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Abstract
Greater sage-grouse populations have decreased steadily since European settlement in

western North America. Reduced availability of brood-rearing habitat has been identified as

a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-

grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and

remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined

which characteristics of brood-rearing habitat could be used in widely available, high resolu-

tion imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing

habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing

habitat. We used AIC model selection to evaluate support for a list of variables derived from

remotely-sensed imagery. We examined the relationship of these explanatory variables at

three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables

(percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of

sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission

lines, and distance to permanent structures). Variables from each spatial extent were repre-

sented in our top model with the majority being associated with the larger (795 meter) spatial

extent. When applied to our study area, our top model predicted 75% of naïve brood loca-

tions suggesting reasonable success using this method and widely available NAIP imagery.
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We encourage application of our methodology to other sage-grouse populations and spe-

cies of conservation concern.

Introduction
Greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) were determined to be
not warranted for protection under the 1973 Endangered Species Act [1]. Populations have
decreased steadily since European settlement in western North America [2], and the overall
range of sage-grouse has been reduced to 56% of its pre-settlement distribution [3]. The major
reasons for the decline include degradation, fragmentation, and loss of sagebrush (Artemisia
spp.) habitats [4–7]. Sage-grouse are sagebrush obligates and are highly susceptible to changes
in sagebrush habitats. Loss or alteration of sagebrush communities has occurred from invasion
by native and exotic plants, increased fire frequency and intensity, overgrazing by livestock,
energy development, and agricultural or urban development [4, 7–12]. As much as 45% of
sagebrush communities that originally existed in western North America have been converted
to other landcover types [12]. Consequently, identification of preferred habitat characteristics
is necessary to inform conservation and management within remaining sagebrush habitat.

While sage-grouse use diverse sagebrush habitat throughout their life cycle, availability of
brood-rearing habitat has been identified as a limiting factor affecting long-term conservation
[4, 13–14]. Quality brood-rearing habitat leads to higher chick survival and increased recruit-
ment of chicks into existing populations [15–20]. Previous studies have focused on microsite
characteristics [13, 21–29). Studies at these small spatial extents largely shaped contemporary
management practices meant to increase quality of brood-rearing habitat. More recently, the
focus has shifted to the landscape spatial extent [18, 30–31, 32–34]. With annual home ranges
that can be as large as 600 km2, examining characteristics of brood-rearing habitat at larger
spatial extents is warranted [16, 35–36].

This shift in focus to larger spatial extents has been facilitated by the increased availability
and functionality of Geographic Information Systems (GIS) analysis and the widespread avail-
ability of multispectral satellite and aerial imagery [37–39]. Recent studies have utilized satellite
imagery acquired by the Landsat Thematic Mapper [18] or Enhanced Thematic Mapper [30]
satellites. These sensors acquire data at a minimum spatial resolution of 30 m (with the excep-
tion of the 15 m resolution panchromatic band which is of limited use for analyses) and a spec-
tral resolution consisting of 7 unique bands across the electromagnetic spectrum [40]. The
large spatial resolution of these sensors allows for analysis of expansive areas; however, the
minimum unit size for any analyses conducted is also limited by the 30-m spatial resolution.
Although Landsat data is collected at relatively short intervals (i.e., weekly or monthly) and has
been somewhat useful in understanding habitat selection patterns [24, 30–31], this coarse
(�30m resolution) imagery may not provide the resolution necessary to evaluate habitat char-
acteristics at spatial extents relevant to the process of habitat selection [41].

In addition to the widely and freely available Landsat imagery, there is another dataset avail-
able through the National Agricultural Imagery Program (NAIP). This free imagery is collected
at approximately 3-year intervals by aerial sensors at a spatial resolution of 1 m and a spectral
resolution consisting of 4 unique bands. This fine spatial resolution allows researchers to exam-
ine habitat relationships undetectable at the coarser Landsat resolution of 30 m. Using NAIP
imagery, factors such as edge effects in highly heterogeneous areas, where patch size is often
much smaller than 30 m, can be examined while retaining the capability of assessing large
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landscapes. In the past, ground-derived microhabitat data were used to assess habitat selection,
but its utility was limited [42]. Technology now permits the combination of high-resolution
aerial imagery and ground verification, high-resolution images combined together [43], or the
combination of high-resolution imagery and ground-based imagery [44] to map habitat and
assess habitat selection.

