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The reproductive number R (or R, the initial reproductive number in an immune-naive population)
has long been successfully used to predict the likelihood of pathogen invasion, to gauge the potential
severity of an epidemic, and to set policy around interventions. However, often ignored complexities
have generated confusion around use of the metric. This is particularly apparent with the emergent

R pandemic virus SARS-CoV-2, the causative agent of COVID-19. We address some misconceptions about
SARS-CoV-2 the predictive ability of the reproductive number, focusing on how it changes over time, varies over
COVID-19 space, and relates to epidemic size by referencing the mathematical definition of R and examples

Interventions
Epidemic size
Heterogeneity

from the current pandemic. We hope that a better appreciation of the uses, nuances, and limitations
of R and Ry facilitates a better understanding of epidemic spread, epidemic severity, and the effects
of interventions in the context of SARS-CoV-2.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

With the emergence of SARS-CoV-2, the novel coronavirus
responsible for COVID-19, much attention has been given to the
reproductive number, R, and its initial state, Rg (Viceconte and
Petrosillo, 2020). Ry is the expected number of infections gener-
ated by an infected individual in an otherwise fully susceptible
population and in the absence of interventions (Anderson and
May, 1991; Diekmann et al., 1990). Since each infection produces
an average of Ry new infections, Rg describes the exponential
growth of infections during the early phase of an epidemic. Under
relatively general assumptions, Ry can be used to determine the
probability an emerging disease will cause an epidemic, the final
size of an epidemic, and what level of vaccination would be
required to achieve herd immunity (Anderson and May, 1991;
Delamater et al., 2019; Heffernan et al., 2005; Roberts, 2007). In
many cases, Ry has been invaluable such as for predicting the risk
of measles resurgence (Béraud et al., 2018; Hens et al., 2015) and
for managing emerging infectious diseases such as SARS-CoV-1
(Lipsitch et al., 2003) and foot-and-mouth disease (Ferguson et al.,
2001). When interpreted correctly, and in conjunction with ad-
ditional relevant information, it can yield valuable insight. How-
ever, misinterpretation may lead to faulty conclusions regarding
disease dynamics.

* Corresponding author.
E-mail addresses: cls6630@psu.edu (C.L. Shaw), dak30@psu.edu
(D.A. Kennedy).
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The virus SARS-CoV-2 emerged in Wuhan, China in late 2019
and has since become pandemic causing over one million deaths
worldwide by September 30th, 2020 (Johns Hopkins University
& Medicine Coronavirus Resource Center, 2020) in addition to
severe economic distress. Policy makers have relied on estimates
of Ry to tailor control measures (e.g. Ferguson et al., 2020), but
these estimates vary tremendously within and between popula-
tions around the globe (Fig. 1). It is important to understand why
these estimates vary. It is also important to understand how the
utility of the reproductive number is limited. Here, we derive and
explain some of the key nuances of R and Ry, paying particular
attention to insights and limitations with respect to the emerging
pathogen SARS-CoV-2.

2. Deriving R and R,
2.1. A general definition

How many new infections will be caused by a single infected
individual? For a directly transmitted pathogen, the answer to
this question can be written as:

