only local uptake after an intra-dermal or intra-muscular injection [85]. Modifying another
CPP, S4(13)-PV, with a 5 histidine residue attached to its N-terminus resulted in successful packaging
of plasmid DNA and siRNA in vitro with successful gene silencing of Survivin as compared with the
unmodified SV(13)-PV [87]. Poly-lysine homopolymers have been used to condense with plasmids
bearing angiotensin type II receptor using calcium chloride. This approach produced negligible
cytotoxicity in four different human cell lines, successful tumor targeting, and marked attenuation of
lung cancer growth in vivo [88].

Another approach used is one of dual targeting. This was achieved by synthesizing biotinylated
forms of a tumor targeting peptide (CREKA) and a homo-polymer of arginine by linking them together
through an avidin moiety. This complex could successfully condense with plasmid DNA carrying
the p53 gene [89], with tumor regression seen in mice, but again the injections were adjacent to the
tumor, bringing into question whether this reflected true targeting. Other homopolymers of arginine
were synthesized with tumor targeting peptides [90] or a pro-apoptotic peptide (AVPI) [91] to enhance
selective targeting of tumor cells. The latter conjugate was condensed with plasmid DNA carrying p53,
to act synergistically to induce apoptosis in a multi-drug resistant breast cancer line, and indeed proved
efficacious in vivo [91]. However, it is difficult to understand why these dual targeting complexes
would specifically target tumors, as both poly-arginine and poly-lysine are non-specific CPPs. Excited
by these reports, we constructed a tandem peptide by adding 6-arginine to the N-terminus of an
optimized version of our cardiac targeting peptide (CTP-B). Based on our prior bio-distribution
studies [66], this fluorescently labeled peptide was injected intravenously into mice and allowed to
circulate for 15 min. However, the conjugate peptide actually reduced cardiac uptake compared to the
parent CTP-B peptide, while increasing kidney and liver uptake (Figure 1).
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5.3. Small Interfering RNA

Although CPPs have been used to deliver siRNA to the heart ex vivo [92,93], or for intradermal
delivery [94,95], the vast majority of applications of this approach has been in the context of cancer
therapeutics. The hurdles to successful siRNA delivery are similar to delivery of plasmid DNA, namely
successful conjugation to CPPs, protection from RNAses in circulation, targeted delivery to organ or
cancer of interest, successful uptake, and endosomal escape. Various, creative strategies have been
employed to surmount these barriers. Electrostatic charge interaction between cationic CPPs and
negatively charged siRNAs have produced self-assembly of CPPs and siRNA into nanoparticles [96–99].
Escape from endosomal compartments has been achieved by acylation [99], stearylation [100] or
histidine modification [101] of the N-terminus of CPPs. Histidine is purported to act as a proton pump
within lysosomal compartments leading to swelling, leakiness, and bursting of these compartments
releasing the CPP/siRNA conjugate.

In vivo targeting approaches have ranged from dual targeting to dual therapies. Tumor
extracellular matrix has a high level of αvβ3/5 integrin expression that binds cyclic RGD peptide.
Tandem peptides combing a CPP with tumor targeting RGD through a disulfide bond complexed
with anti-KRAS siRNA formed nanoparticles that significantly delayed tumor growth in a mouse
model of pancreatic cancer [102]. In a similar manner, a peptide targeting epidermal growth factor,
overexpressed in oral cancer cells, was conjugated to an endosomal disruptive peptide, to successfully
deliver siRNA targeting cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene [103].
The association with the siRNA was through electrostatic interactions between the peptides and
siRNA when mixed in a 60:30:1 ratio with successful silencing of CIP2A in vivo in mice bearing oral
cancer tumor xenografts [103]. In another report, a tumor environment responsive nanoparticle was
generated, comprised of a polyethylene glycol shell with a tumor pH-responsive polymer core. The
core contained the tumor targeting RGD peptide along with homo-polymer of arginine associated
through electrostatic interactions with siRNA silencing bromodomain 4. This construct was able to
inhibit prostate cancer growth significantly [97].

