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Abstract: Polymer semiconductors may have the potential to fully replace silicon in next-generation
solar cells because of their advantages such as cheap cost, lightweight, flexibility, and the ability
to be processed for very large area applications. Despite these advantages, polymer solar cells
are still facing a certain lack of power-conversion efficiency (PCE), which is essentially required
for commercialization. Recently, bulk heterojunction of PTB7:PC70BM as an active layer showed
remarkable performance for polymer solar cells in terms of PCE. Thus, in this paper, we developed
and optimized a novel design using PEDOT:PSS and PFN-Br as electron and hole transport layers
(ETL and HTL) for ITO/PEDOT:PSS/PT7B:PC70BM/PFN-Br/Ag as a polymer solar cell, with the
help of simulation. The optimized solar cell has a short-circuit current (Isc) of 16.434 mA.cm−2,
an open-circuit voltage (Voc) of 0.731 volts, and a fill-factor of 68.055%, resulting in a maximum
PCE of slightly above 8%. The findings of this work may contribute to the advancement of efficient
bulk-heterojunction-based polymer solar cells.

Keywords: polymer; solar cell; bulk heterojunction; PEDOT:PSS; PTB7:PC70BM; PFN-Br; SCAPS 1D

1. Introduction

Organic semiconductor-based solar cells have gained considerable popularity over
the last few years, and some scientists believe they have the potential to completely replace
silicon-based solar cells in the near future [1–5]. Organic semiconductors offer many ad-
vantages for solar cell applications such as lightweight, low cost, fabrication on various
substrates, wide-area applications, and flexible and tunable processing at room tempera-
ture [6]. Despite these well-reported advantages, organic solar cell efficiency is far behind
Si solar cells. It is generally believed that some combination of a proper absorber layer with
a hole and electron may yield a high-efficiency device for next-generation solar cells [7–10].

Researchers are exploiting a variety of techniques to enhance the power-conversion
efficiency (PCE) of organic solar cells. Some schools of thought still believe that the combina-
tion of the most suited hole, electron transport, and buffer layer with a highly efficient bulk-
heterojunction as an absorber layer may yield an excellent photovoltaic response [11–13].
Bulk heterojunction has attracted great interest due to various advantages such as low
cost, tunable bandgap and electron affinity, lightweight, and most importantly excellent
power conversion efficiency compared to other organic/polymer materials. The bulk-
heterojunction layer consists of a blend of acceptor and donor materials (organic/polymer)
at the nanoscale and broadly speaking donor materials are usually polymer/organic while
fullerene derivatives (PCBM) are used as acceptor materials for bulk heterojunctions layer
such as P3HT:PCBM, MEH-PPV:PCBM, PCPDTBT:PCBM, and PTB7:PC70BM [14,15].

Suitable electron and hole transport layers (ETL and HTL) for PTB7:PC70BM create
challenges, as PTB7:PC70BM has strong binding (low dielectric constant) energy for exciton
with low diffusion length, and despite its heterogeneous nature most of the excitons are
lost in recombination [11,12]. If a very thin PTB7:PC70BM layer is used, then these issues
can be improved, but the issue of inefficient optical absorption will arise. On the other
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hand, the optimum thickness of the PTB7:PC70BM layer emphasizes the importance of an
efficient hole and electron transport layer, which attract the required free carriers and also
block the injection of opposite free carriers. The optical absorption spectra of PTB7:PCBM
bulk-heterojunction polymer can be found in the reference [16].

For the hole transport layer, poly(3,4-ethenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) is accepted as one of the best polymers for hole transport materials and
especially for inverted polymer solar cells. It has many advantages such as lightweight, high
conductivity, low cost, and thin-film processing even at room temperature [17,18]. However,
the most important reason for its success as a hole transport layer is that PEDOT:PSS offers
not only a well-coordinated work function for HOMO (Highest Occupied Molecular Orbital)
level of the donor semiconducting polymer but also offers highly matched work function
with ITO (tin-doped indium oxide) over a glass substrate [19]. As well as proper work
function, PEDOTT:PSS also offers excellent visible transparency as well as good air stability
essentially required for photovoltaic applications [20]. As a result, PEDOT:PSS can remove
holes efficiently from the semiconducting polymer layer and forward them towards the
cathode. Hence, in this work, we employed PEDOT:PSS as a HTL.