o0
m:/ kb, P,dt (1)
0

Above, R is the reproductive number, k. is the rate of contacts
that an infected individual has with susceptible individuals at
time t post infection, b, is the probability that a contact at time
T results in a new infection, and P; is the probability of still being
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Fig. 1. Estimates of the R of SARS-CoV-2 vary substantially between locations (Binny et al., 2020; Chen et al., 2020; Choi and Ki, 2020; Deb and Majumdar, 2020;
Giordano et al.,, 2020; Johndrow et al., 2020; Ke et al.,, 2020; Korolev, 2021; Lewnard et al., 2020; Li et al,, 2020b; Majumder and Mandl, 2020; Mizumoto et al.,
2020; Peirlinck et al., 2020; Pitzer et al., 2020; Ranjan, 2020; Read et al., 2020; Riou and Althaus, 2020; Sanche et al., 2020; Senapati et al., 2020; Shim et al., 2020;
Singh and Adhikari, 2020; Tang et al,, 2020; Wu et al,, 2020; Xiao et al., 2020; Yuan et al., 2020; Zhao et al,, 2020). Each point represents a literature-compiled
average R, estimate for a different geographic area (sample size noted alongside means, error bars show plus or minus 1 standard error). For individual studies
that provided multiple estimates for a single geographic area, the median estimate was used to avoid pseudo-replication. An analysis (not shown) confirmed that
Ro estimation method (transmission model, exponential growth model, or stochastic simulation method) did not drive the pattern of variation in ®¢ by location.
Recent meta-analyses of Ry values for SARS-CoV-2 consider the effects of estimation methods in more detail (Alimohamadi et al., 2020; Barber et al., 2020).

infected at time 7. Notably, we could have combined b, and P,
into a single parameter since the probability of infection given
contact falls to zero after an individual recovers, but we prefer
this more explicit formulation. Eq. (1) yields R, the total number
of infections one infected individual would generate over the
course of their infection. When the population is fully susceptible
and when no preventative interventions have been imposed, as
would be expected at the beginning of a novel outbreak, Eq. (1)
yields Rg. Note that we have neglected to explicitly incorporate
individual variation and temporal variation in contact rates, the
probability that a contact results in a new infection, and the time
to recovery. However, R and R, are intended to be averages, and
so this variation is inherently a part of the reproductive number
calculation. This variation could be explicitly included with addi-
tional subscripts to denote all possible infected hosts, noninfected
hosts, times since the epidemic began, and ages of infections.
For simplicity, we will not use any subscripts for k, b, and P
when we discuss how they relate to the reproductive number of
SARS-CoV-2 in the remaining sections of this commentary.

2.2. Calculating the reproductive number using an epidemiological
model

Estimating the individual parameters in Eq. (1) requires ex-
tensive data collection for a specific pathogen, host population,
and time. Alternative approaches to estimating ® and Ry therefore
frequently rely on epidemiological models and epidemic data.

Following the lead of Kermack and McKendrick (1927), epi-
demics are often modeled as a set of ordinary differential equa-
tions such as for the classical Susceptible-Infected-Recovered
(SIR) model. To illustrate the derivation of the reproductive num-
ber, we present a model of SARS-CoV-2 transmission that cap-
tures some of the key characteristics of the system. Unlike in
the classic SIR model, in our model, infected individuals can
be asymptomatic or not, and all non-asymptomatic infections
progress through two stages, a pre-symptomatic and a symp-
tomatic stage. Transmission is possible from each of these

infected classes, but at different rates. Individuals showing symp-
toms are detected through testing (e.g. fever checks or diagnostic
testing), and these individuals are quarantined. We assume no
transmission from the quarantined class, and we assume that
only symptomatic or quarantined individuals die from infection.
Otherwise, all infected individuals eventually recover. In our
model, the state variables S, I, Ip, Ic, Q, and R are respec-
tively the densities of susceptible, asymptomatically infected,
pre-symptomatic, symptomatic (subscript “C” used to denote
COVID-19), quarantined, and recovered individuals in a popula-
tion. Note that “R” here is distinct from the reproductive number
“R”, but we use both for historical reasons.

ds

P —(Bala + Bplp + Bclc)S (2.1)
diy

a @(Bala + Bplp + Bclc)S — yala (2.2)
dl

(T: = (1= ) (Bala + Bplp + Bclc)S — vip (2.3)
dic

E = Ulp — (ac + Yc + )\,) IC (24)
dQ

a Mc — (o +70)Q (2.5)
dR

T vala + vele + voQ (2.6)