Differences in tumor microenvironment, like lower pH, increased matrix metalloproteinase 2
expression and increased glutathione in the cytosol, have been employed to deliver siRNA using
activatable CPPs to silence Rac1 in order to reduce hepatic metastases in colon cancer [104] and suppress
c-MYC gene expression in breast cancer cell lines in vivo [105]. As anti-angiogenic therapy, stearylated
poly-arginine was modified with histidine, loaded with anti-VEGF siRNA through electrostatic
interaction, and Fausidil, a selective Rho-kinase inhibitor. In vitro and in vivo studies showed strong
efficacy for cellular uptake and tumor growth inhibition [101].
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5.4. Nanoparticles

As liposomes are a subset of nanoparticles (NPs), in this section we will focus on selected
literature pertaining to non-lipid-based NPs modified in various ways with CPPs that showed
efficacy in vivo. Targeting of NPs has been studied largely in the context of tumor therapies using
Tat or homopolymers of arginine of various lengths. As both of these are non-cell specific CPPs,
investigators have harnessed tumor environment specific properties, such as lower pH, increased
matrix metalloproteinase 2 expression and increased redox potential, to make these non-specific
CPPs act in a more tumor-specific manner. In one of the earliest studies, cationic NPs composed of
β-cyclodextrin and low-molecular weight polyethylenimine were labeled with both octa-arginine and
folic acid to deliver plasmid DNA to folate-receptor positive tumor cells, both in vitro and in vivo [106].
In another application gelatin-silica NPs were modified with different CPPs, including a fusogenic
peptide comprised of Tat and influenza hemaglutanin A2, to successfully deliver plasmid DNA
with endosomal escape and nuclear targeting properties in vivo [107]. A tumor activatable CPP
dual-triggered by lowered pH and matrix metalloproteinase 2 was used to label NPs carrying dual
anti-tumor therapies, doxorubicin and siRNA targeting vascular endothelial growth factor. This led to
effective shut down of blood vessel formation and to apoptosis within the tumor [108]. In another
approach, NPs were modified with photo- and pH-responsive CPPs. The cell penetrating ability of the
cationic CPPs was quenched by a pH-sensitive, negatively charged inhibitory peptide that was released
in the lower pH microenvironment of the tumor. These NPs, loaded with siRNA, accumulated within
tumor cells upon near-infrared light illumination, resulting in increased antitumor efficacy in vivo [109].
Another approach employed was PEGylation of glycosaminoglycan-binding peptides coupled with
DNA through electrostatic charge interactions, which formed NPs that targeted bronchial epithelial cell
lines with precision cut lung slices in vitro showing that PEGylation rates of >40% were the optimal
formulation [110]. Additionally, PEGylated supra-magnetic iron oxide NPs [111,112], Nobel metal
NPs [113] or gold particles [114] have also been modified with CPPs to show internalization into tumor
or stem cells. These latter studies were, however, all in vitro.

5.5. Liposomes

Cationic liposomes (LP) form spontaneous complexes with nucleic acids, which can be sterically
stabilized through PEGylation. One study explored the modification of such LPs with CPPs and
found that full peptide coverage resulted in less internalization into cells than intermediate coverage,
with optimum coverage being cell specific [115]. Additionally, cationic LPs, though effective in vitro,
have demonstrated significant cytotoxicity in vivo. This issue can be addressed by using neutral
PEGylated LPs modified by CPPs. In one study, neutral PEGylated LPs modified by octa-arginine
homo-polymer showed negligible cytotoxicity, enhanced cellular association, and gene silencing
capacity in vitro [116]. Harnessing the increased redox milieu of tumors, a Tat-functionalized LP
was loaded with paclitaxel, a common cancer chemotherapeutic, with Tat conjugated to a pegylated
(PEG) moiety through a cleavable disulfide linker. At the tumor site, PEG was detached by exogenous
reducing agent glutathione, resulting in exposure of Tat, with subsequent enhanced tumor uptake and
inhibition of proliferation of murine melanoma cell lines, both in vitro and in vivo [117]. In another
approach, alanine-alanine-asparagine, a substrate for the endoprotease legumain, was added to the
fourth lysine of Tat leading to a branched peptide version. This modified branching Tat peptide was
used to label LPs loaded with doxorubicin, leading to decreased non-specific uptake and increased
uptake by tumor cells, resulting in increase in anti-tumor activity and decrease in systemic side
effects [118]. These data again demonstrate the ability to harness the cell penetrating capabilities of a
non-specific CPP such as Tat in a tumor environment specific manner.
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5.6. DNA Origami