Similarly, for an electron transport layer, [6,6]-phenyl C60 butyric acid methyl ester
(PC60BM) is another common material for inverted (p-i-n) polymer solar cells. It facilitates
the electron-transport process and has very high electron-affinity which helps to extract the
electron efficiently [21]. However, it has some limitations which cause degradation to the
PCE of polymer solar cells. Some of these limitations are low electron mobility, high leakage
current, and recombination at interfaces [5]. On the other hand, a polyfluorene derivative
such as PFN-Br is reported to show excellent electron extraction and transport behavior [22].
Figure 1 shows the overall architecture of the novel ITO/PEDOT:PSS/PTB7:PC70BM/PFN-
Br/Ag photovoltaic device proposed for this study. The photovoltaic response of the solar
cell described above was numerically simulated in order to identify the optimal doping
density and thickness of ETL, HTL, and the absorber layer.
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Figure 1. Shows the schematic view of the proposed ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag
photovoltaic device for simulation.

2. Simulation Methods and Physical Parameters
2.1. Simulation Software

Simulation of a photovoltaic response for an organic solar cell is a highly mature field
and has already played a vital to overall improving the PCE of the solar cell. In industry,
various types of software are available for the simulation of photovoltaic response. Among
simulation software, SCAPS-1D is very attractive as open-source, simple, highly reliable,
and provides comprehensive tools for simulations. Similarly, SCAPS-1D software also
offers high consistency between simulation and experimental results [23–25]. On the other
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hand, various simulation results for organic/polymer materials as absorbers or transport
layers for different solar cells have already been reported in the literature [26–28]. Therefore,
SCAPS 1D software (SCAPS 3.8, ELIS-University of Gent, Gent, Belgium) was chosen for
the simulation study of the proposed solar cell.

2.2. Simulation Method

SCAPS 1D simultaneously solves many fundamental semiconductor photovoltaic
equations for both electron and hole separately such as (i) continuity equation, (ii) Poisson
equations, (iii) charge transport equations, (iv) diffusivity equations, and (v) optical ab-
sorption equations. The following reference [29,30] contains in-depth information on these
fundamental equations These equations are driven by physical and geometrical parameters
associated with each layer and lead to the overall photovoltaic response of the given solar
cell. These equations are listed as

d2∅(x)
dx2 =

q
∈o∈r

(
p(x)− n(x) + ND − NA + ρp − ρn

)
(1)

dJn

dx
= G− R (2)

dJp

dx
= G− R (3)

J = Jn + Jp (4)

Jn = Dn
dn
dx

+ µn n
d∅
dx

(5)

Jp = Dp
dp
dx

+ µp p
d∅
dx

(6)

α (λ) =

(
A +

B
hν

) √
hν− Eg (7)

Here ∅(x), q, ∈o, ∈r, ρP, ρN , NA, ND, p(x), n(x), G, R, JP, Jn, and J, are the electrostatic
potential, electrical charge, absolute permittivity of vacuum, relative permittivity of a
semiconductor, hole defect density, electron defect density, shallow acceptor doping density,
shallow donor doping density, hole carrier density as a function of the thickness (x), electron
carrier density as a function of the thickness (x), carrier generation rate of free carriers, total
carrier recombination rate, hole current density, and electron current density, total current
density, respectively. Similarly, Dp, Dn, µp, and µn are the free hole diffusion coefficient, free
electron diffusion coefficient, free hole carrier mobility, and free-electron carrier mobility,
respectively. Finally, h, α (λ), Eg, and ν are the plank constant, absorption coefficient,
energy bandgap, optical frequency, and few arbitrary constant, respectively.