Our goal was to evaluate habitat selection of female sage-grouse with broods across a range
of spatial extents utilizing 1 m-resolution NAIP imagery. Our specific objectives were to: 1)
determine important features of brood-rearing habitat using fine spatial extent NAIP imagery,
2) assess the spatial extent at which sage-grouse selected of brood-rearing habitat in our study
area, and 3) create a predictive habitat model that could be applied across our entire study area
to identify areas of preferred brood-rearing habitat. We hypothesized that we would be able to
identify features selected by brood-rearing sage-grouse using NAIP imagery and that sage-
grouse would select habitat characteristics at multiple spatial extents, as demonstrated in other
life history stages for this bird [18].

Methods

Study Area
Our study area was an 817 km2 area surrounding Strawberry Reservoir in north-central Utah
(Fig 1). We delineated this area by running a fixed-kernel density estimator (using least-
squares cross validation (LSCVh) to select the smoothing parameter (h)) on 3,865 locations
(nest, brood, and non-brood) of female sage-grouse collected from 1998 to 2008. We then used
Home Range Tools (http://www.blueskytelemetry.com) for ArcGIS version 9.31 (ESRI, Inc.,
Redlands, CA) to create a 95% polygon surrounding these locations. This polygon (Fig 1) con-
tained 824 of 836 (98.5%) brood locations in our dataset. We removed the remaining 12 brood
locations from our analysis, considering them to be outliers.

The study area defined by the LSCVh fixed-kernel density estimate was a high mountain
valley that transitioned to lower elevations moving eastward. Elevation ranged from 1,946 to
3,150 m. Average annual precipitation varied widely from 43 cm in the lower elevations to 84
cm at the highest elevations (www.ncdc.noaa.gov). Vegetation consisted of shrublands domi-
nated by big sagebrush (A. tridentata). Silver sagebrush (A. cana) occurred in the more mesic
areas and black greasewood (Sarcobatus vermiculatus) was found in some areas in the eastern
part of the study area at lower elevations. On slopes at higher elevations, tree communities con-
sisted of quaking aspen (Populus tremuloides), Gambel’s oak (Quercus gambelii), and various
conifers (e.g. Abies spp., Picea spp., and Pseudotsuga spp.). The tree community at lower eleva-
tions was dominated by juniper (Juniperus spp.) with scattered pinyon pine (Pinus edulis).
Common forbs found in the study area included longspur lupine (Lupinus arbustus), silky
lupine (Lupinus sericeus), sticky purple geranium (Geranium viscosissimum), and sulphur-
flower buckwheat (Eriogonum umbellatum). Common grasses included Kentucky bluegrass
(Poa pratensis), and smooth brome (Bromus inermis). In the lower elevations, cheatgrass (Bro-
mus tectorum) occurred in the understory, but this exotic species was largely absent from the
study area. Riparian areas were dominated by willow species (Salix spp). No fires occurred
within our study area during our study years and grazing by domestic livestock was absent.
Similarly, habitat enhancement via mechanical removal of sagebrush or pinyon-juniper did
not occur in the study area until 2009.

