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a b s t r a c t

The reproductive number R (or R0, the initial reproductive number in an immune-naïve population)
has long been successfully used to predict the likelihood of pathogen invasion, to gauge the potential
severity of an epidemic, and to set policy around interventions. However, often ignored complexities
have generated confusion around use of the metric. This is particularly apparent with the emergent
pandemic virus SARS-CoV-2, the causative agent of COVID-19. We address some misconceptions about
the predictive ability of the reproductive number, focusing on how it changes over time, varies over
space, and relates to epidemic size by referencing the mathematical definition of R and examples
from the current pandemic. We hope that a better appreciation of the uses, nuances, and limitations
of R and R0 facilitates a better understanding of epidemic spread, epidemic severity, and the effects
of interventions in the context of SARS-CoV-2.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

With the emergence of SARS-CoV-2, the novel coronavirus
esponsible for COVID-19, much attention has been given to the
eproductive number, R, and its initial state, R0 (Viceconte and
etrosillo, 2020). R0 is the expected number of infections gener-

ated by an infected individual in an otherwise fully susceptible
population and in the absence of interventions (Anderson and
May, 1991; Diekmann et al., 1990). Since each infection produces
an average of R0 new infections, R0 describes the exponential
rowth of infections during the early phase of an epidemic. Under
elatively general assumptions, R0 can be used to determine the
robability an emerging disease will cause an epidemic, the final
ize of an epidemic, and what level of vaccination would be
equired to achieve herd immunity (Anderson and May, 1991;
elamater et al., 2019; Heffernan et al., 2005; Roberts, 2007). In
any cases, R0 has been invaluable such as for predicting the risk
f measles resurgence (Béraud et al., 2018; Hens et al., 2015) and
or managing emerging infectious diseases such as SARS-CoV-1
Lipsitch et al., 2003) and foot-and-mouth disease (Ferguson et al.,
001). When interpreted correctly, and in conjunction with ad-
itional relevant information, it can yield valuable insight. How-
ver, misinterpretation may lead to faulty conclusions regarding
isease dynamics.
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The virus SARS-CoV-2 emerged in Wuhan, China in late 2019
and has since become pandemic causing over one million deaths
worldwide by September 30th, 2020 (Johns Hopkins University
& Medicine Coronavirus Resource Center, 2020) in addition to
severe economic distress. Policy makers have relied on estimates
of R0 to tailor control measures (e.g. Ferguson et al., 2020), but
these estimates vary tremendously within and between popula-
tions around the globe (Fig. 1). It is important to understand why
these estimates vary. It is also important to understand how the
utility of the reproductive number is limited. Here, we derive and
explain some of the key nuances of R and R0, paying particular
attention to insights and limitations with respect to the emerging
pathogen SARS-CoV-2.

2. Deriving R and R0

2.1. A general definition

How many new infections will be caused by a single infected
individual? For a directly transmitted pathogen, the answer to
this question can be written as:

R =

∫
∞

0
kτbτPτdτ (1)

bove, R is the reproductive number, kτ is the rate of contacts
hat an infected individual has with susceptible individuals at
ime τ post infection, bτ is the probability that a contact at time
results in a new infection, and P is the probability of still being
τ
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Fig. 1. Estimates of the R0 of SARS-CoV-2 vary substantially between locations (Binny et al., 2020; Chen et al., 2020; Choi and Ki, 2020; Deb and Majumdar, 2020;
iordano et al., 2020; Johndrow et al., 2020; Ke et al., 2020; Korolev, 2021; Lewnard et al., 2020; Li et al., 2020b; Majumder and Mandl, 2020; Mizumoto et al.,
020; Peirlinck et al., 2020; Pitzer et al., 2020; Ranjan, 2020; Read et al., 2020; Riou and Althaus, 2020; Sanche et al., 2020; Senapati et al., 2020; Shim et al., 2020;
ingh and Adhikari, 2020; Tang et al., 2020; Wu et al., 2020; Xiao et al., 2020; Yuan et al., 2020; Zhao et al., 2020). Each point represents a literature-compiled
verage R0 estimate for a different geographic area (sample size noted alongside means, error bars show plus or minus 1 standard error). For individual studies
hat provided multiple estimates for a single geographic area, the median estimate was used to avoid pseudo-replication. An analysis (not shown) confirmed that
0 estimation method (transmission model, exponential growth model, or stochastic simulation method) did not drive the pattern of variation in R0 by location.
ecent meta-analyses of R0 values for SARS-CoV-2 consider the effects of estimation methods in more detail (Alimohamadi et al., 2020; Barber et al., 2020).
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infected at time τ . Notably, we could have combined bτ and Pτ