Here, the subscripts A, P, C, and Q denote parameters for asymp-
tomatic, pre-symptomatic, COVID-19 symptomatic, and quaran-
tined individuals respectively. The 8 parameters are transmission
coefficients, the o parameters are virus-induced death rates, and
the y parameters are recovery rates. ¢ is the fraction of new in-
fections that are asymptomatic, v is the infection progression rate
from pre-symptomatic to symptomatic, and A is the detection
rate of symptomatic infections. Parameter values can, in principle,
be estimated from data (e.g. Ferretti et al, 2020). Note that
further complexity could be added to this model, for example, to
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Fig. 2. Simulation of transmission model of SARS-CoV-2 presented in Eqs. (2.1)-(2.6) for (left) Ro = 2 and (right) Ro = 3. We achieved this change in R, by altering
the parameter A, which is the per day detection rate of symptomatic cases, thus illustrating the potential value of rapid case detection. Note that a larger R, leads
to a faster epidemic and a greater fraction of the population becoming infected. The horizontal, dotted gray line in each panel indicates the herd immunity threshold
(i.e. the value of S that corresponds to R = 1). Note that infection declines, but does not immediately disappear, after crossing the herd immunity threshold.
Parameter values: 4 = 0.12, fp = 0.4, Bc = 0.4, = 0.50, v = 0.25, yp = 0.1, yc = 0.1, yg = 0.1, ¢ = 0.001, g = 0.001,(left) A = 0.2323, (right) A = 0.024.
Initial conditions: S(0) = 1, [4(0) = 0.0001, Ip(0) = 0.0001, Ic(0) = 0, Q(0) = 0, R(0) = 0.

incorporate spatial structure, hospitalization, age structure, host-
specific exposure risk, superspreading, or time-varying mortality.
Simulations of our model are shown in Fig. 2.

Numerous methods can be used to derive ®y from a model
(Heffernan et al., 2005). Perhaps most famously, R, is the domi-
nant eigenvalue of the next generation matrix (Diekmann et al.,
1990). In the following text, we use the survival function to
calculate R because of its intuitive connection to Eq. (1), but if we
had used the next generation matrix, we would have derived the
exact same Ry. The survival function uses three components to
determine the number of new infections caused by an initial case:
(1) the rate at which an individual in a particular class causes new
infections (from Eq. (1), kb), (2) the probability that an individual
is still in the class at time 7 (from Eq. (1), P), and (3) the proba-
bility that an initial infected individual will enter that class. Note
that this third term is implicitly assumed to be one in Eq. (1). The
integral of the product of the first two terms multiplied by the
third term yields the contribution to ®, that comes from a focal
class. Deriving the overall R requires summing over all possible
classes. To illustrate, consider the asymptomatic contribution for
an average initial infection. Here, (1) kb is equal to S,4S, (2) P is
equal to e %47, and (3) the probability that the initial case enters
the asymptomatic class is equal to ¢. Using these values, and
extending the same methods to all infectious classes we derive:

[ee) o0
Ro = ‘/’/ BaSe "AAdTy + (1 — §0)/ BpSe” "™ drp
0 0

o0
+(1—¢) f Beserac i gr, 3.1)
0

where t; is the time since entering class i. Since S changes
slowly at the beginning of an epidemic when few individuals
are infected, we can treat S as a constant with respect to time.
This assumption allows us to analytically solve Eq. (3.1), which
yields

S 1— S 1— S

no OBS L (=0BS (- (32)
VA v A+ac+ye
— —

Asymptomatic ~ Pre-symptomatic Symptomatic

Evaluating Eq. (3.2) at time ¢t rather than time O yields R. No-
tice that the reproductive number has contributions from the

asymptomatic, pre-symptomatic, and symptomatic classes, but
not from the other classes because the other classes cannot cause
new infections. If transmission were possible from these classes,
additional terms would need to be included in Eq. (3.2). Alterna-
tively, if we simplified our model by assuming that all infections

were symptomatic (¢ = 0) and pre-symptomatic individuals
were not infectious (B, = 0), then Eq. (3.2) would simplify to
Ry = BcS

Atactyc”

2.3. Calculating the reproductive number without an epidemiologi-
cal model

Ro can also be estimated without an epidemiological model,
which can be especially useful if parameter estimates or even
an appropriate model structure is not yet known. In principle,
one could calculate Ry by simply counting the cases attributed
to infected individuals at or near the beginning of an outbreak.
In practice, this method is rarely employed since contact tracing
networks are rarely established during the earliest phase of an
emerging disease outbreak (but see Pung et al., 2020) and esti-
mates could be inaccurate due to bias towards observing large
chains of transmission.