Data Collection
We captured female sage-grouse annually by netting them with the aid of all-terrain vehicles
on and around leks during the months of March through May using a modified spotlighting
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method [45]. Once captured, we fitted sage-grouse with necklace style radio transmitters
(Advanced Telemetry Systems, Inc., Isanti, MN) and tracked them using a 4-element Yagi
antenna and either a Telonics TR 2 (Telonics, Inc., Mesa, AZ) or Communication Specialists
R-1000 (Communication Specialists, Inc., Orange, CA) digital telemetry receiver. We moni-
tored females approximately twice weekly from April through August. Nest initiation occurred
in late April or May for females in our study area. Females that hatched at least one egg and
were observed with at least one chick, were considered brooding. We monitored broods at least
twice weekly during daytime hours through 56 days post-hatch. We also opportunistically
encountered brooding and non-brooding females during the study. If we were unable to visu-
ally detect chicks with a female, we left the immediate area and observed the location for 20
minutes or until the female returned. We classified females that flew long distances and did not
return to the area, or were located twice consecutively without chicks as non-brooding and did
not include them in our brood sample. For more information on trapping and collection of
telemetry data see Baxter et al. 2008 [46] or Peck 2011 [47]. Our sample of broods also included
those associated with sage-grouse translocated from four neighboring populations. Because

Fig 1. Map of Strawberry Valley in central Utah where we assessed selection of brood-rearing habitat by greater sage-grouse, 1998–2008.
The 817 km2 study area (polygon outlined in black) was delineated by calculating a 95% confidence polygon of a fixed kernel density estimate using
least squares cross validation (LSCVh) to select the smoothing parameter (h) on 3,865 locations of female sage-grouse collected from 1998 to
2008. White areas represent water.

doi:10.1371/journal.pone.0156290.g001
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these sage-grouse flocked with resident grouse and demonstrated little to no difference in
movements, reproduction, or survival, we lumped their locations with those of resident grouse
[46, 48].

Ethics Statement
Trapping and handling of sage-grouse was permitted and approved by the Utah Division of
Wildlife Resources under a Certificate of Registration (#1COLL6817) and by Brigham Young
University’s Institutional Animal Care and Use Committee (IACUC approval #08–0402).

Imagery Classification
To characterize vegetation in our study area, we performed a supervised classification on 1-m
resolution NAIP imagery collected in 2006. This year represented the first that statewide cover-
age of 1-m resolution imagery was available for Utah. Thereafter, NAIP imagery was collected
every 3 years. Although we could have benefited from imagery collected more frequently—par-
ticularly during the early years of our study—Strawberry Valley experienced very little of the
habitat change that has impacted sagebrush systems in much of western North America. Con-
sequently, we viewed any potential bias associated with collection of sage-grouse locations in
years before or after the 2006 image as unlikely to influence our results. We used ENVI EX Fea-
ture Extraction1 (Exelis Visual Information Solutions, Inc. McLean, VA) to classify NAIP
imagery. Using this classification, as well as digitization to manually identify road classes in
ArcGIS version 101 (ESRI, Inc., Redlands, CA), we generated a landcover layer that divided
the landscape into the following 10 classes: paved roads, high-use or major dirt roads (grav-
eled/wide enough for two-way traffic), low-use or minor dirt roads (two tracks), bare soil,
shrubs, trees, grass, water, riparian areas, and agricultural areas. Our shrub landcover class con-
sisted of almost entirely sagebrush species; however, due to the limited spectral bands available
in NAIP imagery we were unable to differentiate between species. In order to ensure the accu-
racy of our landcover layer and prior to assessment of sage-grouse selection, we performed an
on-the-ground accuracy assessment. Using ArcGIS 10, we randomly distributed 502 points
across the study area. In the summer of 2011, we visited 202 of these points and recorded
which of the 10 landcover classes best described each location. Using this information and our
aerial imagery, we visually interpolated the landcover classes for the remaining 300 locations
that we were unable to access for a variety of reasons (e.g. private property). We then used
these data (S1 File) to calculate accuracy statistics for our landcover classification [49].