into a single parameter since the probability of infection given
contact falls to zero after an individual recovers, but we prefer
this more explicit formulation. Eq. (1) yields R, the total number
of infections one infected individual would generate over the
course of their infection. When the population is fully susceptible
and when no preventative interventions have been imposed, as
would be expected at the beginning of a novel outbreak, Eq. (1)
yields R0. Note that we have neglected to explicitly incorporate
individual variation and temporal variation in contact rates, the
probability that a contact results in a new infection, and the time
to recovery. However, R and R0, are intended to be averages, and
so this variation is inherently a part of the reproductive number
calculation. This variation could be explicitly included with addi-
tional subscripts to denote all possible infected hosts, noninfected
hosts, times since the epidemic began, and ages of infections.
For simplicity, we will not use any subscripts for k, b, and P
when we discuss how they relate to the reproductive number of
SARS-CoV-2 in the remaining sections of this commentary.

2.2. Calculating the reproductive number using an epidemiological
model

Estimating the individual parameters in Eq. (1) requires ex-
tensive data collection for a specific pathogen, host population,
and time. Alternative approaches to estimating R and R0 therefore
frequently rely on epidemiological models and epidemic data.

Following the lead of Kermack and McKendrick (1927), epi-
demics are often modeled as a set of ordinary differential equa-
tions such as for the classical Susceptible–Infected–Recovered
(SIR) model. To illustrate the derivation of the reproductive num-
ber, we present a model of SARS-CoV-2 transmission that cap-
tures some of the key characteristics of the system. Unlike in
the classic SIR model, in our model, infected individuals can
be asymptomatic or not, and all non-asymptomatic infections
progress through two stages, a pre-symptomatic and a symp-
tomatic stage. Transmission is possible from each of these
 f

3

infected classes, but at different rates. Individuals showing symp-
toms are detected through testing (e.g. fever checks or diagnostic
testing), and these individuals are quarantined. We assume no
transmission from the quarantined class, and we assume that
only symptomatic or quarantined individuals die from infection.
Otherwise, all infected individuals eventually recover. In our
model, the state variables S, IA, IP , IC , Q , and R are respec-
tively the densities of susceptible, asymptomatically infected,
pre-symptomatic, symptomatic (subscript ‘‘C ’’ used to denote
COVID-19), quarantined, and recovered individuals in a popula-
tion. Note that ‘‘R’’ here is distinct from the reproductive number
‘‘R’’, but we use both for historical reasons.
dS
dt

= −(βAIA + βP IP + βC IC )S (2.1)

dIA
dt

= ϕ(βAIA + βP IP + βC IC )S − γAIA (2.2)

dIP
dt

= (1 − ϕ) (βAIA + βP IP + βC IC )S − νIP (2.3)

dIC
dt

= νIP − (αC + γC + λ) IC (2.4)

dQ
dt

= λIC − (αQ + γQ )Q (2.5)

dR
dt

= γAIA + γC IC + γQQ (2.6)