Ro can also be inferred from the growth rate of cases early in
an outbreak. Since the number of susceptible individuals changes
slowly during the initial stages of an outbreak, early case growth
rates can be approximated by exponential growth: the number
of cases I, = Ipe™, where r is the epidemic growth rate. If the
number of cases I is known for at least two ti’me points, one could

t
calculate the epidemic growth rate r = n% The relationship
between Rg and r depends on the distribution of the generation
interval T., which is defined as the amount of time between
infection of two individuals where the second infection is caused
by the first. T, can be approximated by direct observation or
specified by an epidemiological model (Wallinga and Lipsitch,
2007). For the classical SIR model, the generation interval is
exponentially distributed, leading to Ry = 1+ rT, (Wallinga and
Lipsitch, 2007), where T, is the mean of T.. Other relationships
can be calculated for other distributions of T, (Wallinga and
Lipsitch, 2007). See Zhao et al. (2020) for an example of this
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method used to calculate the Rg of SARS-CoV-2. It is important
to recognize however that emerging epidemics often grow more
slowly than exponential due to stochastic effects, small popu-
lation sizes, network effects, or preventative measures (Chowell
etal., 2016). In these cases, a generalized growth model may more
accurately reflect epidemic growth (Viboud et al., 2016).

After epidemics have started (i.e. when populations are no
longer fully susceptible and when interventions may have been
imposed), it is still useful to calculate R to understand if cases
will continue to grow or decline. A recent review explored various
methods for this calculation (Gostic et al., 2020). Gostic et al.
(2020) recommended two methods. The first, developed by Cori
et al. (2013) uses time series incidence data and the serial interval
to calculate R in real time, which is particularly useful for assess-
ing the impact of interventions as they are employed. The second,
developed by Wallinga and Teunis (2004) uses similar data and
is useful for the retrospective calculation of R.

No matter the method used to calculate it, limited data or
unreliable data early in an epidemic can make it difficult to
constrain Rq. The World Health Organization originally estimated
the Ry of SARS-CoV-2 to be between 1.4 and 2.5 (WHO, 2020).
More recent estimates of ®y have varied from 2.2 to 6.47 for
the beginning of the Wuhan outbreak (Fig. 1). This represents
tremendous uncertainty when attempting to use Ry for public
health planning. For example, if we were using these estimates
to design a vaccine campaign capable of achieving herd immunity
for a vaccine with perfect efficacy, our vaccination target (calcu-
lated as 1 — 1/Ry under assumptions of Eq. (2.1)-(2.6)) would
be 29% of the population at Ry = 1.4 or 85% at Rg = 6.47. Even
with better estimates of Ry, however, misconceptions around this
metric lessen its practical utility.

3. Misconception 1: The reproductive number alone explains
future dynamics

As we have explained, Ry is calculated during the early stages
of an epidemic because of its value in determining future in-
fection dynamics in the absence of intervention (Anderson and
May, 1991; Ma and Earn, 2006). R is similarly useful for assessing
changes in transmission over time and the potential impacts of
interventions. However, Ry and R cannot fully explain future
dynamics under particular circumstances. We discuss two impor-
tant situations in which their value is limited: first, when hosts
become aware of infection and alter their behavior, and second,
when individual infection risk is heterogeneous.