Statistical Analysis
Following accuracy assessment, we developed a list of 86 explanatory variables (Table 1) that
may have influenced selection of brood-rearing habitat by sage-grouse in our area based on
previous literature [13, 18, 21–31] and our own experience in the study area since 1998. We
then divided the variables into two groups: those that would be best examined at multiple spa-
tial extents, and those for which a single spatial extent was adequate. Variables that we evalu-
ated at a single spatial extent (n = 44) included distances to various features and variables for
which only the values at the actual use or random site were relevant (Table 1). The remaining
42 variables (Table 2) were dependent on spatial extent. For variables dependent on spatial
extent, we calculated values at three spatial extents by generating circular buffers with radii of
45, 200, and 795 m surrounding each site. The 200 and 795-m spatial extents were selected
based on the lower and upper end of daily brood movements [22]. The 45-m spatial extent was
representative of common patch sizes available to broods in our study area. Prior to modeling,
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Table 1. Data used to model brooding habitat selection by female sage-grouse from 1998 to 2008 in
Strawberry Valley, Utah, USA.

Variable Name Description

DistAgriculture Distance to the landcover class "agriculture"

Aspect Aspect of the cell containing the point (10m resolution)

JuneSolar Total solar radiation received by the cell containing the point during the month of
June (10m resolution)

JulySolar Total solar radiation received by the cell containing the point during the month of
July (10m resolution)

AugustSolar Total solar radiation received by the cell containing the point during the month of
August (10m resolution)

DistCamp Distance to common campsites (both improved and non-improved)

SlopeDegrees Slope of the cell containing the point in degrees (10m resolution)

DistEdgeGrassRiparar Distance to edge consisting of grass on one side and riparian on the other

DistEdgeGrassShrub Distance to edge consisting of grass on one side and shrub on the other

DistEdgeGrassSoil Distance to edge consisting of grass on one side and bare soil on the other

DistEdgeGrassTree Distance to edge consisting of grass on one side and tree on the other

DistEdgeGrassWater Distance to edge consisting of grass on one side and water on the other

DistMinDirtRoad Distance to the landcover class "minor dirt road"

DistHabEdge Distance to any type of habitat edge

DistRiparShrub Distance to edge consisting of riparian on one side and shrub on the other

DistRiparSoil Distance to edge consisting of riparian on one side and bare soil on the other

DistRiparTree Distance to edge consisting of riparian on one side and tree on the other

DistRiparWater Distance to edge consisting of riparian on one side and water on the other

DistEdgeShrubSoil Distance to edge consisting of shrub on one side and bare soil on the other

DistEdgeShrubTree Distance to edge consisting of shrub on one side and tree on the other

DistEdgeShrubWater Distance to edge consisting of shrub on one side and water on the other

DistEdgeSoilTree Distance to edge consisting of bare soil on one side and tree on the other

DistEdgeTreeWater Distance to edge consisting of tree on one side and water on the other

DistEdgeWaterSoil Distance to edge consisting of water on one side and bare soil on the other

Elevation Elevation of the cell containing the point (10m resolution)

DistGrass Distance to the landcover class "grass"

DistMajDirtRoad Distance to the landcover class "major dirt road"

DistLake Distance to the landcover class "standing water"

PatchSize Size of the patch containing the point

DistPavedRoad Distance to the landcover class "paved road"

DistPermStruct Distance to any permanent structure

DistTransmissionLine Distance to above-ground transmission lines

DistRipar Distance to the landcover class "riparian"

DistStream Distance to the landcover class "flowing water"

DistShrub Distance to the landcover class "shrub"

DistSoil Distance to the landcover class "bare soil"

TopoIndex100 Topographic Position Index calculated with a circular neighborhood of 100 cells
(Jenness 2011)

TopoIndex200 Topographic Position Index calculated with a circular neighborhood of 200 cells
(Jenness 2011)

TopoIndex300 Topographic Position Index calculated with a circular neighborhood of 300 cells
(Jenness 2011)

DistTree Distance to the landcover class "tree"

Ruggedness159 Vector Ruggedness Measure calculated with a square neighborhood of 159 cells
(Sappington et al 2007)

(Continued)
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we tested for multicollinearity between explanatory variables and did not combine in a single
model any variables with a correlation coefficient> |0.6|.