ere, the subscripts A, P , C , and Q denote parameters for asymp-
omatic, pre-symptomatic, COVID-19 symptomatic, and quaran-
ined individuals respectively. The β parameters are transmission
oefficients, the α parameters are virus-induced death rates, and
he γ parameters are recovery rates. ϕ is the fraction of new in-
ections that are asymptomatic, ν is the infection progression rate
rom pre-symptomatic to symptomatic, and λ is the detection
ate of symptomatic infections. Parameter values can, in principle,
e estimated from data (e.g. Ferretti et al., 2020). Note that
urther complexity could be added to this model, for example, to
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Fig. 2. Simulation of transmission model of SARS-CoV-2 presented in Eqs. (2.1)–(2.6) for (left) R0 = 2 and (right) R0 = 3. We achieved this change in R0 by altering
the parameter λ, which is the per day detection rate of symptomatic cases, thus illustrating the potential value of rapid case detection. Note that a larger R0 leads
to a faster epidemic and a greater fraction of the population becoming infected. The horizontal, dotted gray line in each panel indicates the herd immunity threshold
(i.e. the value of S that corresponds to R = 1). Note that infection declines, but does not immediately disappear, after crossing the herd immunity threshold.
Parameter values: βA = 0.12, βP = 0.4, βC = 0.4, ϕ = 0.50, ν = 0.25, γA = 0.1, γC = 0.1, γQ = 0.1, αC = 0.001, αQ = 0.001,(left) λ = 0.2323, (right) λ = 0.024.
nitial conditions: S(0) = 1, IA(0) = 0.0001, IP (0) = 0.0001, IC (0) = 0,Q (0) = 0, R(0) = 0.
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ncorporate spatial structure, hospitalization, age structure, host-
pecific exposure risk, superspreading, or time-varying mortality.
imulations of our model are shown in Fig. 2.
Numerous methods can be used to derive R0 from a model

Heffernan et al., 2005). Perhaps most famously, R0 is the domi-
ant eigenvalue of the next generation matrix (Diekmann et al.,
990). In the following text, we use the survival function to
alculate R0 because of its intuitive connection to Eq. (1), but if we
ad used the next generation matrix, we would have derived the
xact same R0. The survival function uses three components to
etermine the number of new infections caused by an initial case:
1) the rate at which an individual in a particular class causes new
nfections (from Eq. (1), kb), (2) the probability that an individual
s still in the class at time τ (from Eq. (1), P), and (3) the proba-
ility that an initial infected individual will enter that class. Note
hat this third term is implicitly assumed to be one in Eq. (1). The
ntegral of the product of the first two terms multiplied by the
hird term yields the contribution to R0 that comes from a focal
lass. Deriving the overall R0 requires summing over all possible
lasses. To illustrate, consider the asymptomatic contribution for
n average initial infection. Here, (1) kb is equal to βAS, (2) P is
qual to e−γAτ , and (3) the probability that the initial case enters
he asymptomatic class is equal to ϕ. Using these values, and
xtending the same methods to all infectious classes we derive:

0 = ϕ

∫
∞

0
βASe−γAτAdτA + (1 − ϕ)

∫
∞

0
βPSe−ντP dτP

+ (1 − ϕ)
∫

∞

0
βCSe−(λ+αC+γC )τC dτC (3.1)

here τi is the time since entering class i. Since S changes
lowly at the beginning of an epidemic when few individuals
re infected, we can treat S as a constant with respect to time.
his assumption allows us to analytically solve Eq. (3.1), which
ields

0 =
ϕβAS
γA  

Asymptomatic

+
(1 − ϕ)βPS

ν  
Pre-symptomatic

+
(1 − ϕ)βCS
λ + αC + γC  
Symptomatic

(3.2)

valuating Eq. (3.2) at time t rather than time 0 yields R. No-
tice that the reproductive number has contributions from the
4

asymptomatic, pre-symptomatic, and symptomatic classes, but
not from the other classes because the other classes cannot cause
new infections. If transmission were possible from these classes,
additional terms would need to be included in Eq. (3.2). Alterna-
tively, if we simplified our model by assuming that all infections
were symptomatic (ϕ = 0) and pre-symptomatic individuals
were not infectious (βp = 0), then Eq. (3.2) would simplify to
R0 =

βC S
λ+αC+γC

.