DNA nanostructures, first described by Nadrian Seeman [119], are novel structures formed by
the hybridization of multiple single-stranded DNA (ssDNA) oligomers to create a variety of precise
structures, with structure, size, and capabilities of DNA nanofabrication growing significantly in
the intervening years (Figure 2A,B). In particular, the development of scaffolded DNA origami by
Rothemund uses long ssDNA, typically from the M13 bacteriophage, in combination with hundreds
of short ssDNAs that act as “staples” to form nanostructures with arbitrary shapes (Figure 2D) [120].
Approaches using only short ssDNA also demonstrated capability of forming two-dimensional [121,122]
and three-dimensional structures (Figure 2C,E) [123,124]. Together, these methods treat DNA as
a biopolymer, and its information-containing structure is used to drive nanostructure assembly.
These DNA origami platforms can be decorated with biomolecules, including peptides, proteins,
and functional molecules including fluorophores, aptamers, quantum dots, and gold nanoparticles,
allowing them the ability to target cells [125,126]. In one example, the efficiency of intracellular delivery
of DNA origami could be increased 22-fold when it was decorated with the iron transport protein
transferrin, with efficiency increasing with increasing number of transferrin molecules attached [127].
The versatility of decoration of DNA origami has enabled the co-delivery of chemotherapeutics along
with gene therapy. Liu et al. recently demonstrated the delivery of both doxorubicin and the p53 gene
using a triangular DNA origami platform decorated with multiple targeting aptamers (Figure 3A) [128].
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Figure 2. Structural DNA nanotechnology approaches for drug delivery. Common methods for
creating DNA nanostructures include (A,B) junction and lattice-based structures like DNA nanocages,
(C) periodic lattices, (D) scaffolded DNA origami and (E) scaffold-free assembly of single-stranded tiles
(SSTs), otherwise known as DNA “DNA bricks”. Panels (A through E) reprinted with permission from
Madhanagopal, B. R. et al. [129]. Copyright 2018, Elsevier.

To date, only a few DNA nanotechnology studies used CPPs. One study used gold nanoparticles
coated with CPP-decorated filamentous DNA origami to create a 3D superstructure with high
transduction efficiency [130]. This approach demonstrated the versatility of DNA nanotechnology
and its potential for cellular imaging and drug delivery [130]. Another multivalent approach for CPP
and structural DNA nanotechnology used both aptamers and CPP to target Ramos cells and then
drive the nanopore-like structure into the tumor cells [131]. The combination of aptamers with CPP
in this study showed improved cellular uptake and targeting. DNA tetrahedrons have been used
as vehicle for delivering siRNAs into cells to silence genes [132], and for the purpose of optimizing
delivery, numerous targeting cationic and amphipathic CPPs including Tat, penetratin, and MAP were
used. However, likely due to the overexpression of folate receptors in tumor membranes, decoration
with folate as a targeting model produced more efficient uptake than platforms decorated with CPPs.
In another application, a gammaPNA (γPNA) hairpin was used to create a non-covalently cyclized
form of Tat to enhance cell uptake [133]; when DNA tetrahedra were used to increase the multi-valency
of this approach, cellular delivery efficiency increased further (Figure 3B).
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Figure 3. Drug delivery nanostructures can integrate multiple types of functional decoration and
for cell-specific and high-efficiency transduction. (A) Decoration with MUC1 aptamers, DOX, and
p53 gene cassettes enabled a DNA origami triangular construct to target tumor cells and delivery a
combination therapy of chemotherapy agent DOX alongside p53 genes. Reprinted with permission
from Liu, J. et al. [128]. Copyright 2018, American Chemical Society. (B) DNA tetrahedron structures
were decorated with both DOX and Tat cell targeting peptides for targeted therapy. When Tat peptides
were self-cyclized by the hybridization of short flanking γPNAs, the self-cyclized Tat constructs were
taken up at 10-fold higher rates. Reprinted with permission from Tan, X. et al. [133]. Copyright 2018,
American Chemical Society. (C) While CPP is typically conjugated to peptide nucleic acids (PNA)
using disulfide bonds or other covalent methods, CPP is typically ionically bound to PNA using
biotin-streptavidin attachment. (D) CPP-decorated DNA origami ribbons and gold nanoparticles were
used together to create superstructures with high molecular loading capacity for both cellular imaging
and drug delivery. Reprinted with permission from Yan, J. et al. [130]. Copyright 2015, John Wiley
and Sons.