To determine the variables that best differentiated use from random sites, we used a multi-
staged information theoretic approach [50] within a mixed-effects logistic regression [51],
using a random intercept to account for individual heterogeneity. We scaled all variables to
have a mean of zero and a standard deviation of one prior to analysis. We then used ArcGIS 10
to calculate values for all of our explanatory variables at each spatial extent for 675 brood loca-
tions collected from radio-marked females between 1998 and 2008 (remaining locations col-
lected between 1998 and 2008, n = 149, were from unmarked females and we withheld them
for accuracy assessment along with locations collected between 2009 and 2012). We then gen-
erated an equal number of random (i.e. available) locations from within the study area after
masking out Strawberry Reservoir. Because our random locations were cast within the bound-
ary of the study area and not associated with individual home ranges, our modeling of resource
selection generally corresponded to Johnson’s 2nd order of selection [52] To ensure that 675
random locations adequately characterized our study area, we calculated the true mean (i.e.
mean of all pixels/resource units) for continuous variables and compared our sample means
with 95% CIs to these values [53]. In every case, the confidence intervals and even standard
errors of our sample overlapped the true mean values suggesting that 675 random locations
was adequate to characterize our study area.

Next, we developed 35 a priori, univariable and multivariable models (Table 3) and used
model selection within each of our three spatial extents based on previous literature [13, 18,
21–31] and our own experience (>15 years) to determine which variables best differentiated
use from random locations [51]. To evaluate relative model support, we judged models based
on minimization of Akaike’s Information Criterion (AIC) [54]. We followed this same proce-
dure for the spatial extent invariant variables with a set of 34 a priori models (Table 4). For
each of these four groups (45, 200, 795-m spatial extents and spatial extent invariant variables),
we advanced the top model and any competitive models (� 2 ΔAIC) to a second stage of
analysis.

In our second stage of analysis, we combined the models that were advanced from stage 1
into 7 new models (Table 5). We created these models by combining the top models from each
spatial extent with the variables in the top model from the spatial extent invariant group. In
these 7 models, for spatial extent dependent variables, we used the spatial extent at which the
univariable model for that variable had the lowest AIC in the first stage of analysis.

We evaluated beta coefficients based on their standard errors and 85% confidence intervals
[52]. To evaluate effect sizes for variables in our top models, we calculated a resource selection
function (RSF) by holding all other variables constant at their mean. We used variance inflation
factors (VIF) to test for multicollinearity among variables in our final models. We considered
VIF> 5 to indicate multicollinearity. To assess predictive ability of our final models, we per-
formed a k-folds cross validation [52] where k = 5. We sorted the data into 5 partitions, with

Table 1. (Continued)

Variable Name Description

Ruggedness25 Vector Ruggedness Measure calculated with a square neighborhood of 25 cells
(Sappington et al 2007)

Ruggedness9 Vector Ruggedness Measure calculated with a square neighborhood of 9 cells
(Sappington et al 2007)

Ruggedness3 Vector Ruggedness Measure calculated with a square neighborhood of 3 cells
(Sappington et al 2007)

doi:10.1371/journal.pone.0156290.t001
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Table 2. List of 42 spatial extent variant variables used to build models of brood-habitat selection for
greater sage-grouse in Strawberry Valley, UT, 1998–2008. For these variables, we calculated values for
each at three different spatial extents by generating a circle with radii of 45, 200, and 795 m surrounding each
use or random site and then summarized attributes classified from 1 m resolution (NAIP) aerial imagery.