Shifts in behavior that influence contact rates k or the proba-
bility of infection given contact b can alter R over extremely short
timescales (see Eq. (1)). For example, as awareness of the SARS-
CoV-2 epidemic grew in the United States in March 2020, human
mobility ground to a near halt (Gao et al.,, 2020; Warren and
Skillman, 2020), presumably reducing contact rates k. Other in-
dividual behavioral changes such as increased handwashing and
mask wearing (Belot et al., 2020; Goldberg et al., 2020) have re-
duced the probability of transmission given contact b (Eikenberry
et al,, 2020; Liang et al., 2020). Such bottom-up forces combined
with top-down government-imposed interventions (e.g. school
closures, banned gatherings) reduced R to below 1 (the thresh-
old for epidemic persistence) by late April 2020 in some states
(Johndrow et al., 2020; Miller et al., 2020). Similar reductions to
R were documented in China (Li et al., 2020a; Tian et al., 2020)
and other countries (Ensser et al., 2020; Giordano et al., 2020;
Kupferschmidt, 2020; Yuan et al., 2020). Indeed, in models of the
1918 influenza pandemic, incorporating a behavioral response to
death rates improved model fits (Bootsma and Ferguson, 2007;
He et al., 2013). For SARS-CoV-2, behavioral changes have caused
R to fluctuate above and below 1 at different times based on the
perceived threat of COVID-19 (Santamaria and Hortal, 2021).
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While behavioral changes can temporarily reduce R as de-
scribed above, more sustainable reductions in R are typically
achieved when susceptible individuals are removed from popula-
tions either through naturally acquired immunity or vaccination.
When hosts are heterogeneous such that some individuals are
more likely to contract infection than others, R declines faster
than predicted by Eq. (2.1)-(2.6) or other SIR models lacking
host heterogeneity (May and Anderson, 1987). This is because
those most susceptible (for example, due to high exposure or low
inherent immunity) will become infected earlier in an epidemic,
leaving individuals that are on average more resistant (Langwig
et al,, 2017; May and Anderson, 1987). Thus, the classical formu-
lation of the “herd immunity” threshold, 1— 1/R, does not apply
to populations with heterogeneity in risk of infection. To illustrate
this point, Britton et al. (2020) developed a COVID-19 model with
heterogeneous mixing between age classes and additional hetero-
geneity in contact rates. Under their assumptions, herd immu-
nity was reached after 43% of the population acquired immunity
through natural exposure, rather than the 60% that would be
required under their assumptions in the absence of heterogeneity.
Other studies have predicted that heterogeneity could have an
even larger effect if susceptibility was correlated with infectivity
(Gomes et al., 2020; Tkachenko et al., 2020). In some of the hard-
est hit areas, an appreciable fraction of people have been infected
with SARS-CoV-2 (e.g. 22.7% in New York City, USA (Rosenberg
et al,, 2020) and over 44% in Manaus, Brazil (Buss et al., 2020)).
However, the impact of these levels of infection on future disease
dynamics is unknown, since for SARS-CoV-2, heterogeneity in
infection risk is still highly uncertain (Randolph and Barreiro,
2020). Moreover, heterogeneity is likely to change through time
due to changes in individual or government-mandated responses
(Dolbeault and Turinici, 2020). Thus, even after herd immunity
has been reached, additional waves of infection could occur if
heterogeneity changes (Tkachenko et al., 2020).

4. Misconception 2: The reproductive number is constant over
space

The Ry of many pathogens are often referred to as known
values. For example, the ®; of measles is 12-14, polio is 5-7,
and pertussis is 12-17 (Doherty et al., 2016). For SARS-CoV-2,
estimates typically range from 2-3 (Liu et al., 2020a). However,
the parameters (k, b, and P in Eq. (1)) that make up Rg can differ
substantially from place to place (Figure 1, Delamater et al., 2019).
It follows that interventions to reduce R to less than 1 may need
to vary in aggressiveness across locations (Stier et al., 2020).