2.3. Calculating the reproductive number without an epidemiologi-
cal model

R0 can also be estimated without an epidemiological model,
hich can be especially useful if parameter estimates or even
n appropriate model structure is not yet known. In principle,
ne could calculate R0 by simply counting the cases attributed
o infected individuals at or near the beginning of an outbreak.
n practice, this method is rarely employed since contact tracing
etworks are rarely established during the earliest phase of an
merging disease outbreak (but see Pung et al., 2020) and esti-
ates could be inaccurate due to bias towards observing large
hains of transmission.

R0 can also be inferred from the growth rate of cases early in
n outbreak. Since the number of susceptible individuals changes
lowly during the initial stages of an outbreak, early case growth
ates can be approximated by exponential growth: the number
f cases It = I0ert , where r is the epidemic growth rate. If the
umber of cases I is known for at least two time points, one could

alculate the epidemic growth rate r =
ln

(
It
I0

)
t . The relationship

between R0 and r depends on the distribution of the generation
interval Tc , which is defined as the amount of time between
infection of two individuals where the second infection is caused
by the first. Tc can be approximated by direct observation or
specified by an epidemiological model (Wallinga and Lipsitch,
2007). For the classical SIR model, the generation interval is
exponentially distributed, leading to R0 = 1 + rTc (Wallinga and
Lipsitch, 2007), where Tc is the mean of Tc . Other relationships
can be calculated for other distributions of Tc (Wallinga and
Lipsitch, 2007). See Zhao et al. (2020) for an example of this
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ethod used to calculate the R0 of SARS-CoV-2. It is important
o recognize however that emerging epidemics often grow more
lowly than exponential due to stochastic effects, small popu-
ation sizes, network effects, or preventative measures (Chowell
t al., 2016). In these cases, a generalized growth model may more
ccurately reflect epidemic growth (Viboud et al., 2016).
After epidemics have started (i.e. when populations are no

onger fully susceptible and when interventions may have been
mposed), it is still useful to calculate R to understand if cases
ill continue to grow or decline. A recent review explored various
ethods for this calculation (Gostic et al., 2020). Gostic et al.

2020) recommended two methods. The first, developed by Cori
t al. (2013) uses time series incidence data and the serial interval
o calculate R in real time, which is particularly useful for assess-
ng the impact of interventions as they are employed. The second,
eveloped by Wallinga and Teunis (2004) uses similar data and
s useful for the retrospective calculation of R.

No matter the method used to calculate it, limited data or
nreliable data early in an epidemic can make it difficult to
onstrain R0. The World Health Organization originally estimated
he R0 of SARS-CoV-2 to be between 1.4 and 2.5 (WHO, 2020).
ore recent estimates of R0 have varied from 2.2 to 6.47 for

he beginning of the Wuhan outbreak (Fig. 1). This represents
remendous uncertainty when attempting to use R0 for public
ealth planning. For example, if we were using these estimates
o design a vaccine campaign capable of achieving herd immunity
or a vaccine with perfect efficacy, our vaccination target (calcu-
ated as 1 − 1/R0 under assumptions of Eq. (2.1)–(2.6)) would
e 29% of the population at R0 = 1.4 or 85% at R0 = 6.47. Even
ith better estimates of R0, however, misconceptions around this
etric lessen its practical utility.

. Misconception 1: The reproductive number alone explains
uture dynamics

As we have explained, R0 is calculated during the early stages
f an epidemic because of its value in determining future in-
ection dynamics in the absence of intervention (Anderson and
ay, 1991; Ma and Earn, 2006). R is similarly useful for assessing
hanges in transmission over time and the potential impacts of
nterventions. However, R0 and R cannot fully explain future
ynamics under particular circumstances. We discuss two impor-
ant situations in which their value is limited: first, when hosts
ecome aware of infection and alter their behavior, and second,
hen individual infection risk is heterogeneous.
Shifts in behavior that influence contact rates k or the proba-