Variable Name Description

TreeCover The proportion of the "tree" landcover class in a circular buffer

SoilCover The proportion of the "bare soil" landcover class in a circular buffer

ShrubCover The proportion of the "shrub" landcover class in a circular buffer

GrassCover The proportion of the "grass" landcover class in a circular buffer

RiparCover The proportion of the "riparian" landcover class in a circular buffer

MajDirtRoadCover The proportion of the "major dirt road" landcover class in a circular buffer

MinDirtRoadCover The proportion of the "minor dirt road" landcover class in a circular buffer

PavedRoadCover The proportion of the "paved road" landcover class in a circular buffer

AgricultureCover The proportion of the "agriculture" landcover class in a circular buffer

LakeCover The proportion of the "standing water" landcover class in a circular buffer

StreamCover The proportion of the "flowing water" landcover class in a circular buffer

EdgeAgricultureGrass Meters of edge consisting of agriculture on one side and grass on the other in a
circular buffer

EdgeAgricultureRipar Meters of edge consisting of agriculture on one side and riparian on the other in
a circular buffer

EdgeAgricultureShrub Meters of edge consisting of agriculture on one side and shrub on the other in a
circular buffer

EdgeAgricultureSoil Meters of edge consisting of agriculture on one side and bare soil on the other in
a circular buffer

EdgeAgricultureTree Meters of edge consisting of agriculture on one side and tree on the other in a
circular buffer

EdgeGrassRipar Meters of edge consisting of grass on one side and riparian on the other in a
circular buffer

EdgeGrassShrub Meters of edge consisting of grass on one side and shrub on the other in a
circular buffer

EdgeGrassSoil Meters of edge consisting of grass on one side and soil on the other in a circular
buffer

EdgeGrassTree Meters of edge consisting of grass on one side and tree on the other in a circular
buffer

EdgeGrassWater Meters of edge consisting of grass on one side and water on the other in a
circular buffer

EdgeMajDirtRoadGrass Meters of edge consisting of major dirt road on one side and grass on the other
in a circular buffer

EdgeMajDirtRoadRipar Meters of edge consisting of major dirt road on one side and riparian on the
other in a circular buffer

EdgeMajDirtRoadShrub Meters of edge consisting of major dirt road on one side and shrub on the other
in a circular buffer

EdgeMajDirtRoadTree Meters of edge consisting of major dirt road on one side and tree on the other in
a circular buffer

EdgeMinDirtRoadGrass Meters of edge consisting of minor dirt road on one side and grass on the other
in a circular buffer

EdgeMinDirtRoadRipar Meters of edge consisting of minor dirt road on one side and riparian on the
other in a circular buffer

EdgeMinDirtRoadShrub Meters of edge consisting of minor dirt road on one side and shrub on the other
in a circular buffer

EdgeMinDirtRoadTree Meters of edge consisting of minor dirt road on one side and tree on the other in
a circular buffer

EdgePavedRoadRipar Meters of edge consisting of paved road on one side and riparian on the other in
a circular buffer

(Continued)
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an approximately equal number of locations in each partition. In each iteration of our proce-
dure, four partitions (80% of the data) were used as the training set, while the remaining parti-
tion (20% of the data) was used as the test set. We repeated this procedure until all data were
used both as the test set and as part of the training set. We regressed the number of locations
from the test (used) dataset in each bin against the median RSF value of the random locations
in each bin. We report mean coefficient of determination and slope, and we considered the
combination of a high coefficient of determination and a positive slope to be indicative of a
model that differentiated between use and available locations well [55].

Results
Our NAIP classification showed composition of landcover in our study to be 45.5% shrubs,
28.7% trees, 11.9% grass, 7.6% water, 3.0% bare soil, 1.7% riparian, 0.7% agriculture, 0.7% low-
use dirt roads, 0.1% paved roads, and 0.1% high-use dirt roads. Accuracy assessment of our
classification [49] yielded an overall accuracy of 78.5% and a Kappa value of 0.707. We utilized
675 relocations of sage-grouse broods from 120 females over 15 years. The number of locations
per female ranged between 1–28, with a mean of 5.6 locations per female. Unique females were
relocated from 1–3 years depending on battery life of transmitters and length of time each bird
survived.