The simulation of the proposed solar cell is divided into six-well defined steps, these
simulation steps are summarized as a flowchart in Figure 2. Firstly, the hole transport
layers’ thickness and doping density are optimized and then the electron transport layers’
thickness and doping density are optimized. Similarly, in the next step, the absorber layer
thickness is optimized, while in the second last and last step the final photovoltaic response
of the optimized device is determined.

2.3. Physical Parameters

The physical parameters for each transport and absorber layer required by the software
are the backbone of the simulation, special attention was paid to the selection of these
parameters. These parameters are selected from the published results and are listed in
Table 1. As organic semiconductor is considered disordered material, it inherently offers a
high density of traps [31–34]. The photovoltaic performances of solar cells are seriously
affected by the existence of both shallow and deep traps. Therefore, high traps density
(1015 cm−3) is introduced in both bulk and layer interface for the hole/electron transport
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layer and absorber layer, as shown in Table 1. Similarly, all calculations were performed at
an ambient temperature environment of 300 K with 100 mW/cm2 of power spectral density
as a 1.5 AM solar radiation light source.
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Figure 2. The steps of the methods followed in this work to optimize the proposed
ITO/PEDOT:PSS/PTB7:PCBM/PFN-Br/Ag solar cell.

Table 1. The parameters of the photovoltaic device utilized in these simulations, including the initial
estimation of the doping concentrations and thicknesses of each layer, which will be improved in the
subsequent stages.

Physical Parameters Symbol Unit PEDOT:PSS PTB7:PC70BM PFN-Br

Thickness Th Nm - 250 250

Energy Band Gap Eg eV 1.6 0.9 2.98

Electron Affinity X eV 3.5 3.7 4

Dielectric Permittivity (Relative) E - 3 3.9 5

Effective Density of States at Valence Band NV cm−3 1 × 1022 1 × 1018 1 × 1019

Effective Density of States at Conduction Band NC cm−3 1 × 1022 1 × 1018 1 × 1019

Hole Thermal Velocity Ve cm/s 1 × 107 1 × 107 1 × 107

electron Thermal Velocity Vh cm/s 1 × 107 1 × 107 1 × 107

Electron Mobility µe cm2/V.s 0.01 5.00 × 10−4 1.00 × 10−4

Hole Mobility µh cm2/V.s 9.9 × 10−0.5 5.00 × 10−4 2.00 × 10−6

Uniform Shallow Donor Doping Nd cm−3 0.00 1 × 1019 -

Uniform Shallow Acceptor Doping Na cm−3 - 1 × 1019 0

Defect Density Nt cm−3 1 × 1015 1 × 1015 1 × 1015

References [35] [36,37] [38]

3. Results and Discussion
3.1. Thickness Optimization of PEDOT:PSS

Thickness optimization of PEDOT:PSS as a hole transport layer is very crucial for the
proposed solar cell because at one side PEDOT:PSS interacts with semitransparent ITO
and on the other side it interacts with PT7B:PC70BM absorber layer. As a result, optical
transmission, hole extraction and blocking of the electron from the absorber, hole trans-
portation, and collection to the respective ITO anode depend critically on the PEDOT:PSS
layer thickness [39]. The thickness optimization of PEDOT:PSS was performed by deter-
mining the photovoltaic characteristics such as PCE, short-circuit current (Isc), open-circuit
voltage (Voc), and fill-factor, as functions of the thickness of PEDOT:PSS, shown in Figure 3.
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Among these photovoltaic parameters, fill-factor is unique and defined as the percentage
ratio between the actual and maximum possible power.
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The thickness range of PEDOT:PSS is selected from 50 nm to 500 nm according to
their efficiency with the high repeatability for the photovoltaic response [40]. Figure 3
demonstrates that both open-circuit voltage and fill-factor, as well as short-circuit current
and efficiency, follow different trends. At almost 125 nm, the fill factor of the cell hits a
maximum and then nearly remains constant as the thickness of PEDOT:PSS increases, while
Voc is sharply declined with the increase in PEDOT:PSS thickness. On the other hand, PCE
and short-circuit current is dropped from 50 nm thickness of PEDOT:PSS. Because PCE is
the decisive factor, the optimal thickness of PEDOT:PSS as an HTL for the current solar cell
is 50 nm.