Like a “Swiss army knife” with many capabilities, DNA nanotechnology has the potential to create
multivalent, dynamic and responsive gene delivery platforms capable of unprecedented control over
targeting and delivery while integrating multiple distinct approaches using CPPs [134,135]. However,
for optimization of this technology, robust and low-cost stabilization methods are critical for protecting
DNA origami from low salt denaturation and enzymatic degradation in vivo.

5.7. Peptide Nucleic Acids

Peptide nucleic acids (PNAs) are peptide-like polymers with nucleic acid side chains. PNAs were
first developed as a synthetic DNA mimic in which the deoxyribose phosphate backbone was replaced
with an uncharged and achiral polyamide backbone [136]. With a similar axial rise and identical
nucleobase side chains, PNAs are notable for their capacity to bind DNA with extraordinarily high
affinity [137–141]. Furthermore, the pseudopeptide backbone of PNA is not a substrate for nucleases
or proteases [137], giving them stability and potential to form nano-systems with “trojan horse”-like
properties. Without modification, PNAs are not readily taken up by cells in vivo [142], but covalent
conjugation to CPPs is straight-forward since both can be made using solid phase peptide synthesis
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(Figure 2C). In practice however, CPPs and PNAs are often separately synthesized and then conjugated
via a disulfide bond [143]. Depending on the PNA nucleobase composition, they are capable of binding
to complementary DNA and RNA via both Watson-Crick and Hoogsteen base pairing rules [144].
Important for cell delivery applications like gene therapy, covalent linkage to CPPs does not reduce
the biological activity of uncharged PNA [142]. Once inside the cell, PNAs are well-suited for the
steric blocking method of gene expression control, since they bind tightly to RNA and DNA while
resisting degradation.

The 16-residue CPP penetratin has most commonly been studied in PNA-CPP conjugates [145].
Notably, PNA-penetratin studies showed that the CPP does not interfere with the binding of PNA
to target DNA [146], but later studies did find that cellular uptake of PNA-penetratin varies as
a function of cell type, temperature and concentration [143]. The first demonstration of targeted
delivery of CPP-coupled PNA came in 1998 when penetratin and transportan were covalently
coupled to a 21mer PNA [147]. These conjugates showed efficient uptake in Bowes melanoma
cells, binding to mRNA and blocking galanin gene expression to modify pain response. Another
study demonstrated that PNA coupled to a retro-inverso delivery peptide were rapidly taken up by
neurons, and that these antisense conjugates were able to depress the amount of target mRNA in
culture [148]. Dragulescu-Andrasi et al. created cell-permeable guanidine-based PNA-oligoarginine
analogues [149]. Gamma-position modifications with l-serine [150] and hydrophilic (R)-diethylene
glycol “miniPEG” [141] were able to pre-organize these γPNAs into helical structures with higher
binding affinity and higher solubility. Modification of PNA may also reduce the required dose of
PNA in therapeutic applications, because such modification can decrease the rate of physiological
clearance [151]. Endosomal escape remains a challenge for PNA-CPP conjugates post-endocytosis,
which further necessitates high dose administration. To increase therapeutic efficacy, CPP-PNAs can
be co-administered with chloroquine or Ca2+ to facilitate conjugate escape into the cytosol [152].