ility of infection given contact b can alter R over extremely short
imescales (see Eq. (1)). For example, as awareness of the SARS-
oV-2 epidemic grew in the United States in March 2020, human
obility ground to a near halt (Gao et al., 2020; Warren and
killman, 2020), presumably reducing contact rates k. Other in-
ividual behavioral changes such as increased handwashing and
ask wearing (Belot et al., 2020; Goldberg et al., 2020) have re-
uced the probability of transmission given contact b (Eikenberry
t al., 2020; Liang et al., 2020). Such bottom-up forces combined
ith top-down government-imposed interventions (e.g. school
losures, banned gatherings) reduced R to below 1 (the thresh-
ld for epidemic persistence) by late April 2020 in some states
Johndrow et al., 2020; Miller et al., 2020). Similar reductions to
were documented in China (Li et al., 2020a; Tian et al., 2020)

nd other countries (Ensser et al., 2020; Giordano et al., 2020;
upferschmidt, 2020; Yuan et al., 2020). Indeed, in models of the
918 influenza pandemic, incorporating a behavioral response to
eath rates improved model fits (Bootsma and Ferguson, 2007;
e et al., 2013). For SARS-CoV-2, behavioral changes have caused
to fluctuate above and below 1 at different times based on the
erceived threat of COVID-19 (Santamaría and Hortal, 2021).
5

While behavioral changes can temporarily reduce R as de-
cribed above, more sustainable reductions in R are typically
achieved when susceptible individuals are removed from popula-
tions either through naturally acquired immunity or vaccination.
When hosts are heterogeneous such that some individuals are
more likely to contract infection than others, R declines faster
han predicted by Eq. (2.1)–(2.6) or other SIR models lacking
ost heterogeneity (May and Anderson, 1987). This is because
hose most susceptible (for example, due to high exposure or low
nherent immunity) will become infected earlier in an epidemic,
eaving individuals that are on average more resistant (Langwig
t al., 2017; May and Anderson, 1987). Thus, the classical formu-
ation of the ‘‘herd immunity’’ threshold, 1−1/R0, does not apply
to populations with heterogeneity in risk of infection. To illustrate
this point, Britton et al. (2020) developed a COVID-19 model with
heterogeneous mixing between age classes and additional hetero-
geneity in contact rates. Under their assumptions, herd immu-
nity was reached after 43% of the population acquired immunity
through natural exposure, rather than the 60% that would be
required under their assumptions in the absence of heterogeneity.
Other studies have predicted that heterogeneity could have an
even larger effect if susceptibility was correlated with infectivity
(Gomes et al., 2020; Tkachenko et al., 2020). In some of the hard-
est hit areas, an appreciable fraction of people have been infected
with SARS-CoV-2 (e.g. 22.7% in New York City, USA (Rosenberg
et al., 2020) and over 44% in Manaus, Brazil (Buss et al., 2020)).
However, the impact of these levels of infection on future disease
dynamics is unknown, since for SARS-CoV-2, heterogeneity in
infection risk is still highly uncertain (Randolph and Barreiro,
2020). Moreover, heterogeneity is likely to change through time
due to changes in individual or government-mandated responses
(Dolbeault and Turinici, 2020). Thus, even after herd immunity
has been reached, additional waves of infection could occur if
heterogeneity changes (Tkachenko et al., 2020).

4. Misconception 2: The reproductive number is constant over
space

The R0 of many pathogens are often referred to as known
values. For example, the R0 of measles is 12–14, polio is 5–7,
and pertussis is 12–17 (Doherty et al., 2016). For SARS-CoV-2,
estimates typically range from 2–3 (Liu et al., 2020a). However,
the parameters (k, b, and P in Eq. (1)) that make up R0 can differ
substantially from place to place (Figure 1, Delamater et al., 2019).
It follows that interventions to reduce R to less than 1 may need
o vary in aggressiveness across locations (Stier et al., 2020).