3.2. Shallow Doping Density Optimization of PEDOT:PSS

Another significant parameter to consider when optimizing a solar cell for efficiency
is the doping density for PEDOT:PSS as the HTL. Doping of PEDOT:PSS as the hole
transport layer significantly improves both charge extraction and charge transport process
by reducing the series resistance and the establishment of ohmic contacts to the ITO
electrodes, which overall enhances the solar cell’s photovoltaic parameters [41]. However,
the higher dopant concentration may cause the creation of traps, which in turn behave
as electron–hole recombination centers for PEDOT:PSS, thus we selected the range of
doping density from 1012 to 1020 cm−3 based on published results [42]. PEDOT:PSS doping
is critical for the proposed solar cell to have an efficient photovoltaic response. Before
beginning the doping simulation, the optimized PEDOT:PSS thickness was updated in
the software, and then photovoltaic parameters, such as Voc, fill factor, Isc, and PCE, as
functions of shallow acceptor doping of PEDOT:PSS. The layer was simulated as shown
in Figure 4. The figure depicts similar trends for all photovoltaic parameters except open-
circuit voltage, which increases sharply and reaches a maximum at 1016 cm−3 and then
starts to decrease. While other photovoltaic parameters also increase at early doping density
with a slow rate, sharply rise to 1018 cm−3, and then slightly increase up to 1020 cm−3, which
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is the typical behavior of trapped space charge, limited current behavior was also observed
for many organic/polymer semiconductors [43–45]. Consequently, the optimal doping
density for the PEDOTPSS (HTL) in the proposed solar cell is inferred to be 1020 cm−3.
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3.3. Electron Transport Layer Thickness Optimization

The optimal thickness of PFN-Br as an ETL is obtained in the third step of the simula-
tion. Just like PEDOT:PSS as the HTL, the thickness of PFN-Br as ETL is also very important
for electron extraction from PT7B-PC70BM, electron transport, and collection of electrons
at the Ag cathode. The thickness optimization of PFN-Br was performed by determining
the photovoltaic characteristics such as Voc, fill factor, Isc, and PCE as functions of PFN-Br
thickness, shown in Figure 5. The Voc and Isc response of the current solar cell are degraded
when the thickness of PFN-Br increases, while fill-factor is slightly increased up to 125 nm
and then remains nearly constant. The efficiency is also degraded but at a very slow rate.
The figures clearly show that the optimal thickness of PFN-Br as an ETL is 50 nm. Therefore,
it can be inferred that the 50 nm thickness of PFN-Br provides the balance trade-off between
electron–hole recombination, electron extraction, and blocking of the hole from the absorber,
electron transportation, and hence collection to the respective Ag cathode.

3.4. Shallow Doping Density Optimization of the PFN-Br

In the fourth step of the simulation, the optimum doping density of PFN-Br as an
electron transport layer is determined. The optimized donor doping of PFN-Br can be
attributed to the efficient electron extraction and good ohmic contact between Ag cathode
and the active PTB7:PC70BM layer. The optimized donor doping PFN-Br was estimated
by determining the photovoltaic parameters, such as Voc, fill factor, Isc, and PCE, by
altering the shallow donor doping of PFN-Br from 1012 to 1020 cm−3, as shown in Figure 6.
According to the Figure, it can be seen that higher doping of PFN-Br causes the open-circuit
voltage response to degrade, which may be due to the creation of extra traps density at
higher doping and the relaxation of the free carriers at these traps may cause to reduce
the open-circuit voltage [46]. While PCE, fill-factor, and short-circuit current are increased
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with doping, PCE performed well, reaching the maximum at 1018 cm−3 doping and then
starting to degrade. Thus, on the basis of these results, it can be concluded that the most
optimal doping for PFN-Br as an ETL is 1018 cm−3.
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3.5. Thickness Optimization of PTB7-PC70BM