Since Ry differs between groups of people, combining multiple
groups together to estimate a population-wide Ry can produce
misleading notions of disease spread. For example, a high average
measles vaccination rate in the United States keeps R below 1
nation-wide, but localized communities with high rates of vaccine
refusal still experience serious outbreaks (Leslie et al., 2018).
In the current COVID-19 pandemic, disease transmission has so
far been much higher in refugee and low income populations
compared to non-refugee and high income populations (Chopra
and Sobel, 2020; Lau et al., 2020; Ruiz-Euler et al., 2020) and Rg
has been documented to vary between US counties (Sly et al.,
2020). Since R is an average, combining communities with high
and low transmission may yield an estimate of R < 1, yet disease
may still readily spread (Li et al, 2011). On the other hand,
splitting populations may mean missing transmission events that
occur between populations, thus underestimating R (Smith et al,,
2009).

Awareness of the consequences of how people are grouped
can help us interpret values of the reproductive number. Within
groups, behavior associated with work, home, and recreation
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affects contact rates k. As we have discussed above, SIR models
often assume that contact rates, and thus ® and Rg, depend on
host density. Although, evidence is mixed as to whether larger
cities have higher values of ® and Ry for SARS-CoV-2 (Heroy,
2020; Stier et al., 2020), built environments (e.g. hospitals, airport
terminals, factories) do often have high values of R (Dietz et al,,
2020). This may partially explain patterns of explosive SARS-CoV-
2 transmission in venues such as cruise ships and meat packing
facilities (Althouse et al., 2020; Dyal et al., 2020; Mizumoto and
Chowell, 2020). Household contacts have also been particularly
important to the transmission dynamics of the virus (Bi et al,
2020). Therefore, differences in Ry between populations can be
partially explained by differences in household sizes between
countries and cultures (Singh and Adhikari, 2020). For example,
large, multigenerational households in Italy may have contributed
to the large and deadly outbreak there relative to other European
countries where multigenerational households are less common
(Dowd et al., 2020). Similarly, the probability a new infection
results from contact b and the probability of remaining infected
over time P may vary by population. For SARS-CoV-2, individuals
with severe symptoms have 60 times more viral RNA in nasal
swabs, which likely increases both their ability to transmit the
virus and the amount of time they remain infected (Liu et al.,
2020Db). Since older individuals are more likely to develop se-
vere infection (Yang et al.,, 2020), Rq is likely to be greater in
populations with older individuals, such as in nursing homes
(McMichael et al., 2020) or in developed countries (Dowd et al.,
2020).

5. Misconception 3: The reproductive number is enough to tell
us how large an epidemic will be

It is tantalizing to imagine that ®q can be used to predict the
extent of an outbreak, since it can be calculated during the early
stages of an epidemic. Indeed, Ry is related to final epidemic size
(Kermack and McKendrick, 1927), but this relationship can be
substantially affected by the fraction of the population infected
initially and by heterogeneity in transmission.

If we rescale population sizes such that the initial susceptible
population size Sy = 1, and we assume that population sizes
are sufficiently large to neglect demographic stochasticity (Hart-
field and Alizon, 2013; Tildesley and Keeling, 2009), then the
fraction of the population infected during an epidemic Z can be
determined from the final epidemic size equation. This equation,
Z = So(1—e~*0-l)) s not sensitive to the epidemic model used
to calculate ®q so long as the model assumes that the population
is well-mixed with homogeneous susceptibility. Note that this
equation prominently features Iy, the fraction of the population
infected at the beginning of the outbreak (or at the beginning
of an intervention). Efforts to reduce the reproductive number
below 1 are understandably a high priority, but when R is close
to or less than 1, the final outbreak size is more sensitive to
changes in the fraction of infected individuals I than it is to
changes in Rq (Fig. 3). This is because more infected individuals
will fuel the outbreak for longer, infecting a greater proportion
of the susceptible population even when each case produces
on average less than one new infection. Now that SARS-CoV-
2 infection rates are already substantial in populations around
the globe, I must be considered in addition to ®. For example,
Pei et al. (2020) estimated that implementing social distancing
policies one week earlier could have reduced the cases in the
United States by early May, 2020 by 55% (over 700,000 cases) by
keeping the number of infected individuals low at the time such
policies were implemented.