Since R0 differs between groups of people, combining multiple
roups together to estimate a population-wide R0 can produce
isleading notions of disease spread. For example, a high average
easles vaccination rate in the United States keeps R below 1
ation-wide, but localized communities with high rates of vaccine
efusal still experience serious outbreaks (Leslie et al., 2018).
n the current COVID-19 pandemic, disease transmission has so
ar been much higher in refugee and low income populations
ompared to non-refugee and high income populations (Chopra
nd Sobel, 2020; Lau et al., 2020; Ruiz-Euler et al., 2020) and R0
as been documented to vary between US counties (Sly et al.,
020). Since R is an average, combining communities with high
nd low transmission may yield an estimate of R < 1, yet disease
ay still readily spread (Li et al., 2011). On the other hand,
plitting populations may mean missing transmission events that
ccur between populations, thus underestimating R (Smith et al.,
009).
Awareness of the consequences of how people are grouped

an help us interpret values of the reproductive number. Within
roups, behavior associated with work, home, and recreation
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i
i
a
m
t
t
(
l

ffects contact rates k. As we have discussed above, SIR models
ften assume that contact rates, and thus R and R0, depend on
ost density. Although, evidence is mixed as to whether larger
ities have higher values of R and R0 for SARS-CoV-2 (Heroy,
020; Stier et al., 2020), built environments (e.g. hospitals, airport
erminals, factories) do often have high values of R (Dietz et al.,
020). This may partially explain patterns of explosive SARS-CoV-
transmission in venues such as cruise ships and meat packing

acilities (Althouse et al., 2020; Dyal et al., 2020; Mizumoto and
howell, 2020). Household contacts have also been particularly
mportant to the transmission dynamics of the virus (Bi et al.,
020). Therefore, differences in R0 between populations can be
artially explained by differences in household sizes between
ountries and cultures (Singh and Adhikari, 2020). For example,
arge, multigenerational households in Italy may have contributed
o the large and deadly outbreak there relative to other European
ountries where multigenerational households are less common
Dowd et al., 2020). Similarly, the probability a new infection
esults from contact b and the probability of remaining infected
ver time P may vary by population. For SARS-CoV-2, individuals
ith severe symptoms have 60 times more viral RNA in nasal
wabs, which likely increases both their ability to transmit the
irus and the amount of time they remain infected (Liu et al.,
020b). Since older individuals are more likely to develop se-
ere infection (Yang et al., 2020), R0 is likely to be greater in
opulations with older individuals, such as in nursing homes
McMichael et al., 2020) or in developed countries (Dowd et al.,
020).

. Misconception 3: The reproductive number is enough to tell
s how large an epidemic will be

It is tantalizing to imagine that R0 can be used to predict the
xtent of an outbreak, since it can be calculated during the early
tages of an epidemic. Indeed, R0 is related to final epidemic size
Kermack and McKendrick, 1927), but this relationship can be
ubstantially affected by the fraction of the population infected
nitially and by heterogeneity in transmission.

If we rescale population sizes such that the initial susceptible
opulation size S0 = 1, and we assume that population sizes
re sufficiently large to neglect demographic stochasticity (Hart-
ield and Alizon, 2013; Tildesley and Keeling, 2009), then the
raction of the population infected during an epidemic Z can be
etermined from the final epidemic size equation. This equation,
= S0(1−e−R0(Z−I0)), is not sensitive to the epidemic model used

o calculate R0 so long as the model assumes that the population
s well-mixed with homogeneous susceptibility. Note that this
quation prominently features I0, the fraction of the population
nfected at the beginning of the outbreak (or at the beginning
f an intervention). Efforts to reduce the reproductive number
elow 1 are understandably a high priority, but when R0 is close
o or less than 1, the final outbreak size is more sensitive to
hanges in the fraction of infected individuals I0 than it is to
hanges in R0 (Fig. 3). This is because more infected individuals
ill fuel the outbreak for longer, infecting a greater proportion
f the susceptible population even when each case produces
n average less than one new infection. Now that SARS-CoV-
infection rates are already substantial in populations around

he globe, I must be considered in addition to R. For example,
ei et al. (2020) estimated that implementing social distancing
olicies one week earlier could have reduced the cases in the
nited States by early May, 2020 by 55% (over 700,000 cases) by
eeping the number of infected individuals low at the time such
olicies were implemented.
While a final epidemic size can be calculated using R0 and