A strategy combining DNA nanotechnology, PNAs and CPPs to form NPs has shown promising
results with integration of modified γPNAs further improving cellular uptake [153]. Specialized
NPs using DNA nanotechnology offer unique opportunities for compactly integrating precise ratios
and arrangements of distinct functional molecules such as PNA and CPP onto DNA nanostructures.
As mentioned in the previous section, one such approach was a DNA tetrahedron-based beacon
decorated with Tat flanked by short complementary γPNAs (Figure 3B) [133]. In this study, as the
complementary γPNAs hybridized, they formed a hairpin causing the CPP to “self-cyclize” to form
into a conformationally constrained and higher activity state. Uptake studies of the beacon system
showed a 10-fold increase in uptake of self-cyclized Tat-PNA systems as compared with linear ones.

5.8. CRISPR-Cas

CRISPR-Cas (clustered, regularly interspaced, short palindromic repeats-associated system)
represents an efficient tool for gene editing and consists of a guide RNA and the Cas9 protein delivered
to cells using either plasmid or virus-based vectors. However, using CPPs, direct delivery leads to less
cellular toxicity, and fewer off-target mutations [154–156] as well as delivery to hard-to-transfect cell
lines [157]. Protocols were optimized to use this approach [158].

6. Hurdles to Clinical Application

Few clinical trials using CPPs have been published to date, mostly in the context of cancer
diagnosis and therapeutics [159–161]. Twenty-seven patients with breast cancer received intra-operative
activatable fluorescent peptide to improve tumor margin detection and assist with complete tumor
resection [162]. Intraoperative imaging of surgical specimens allowed for real-time tumor detection
and tumor-free margin resection [162]. Another small trial of 31 patients undergoing coronary artery
angioplasty used the cell penetrating lipopeptide protease-activated receptor-1-based pepducin as an
anti-platelet agent and this approach was demonstrated to be safe [163]. However, the trial was too
small to assess whether this offered superior therapeutic outcomes over standard therapies.
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AVI-5126 is a CPP conjugated to a morpholino designed to knock-down the human C-MYC gene.
It was the first CPP-conjugated morpholino tested in a safety and efficacy clinical trial to prevent
blockage of veins harvested for cardiovascular bypass surgery by inhibiting cell proliferation. The vein
was excised and immersed in a solution containing 10 mM AVI-5126 and then re-implanted as a bypass
graft. The study, titled “Clinical Study to Assess the Safety and Efficacy of ex-Vivo Vein Graft Exposure
to AVI-5126 in Coronary Artery By-Pass Grafting to Reduce Clinical Graft Failure”, was terminated
early, not due to safety concerns, but due to low likelihood of clinical efficacy. The same CPP and
morpholino conjugate were also tested in a restenosis of coronary artery after balloon angioplasty
trial, enrolling 30 patients, but it was terminated for unknown reasons with no safety or efficacy
data published. It is possible that the advent of drug-eluting stents and their remarkable efficacy has
reduced the interest in the clinical development of this conjugate.