While a final epidemic size can be calculated using R and
Iy, the final size equation above does not apply to populations
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Fig. 3. Epidemic size contours and shading show that when Ry is close to 1, the
epidemic is more strongly influenced by a reduction of I than by a reduction of
Ro. For instance, if Ry = 0.95 (dashed line), the epidemic could infect from less
than 0.1% to greater than 16% of the population as I, ranges from just above
0% to 3% of the population. Epidemic size was calculated using the final size
equation, Z = So(1 — e~*0@=10)) where S, = 1. Shading indicates the cube root
of epidemic size with lighter colors corresponding to smaller outbreaks.

with heterogeneous infection risk (Andreasen, 2011; Ball, 1985;
Hébert-Dufresne et al., 2020; Ma and Earn, 2006). Given the
inherent heterogeneity in human social networks, it is surprising
that the final size equation is so accurate for many diseases such
as childhood diseases (Caudron et al., 2015). This may be be-
cause transmission networks among children are close to random
(Bjornstad et al., 2002) or have other features that allow the final
size equation to be accurate (Bansal et al.,, 2007). For diseases
where this is not the case (e.g. many sexually transmitted dis-
eases), heterogeneity could in principle be incorporated into the
final epidemic size equation (Dwyer et al., 2000), but estimating
heterogeneity early in an epidemic can be challenging. Moreover,
as we describe in misconception 1, heterogeneity in infection
risk can change over time as a result of human behavior or
interventions, such as the shutdowns in response to the COVID-19
epidemic (Dolbeault and Turinici, 2020; Ruiz-Euler et al., 2020).
Estimates of how future government restrictions and behavioral
changes will alter heterogeneity in infection risk are thus critical
for assessing the likely impact of the outbreak (Gomes et al.,
2020). Such estimates are also key in determining thresholds for
herd immunity (Randolph and Barreiro, 2020) and in prioritizing
the distribution of interventions such as vaccines when they first
become available (Atkinson and Cheyne, 1994; Giambi et al,
2019).

6. Conclusions

As we have discussed, the reproductive number R and its
initial value Ry can be used to assess the potential for disease
invasion and persistence, to predict the extent of an epidemic,
and to infer the impact of interventions and of relaxing control
measures. Determining R in real time is especially helpful for
the latter goals. For example, the Ry of SARS-CoV-2 was used
to justify implementations of lockdowns in the United Kingdom
(Ferguson et al., 2020), and R is one factor that is considered in
lockdown relaxation policies (Thompson et al., 2020).
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However, the utility of ® and Ry can easily be overstated.
Though we have focused on three misconceptions that we felt
were particularly important for the COVID-19 pandemic, there
are additional considerations to appreciate for accurate interpre-
tation of R and Ry (Heffernan et al., 2005; Li et al., 2011; Roberts,
2007). These include complications associated with stochasticity
(Keeling and Grenfell, 2000), superspreading (Lloyd-Smith et al.,
2005), metapopulation dynamics (Cross et al., 2007), seasonal-
ity (Bjornstad et al., 2002), multiple hosts (Roberts, 2007), and
pathogen evolution (Hartfield and Alizon, 2014). Some of these
nuances may also be important for SARS-CoV-2 dynamics. For
example, superspreading events appear to be common with this
virus (Althouse et al., 2020). Although superspreading affects epi-
demic dynamics, Rg masks this feature of disease spread because
it only represents average transmission.

The reproductive number is a valuable tool for understanding
disease dynamics. Ry describes early disease growth, and it can be
estimated when little else is known about a pathogen. Later, R can
be used to measure the effectiveness of interventions. However,
a singular focus on R and R, can lead to inaccurate conclusions.
Considering the nuances of disease dynamics when interpreting
the reproductive number allows for a stronger understanding of
the patterns with which the SARS-CoV-2 virus has traversed the
globe, why it has impacted some populations more than others,
and how best to limit future transmission.
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