, the final size equation above does not apply to populations
0

6

Fig. 3. Epidemic size contours and shading show that when R0 is close to 1, the
epidemic is more strongly influenced by a reduction of I0 than by a reduction of
R0 . For instance, if R0 = 0.95 (dashed line), the epidemic could infect from less
han 0.1% to greater than 16% of the population as I0 ranges from just above
0% to 3% of the population. Epidemic size was calculated using the final size
equation, Z = S0(1 − e−R0(Z−I0)), where S0 = 1. Shading indicates the cube root
f epidemic size with lighter colors corresponding to smaller outbreaks.

ith heterogeneous infection risk (Andreasen, 2011; Ball, 1985;
ébert-Dufresne et al., 2020; Ma and Earn, 2006). Given the
nherent heterogeneity in human social networks, it is surprising
hat the final size equation is so accurate for many diseases such
s childhood diseases (Caudron et al., 2015). This may be be-
ause transmission networks among children are close to random
Bjørnstad et al., 2002) or have other features that allow the final
ize equation to be accurate (Bansal et al., 2007). For diseases
here this is not the case (e.g. many sexually transmitted dis-
ases), heterogeneity could in principle be incorporated into the
inal epidemic size equation (Dwyer et al., 2000), but estimating
eterogeneity early in an epidemic can be challenging. Moreover,
s we describe in misconception 1, heterogeneity in infection
isk can change over time as a result of human behavior or
nterventions, such as the shutdowns in response to the COVID-19
pidemic (Dolbeault and Turinici, 2020; Ruiz-Euler et al., 2020).
stimates of how future government restrictions and behavioral
hanges will alter heterogeneity in infection risk are thus critical
or assessing the likely impact of the outbreak (Gomes et al.,
020). Such estimates are also key in determining thresholds for
erd immunity (Randolph and Barreiro, 2020) and in prioritizing
he distribution of interventions such as vaccines when they first
ecome available (Atkinson and Cheyne, 1994; Giambi et al.,
019).

. Conclusions

As we have discussed, the reproductive number R and its
nitial value R0 can be used to assess the potential for disease
nvasion and persistence, to predict the extent of an epidemic,
nd to infer the impact of interventions and of relaxing control
easures. Determining R in real time is especially helpful for

he latter goals. For example, the R0 of SARS-CoV-2 was used
o justify implementations of lockdowns in the United Kingdom
Ferguson et al., 2020), and R is one factor that is considered in
ockdown relaxation policies (Thompson et al., 2020).



C.L. Shaw and D.A. Kennedy Theoretical Population Biology 137 (2021) 2–9

T
w
a
t
2
(
2
i
p
n
e
v
d
i

d

b
a
C
t
t
g
a

A

f
p
U
e
h
t

R

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

However, the utility of R and R0 can easily be overstated.
hough we have focused on three misconceptions that we felt
ere particularly important for the COVID-19 pandemic, there
re additional considerations to appreciate for accurate interpre-
ation of R and R0 (Heffernan et al., 2005; Li et al., 2011; Roberts,
007). These include complications associated with stochasticity
Keeling and Grenfell, 2000), superspreading (Lloyd-Smith et al.,
005), metapopulation dynamics (Cross et al., 2007), seasonal-
ty (Bjørnstad et al., 2002), multiple hosts (Roberts, 2007), and
athogen evolution (Hartfield and Alizon, 2014). Some of these
uances may also be important for SARS-CoV-2 dynamics. For
xample, superspreading events appear to be common with this
irus (Althouse et al., 2020). Although superspreading affects epi-
emic dynamics, R0 masks this feature of disease spread because
t only represents average transmission.

The reproductive number is a valuable tool for understanding
isease dynamics. R0 describes early disease growth, and it can be

estimated when little else is known about a pathogen. Later, R can
e used to measure the effectiveness of interventions. However,
singular focus on R and R0 can lead to inaccurate conclusions.
onsidering the nuances of disease dynamics when interpreting
he reproductive number allows for a stronger understanding of
he patterns with which the SARS-CoV-2 virus has traversed the
lobe, why it has impacted some populations more than others,
nd how best to limit future transmission.
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