Give the small number of clinical trials with CPPs, there clearly are significant issues to overcome
before clinical use of CPP-based therapeutics becomes a reality. The first issue is the potential
immunogenicity of the CPP containing protein or peptide, especially for chronic or repetitive treatments.
It is unlikely that the small CPPs themselves would be immunogenic, but their cargoes can vary in size
and the novel antigenic epitopes generated by fusion with the CPP could theoretically pose an issue.
The second issue is lack of oral bioavailability of CPPs linked to their cargoes, and hence need for
either topical or intravenous administration. One exception may be cyclized arginine rich CPPs with d-
or l-naphthylalanine that showed some evidence of oral bioavailability with increased endosomal
escape and improved cytosolic delivery [164]. The third issue, as discussed above, is the lack of cell
specificity for the cationic and hydrophobic CPPs. The lack of specificity decreases the therapeutic
window, increasing the dose used and hence potential for adverse effects. Fourth, since the two major
routes of elimination for CPPs are the kidney and liver, analysis of toxicity of a CPP-based therapeutic
in these and other tissues is required by the FDA prior to initiation of clinical trials. The testing of
CPP-based therapeutics has to be carried out under Good Laboratory Practices (GLP) conditions and
pharmacology/toxicity analyses by a GLP certified lab can be prohibitively expensive, with few federal,
non-private funding mechanisms available. Lastly, CPP-based therapeutics will likely be expensive to
produce and the cost of the therapeutic could be an issue, especially when treating a chronic condition
that requires frequent dosing for extended time-periods. As a reference, it is estimated to typically take
~2.6 billion US dollars to bring a therapeutic to market. However, depending on efficacy and targeting,
especially for cancers where therapies are time-limited, the cost-benefit ratio could be very favorable.
For other conditions, delivering cargoes that last a few weeks or months, like siRNA, could reduce the
frequency of administration, and potentially reduce treatment costs.

Table 1. Classification of Cell Penetrating Peptides.

CPPs-Non-Tissue Specific Peptide Sequence Origin

Cationic

Tat [5] GRKKRRQRRRPPQ HIV Tat Protein
Ant [6] RQIKIWFQNRRMKWKK Antennapedia homeodomain

8-Arginine [12] RRRRRRRR n/a
8-Lysine [13] KKKKKKKK n/a
PTD-5 [17] RRQRRTSKLMKR Phage display

Hydrophobic

Transportan [165] GWTLNSAGYLLGKINLKALAALAKKIL Galanin and mastoparan
MAP [166] KLALKLALKALKAALKLA Galanin and mastoparan
TP10 [167] AGYLLGKINLKALAALAKKIL
Pep-7 [168] SDLWEMMMVSLACQY CHL8 peptide
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Table 1. Cont.

CPPs-Non-Tissue Specific Peptide Sequence Origin

Amphipathic

Azurin p18 [169] LSTAADMQGVVTDGMASG Azurin
Azurin p28 [170] LSTAADMQGVVTDGMASGLDKDYLKPDD Azurin
hCT18-32 [171] KFHTFPQTAIGVGAP Calcitonin

Bac 7 [172] RRIRPRPPRLPRPRPRPLPFPRPG Bactenecin

CPPs-Tissue Specific Peptide Sequence Origin

CTP [31,66] APWHLSSQYSRT Phage display
K5-FGF [173] AAVALLPAVLLALLP Phage display
HAP-1 [27] SFHQFARATLAS Phage display
293P-1 [174] SNNNVRPIHIWP Phage display

Vascular Endothelium [33] SIGYPLP Phage display

7. Summary

The identification of cell penetrating peptides (CPP) or protein transduction domains (PTD) a
quarter of a century ago has opened up new avenues to deliver peptides, proteins, nucleic acids, and
nanoparticles, including viral particles, more efficiently into cells. Tissue specific CPPs, as well as
non-specific CPPs that were engineered to target certain cell types, show great potential for clinical use.
Their utility in diagnostic imaging is already being realized in the arena of tumor imaging. Despite the
myriad positive results using CPPs in pre-clinical models for diagnosis and/or treatment of disease, the
clinical applications of CPPs have been slow to develop due to the many hurdles to implementing
new therapeutics.

8. Patents

M.Z. and Paul D. Robbins (University of Minnesota, Minnesota, MN, USA) hold a patent on
the use of cardiac targeting peptide as a cardiac vector (Cardiac-specific protein targeting domain,
U.S. Patent Serial No. 9249184).
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