The top-ranked model at the 45-m spatial extent included the combination of percent
shrub, percent grass, percent riparian, percent paved road, meters of shrub/tree edge, and
meters of riparian/tree edge (Table 5). There were no other competitive models. Results from
the 200-m spatial extent were the same as the 45-m spatial extent (Table 5). At the 795-m spa-
tial extent, we had three competitive models. The top model included the combination of

Table 2. (Continued)

Variable Name Description

EdgePavedRoadShrub Meters of edge consisting of paved road on one side and shrub on the other in a
circular buffer

EdgePavedRoadSoil Meters of edge consisting of paved road on one side and bare soil on the other
in a circular buffer

EdgePavedRoadTree Meters of edge consisting of paved road on one side and tree on the other in a
circular buffer

EdgeRiparShrub Meters of edge consisting of riparian on one side and shrub on the other in a
circular buffer

EdgeRiparSoil Meters of edge consisting of riparian on one side and bare soil on the other in a
circular buffer

EdgeRiparTree Meters of edge consisting of riparian on one side and tree on the other in a
circular buffer

EdgeShrubSoil Meters of edge consisting of shrub on one side and bare soil on the other in a
circular buffer

EdgeShrubTree Meters of edge consisting of shrub on one side and tree on the other in a circular
buffer

EdgeShrubWater Meters of edge consisting of shrub on one side and water on the other in a
circular buffer

EdgeSoilTree Meters of edge consisting of bare soil on one side and tree on the other in a
circular buffer

EdgeTreeWater Meters of edge consisting of tree on one side and water on the other in a circular
buffer

EdgeWaterSoil Meters of edge consisting of water on one side and bare soil on the other in a
circular buffer

doi:10.1371/journal.pone.0156290.t002
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percent shrub, percent grass, percent riparian, percent paved road, percent tree, and meters of
shrub/tree edge. A similar model without percent tree had a ΔAIC of 3.4 (Table 5) and only
accounted for 14% of model weight. The spatial extent-invariant group also had two competi-
tive models. The top model consisted of distance to trees, distance to transmission lines, and
distance to permanent structures. The next best competitive model, with a ΔAIC of 2.2 and

Table 3. List of 35 brood-habitat selectionmodels developed for analysis of spatial extent variant vari-
ables for greater sage-grouse in Strawberry Valley, UT, 1998–2008. Descriptions of variables are found
in Table 2.

Model Structure

1 Use ~ EdgeAgricultureGrass, EdgeAgricultureRipar, EdgeAgricultureShrub, EdgeAgricultureSoil,
EdgeAgricultureTree

2 Use ~ EdgeAgricultureGrass, EdgeGrassRipar, EdgeGrassShrub, EdgeGrassSoil,
EdgeGrassTree, EdgeGrassWater, EdgeMajDirtRoadGrass, EdgeMinDirtRoadGrass

3 Use ~ EdgeShrubTree, EdgeRiparTree

4 Use ~ TreeCover

5 Use ~ SoilCover

6 Use ~ ShrubCover

7 Use ~ GrassCover

8 Use ~ RiparCover

9 Use ~ MajDirtRoadCover

10 Use ~ MinDirtRoadCover

11 Use ~ PavedRoadCover

12 Use ~ AgricultureCover

13 Use ~ LakeCover

14 Use ~ StreamCover

15 Use ~ RiparCover, LakeCover, StreamCover

16 Use ~ ShrubCover, GrassCover, RiparCover

17 Use ~ RiparCover, ShrubCover

18 Use ~ MajDirtRoadCover, MinDirtRoadCover, PavedRoadCover

19 Use ~ MajDirtRoadCover, MinDirtRoadCover, PavedRoadCover, AgricultureCover

20 Use ~ TreeCover, SoilCover

21 Use ~ EdgeShrubSoil, EdgeAgricultureShrub, EdgeShrubWater, EdgeShrubTree, MajDirtSag,
MinDirtSag, EdgePavedRoadShrub

22 Use ~ EdgeMajDirtRoadGrass, EdgeMajDirtRoadRipar, MajDirtSag, EdgeMajDirtRoadTree

23 Use ~ EdgeMinDirtRoadGrass, EdgeMinDirtRoadRipar, MinDirtSag, EdgeMinDirtRoadTree

24 Use ~ EdgePavedRoadRipar, EdgePavedRoadShrub, EdgePavedRoadSoil,
EdgePavedRoadTree

25 Use ~ EdgeRiparShrub, EdgeRiparSoil, EdgeRiparTree, EdgePavedRoadRipar,
EdgeAgricultureRipar, EdgeMajDirtRoadRipar, EdgeMinDirtRoadRipar