Thickness optimization of bulk-heterojunction polymer absorber layer (e.g., PTB7-
PC70BM) is one of the main challenging tasks because it depends on many inter-related
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processes such as strong optical absorption, generation of electron–hole pairs, conversion
of bounded electron–hole pairs into free carriers, reducing carrier recombination losses,
efficient charge transportation to the respective transport layers, mechanical and environ-
mental stability. All these factors required different thicknesses of the absorber layer for
their efficient individual response and a compromise between these processes is required
for an efficient photovoltaic response [47–49]. In literature, various thicknesses of bulk het-
erojunction absorber layer for organic/polymer solar cells are reported [50–52]. Therefore,
we varied the thickness of PTB7:PC70BM from 50 to 500 nm for simulation. Consequently,
the thickness optimization of bulk heterojunction PTB7:PC70BM absorber layer was per-
formed by simulating the photovoltaic characteristics such as Voc, fill factor, Isc, and PCE
by altering the thickness of absorber layer and the results are shown in Figure 7. Both Voc
and fill-factor decrease with thickness, while PCE and short-circuit current, initially, slightly
increase up and reached the maximum at nearly 100 nm thickness, then they gradually
decrease. Hence, based on the simulation results, it can justify that the 100 nm thickness of
the PTB7:PC70BM is the optimum thickness of the current solar cell.
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3.6. Photo Current–Voltage Response of Proposed Solar Cell

The final phase of the simulation was to combine all of the optimum doping density
and thickness for the PEDOT:PSS, PFB-Br, and PTB7:PC70BM layers and determine the
current solar cell’s overall photocurrent–voltage response, as shown in Figure 8.

The proposed solar cell’s photovoltaic parameters are shown in Figure 8. The opti-
mized ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag solar cell has an Isc of 16.434 mA.cm−2,
Voc of 0.731 volts, a fill-factor of 68.055%, and a PCE of 8.18%. The higher value of short-
circuit current may be due to the commutative effects of wider optical absorption, exciton
generation, efficient exciton dissociation leads to the free carrier generation, and then
transportation at their respective transport layer before collection at electrodes [53]. The
proposed solar cell’s open-circuit voltage still has space for future improvement.
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On the other hand, lower PCE compared to the other reported simulation of bulk-
hybrid solar cells is maybe due to the incorporation of a higher density of traps [38]. It is
experimentally evident that polymers are full of traps, and these traps may be presented
due to many factors such as humidity, structural defects, distortion, impurity, and/or any
other known or unknown reasons. However, these traps act as the recombination centers
and cause severely degrade the overall photovoltaic response. Therefore, a high density
of traps in each layer is introduced in order to make the simulation more realistic and
comparable to the experimental results, which in turn show the lower PCE.

4. Conclusions

In conclusion, we have efficiently designed and optimized a polymer-based novel
bulk heterojunction solar cell as ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag through
SCAPS 1D simulations. For this purpose PEDOT:PSS, PFN-Br, and PT7B:PC70BM layers
were selected as a HTL, ETL, and bulk-heterojunction absorber layers, respectively, and
sandwiched between transparent ITO and Ag electrodes. Doping density and thickness of
both PEDOT:PSS and PFN-Br were optimized and then PT7B:PC70BM is investigated for
an efficient photovoltaic response. The proposed ITO/PEDOT:PSS/PTB7:PC70BM/PFN-
Br/Ag solar cells yield an Isc of 16.434 mA.cm-2, a Voc of 0.731 volts, and a fill factor
of 68.055%, resulting in a PCE of just over 8 %. Similarly, it is also indicated that all
photovoltaic parameters are considerably affected by the doping density as well as the
layer thickness of both ETL and HTL, and the bulk-heterojunction absorber layer. The
higher short circuit current may the result of efficient optical absorption, exciton generation,
exciton dissociation, free carrier generation, and then transportation at their respective
transport layers before collection at the electrodes. As it is accepted that polymers are full
of traps, we introduced a high density of traps in each layer in order to make the simulation
more realistic, which in turn shows the lower PCE. Additionally, the proposed solar cell’s
open-circuit voltage still has room for improvement.
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