26 Use ~ EdgeWaterSoil, EdgeRiparSoil, EdgeSoilTree, EdgeShrubSoil, EdgePavedRoadSoil

27 Use ~ EdgeRiparShrub, EdgeGrassRipar, EdgeShrubWater

28 Use ~ EdgeShrubTree, EdgeRiparTree, EdgeGrassTree, EdgePavedRoadShrub, MajDirtSag

29 Use ~ ShrubCover, GrassCover, RiparCover, TreeCover

30 Use ~ ShrubCover, GrassCover, RiparCover, TreeCover, PavedRoadCover

31 Use ~ ShrubCover, GrassCover, RiparCover, TreeCover, PavedRoadCover, MajDirtRoadCover,
MinDirtRoadCover

32 Use ~ ShrubCover, GrassCover, RiparCover, TreeCover, PavedRoadCover, MajDirtRoadCover

33 Use ~ ShrubCover, GrassCover, RiparCover, PavedRoadCover, EdgeShrubTree, EdgeRiparTree

34 Use ~ ShrubCover, GrassCover, RiparCover, TreeCover, PavedRoadCover, EdgeShrubTree

35 Use ~ ShrubCover, GrassCover, RiparCover, PavedRoadCover, EdgeShrubTree

doi:10.1371/journal.pone.0156290.t003
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25% of model weight, was the same as the top model with the exclusion of distance to perma-
nent structures (Table 5).

In the second stage of analysis our top model consisted of 5 variables from the 795-m spatial
extent (percent shrub, percent grass, percent tree, percent paved road, and meters of sage/tree
edge), 1 from the 200-m spatial extent (meters of riparian/tree edge), 1 from the 45-m spatial
extent (percent riparian), and 3 from the spatial extent invariant group (distance to tree, dis-
tance to transmission lines, and distance to permanent structures) (Table 6). This model sug-
gested that 7 variables were negatively correlated with selection of brood-rearing habitat based
on their coefficients and RSFs: percent grass, percent tree, percent paved road, meters of shrub/

Table 4. List of 35 brood-habitat selectionmodels developed for analysis of spatial extent invariant
variables for greater sage-grouse in Strawberry Valley, Utah, 1998–2008. Descriptions of variables are
found in Table 1.

Model Structure

1 Use ~ DistAgriculture

2 Use ~ Aspect + SlopeDegrees + Elevation

3 Use ~ JuneSolar

4 Use ~ JulySolar

5 Use ~ AugustSolar

6 Use ~ DistCamp + DistPermStruct

7 Use ~ DistCamp + DistPermStruct + DistAgriculture

8 Use ~ DistEdgeGrassRiparar

9 Use ~ DistEdgeGrassShrub

10 Use ~ DistRiparShrub

11 Use ~ DistHabEdge

12 Use ~ DistEdgeShrubTree + DistRiparTree

13 Use ~ DistGrass + DistRipar + DistShrub

14 Use ~ DistRipar + DistShrub

15

16 Use ~ DistMajDirtRoad + DistPavedRoad

17 Use ~ DistCamp + DistPermStruct + DistAgriculture + DistPavedRoad

18 Use ~ DistMajDirtRoad + DistPavedRoad + DistMinDirtRoad

19 Use ~ DistRipar + DistLake + DistStream

20 Use ~ DistLake + DistStream

21 Use ~ DistShrub

22 Use ~ DistRipar

23 Use ~ DistTree

24 Use ~ DistTree + DistTransmissionLine

25 Use ~ PatchSize

26 Use ~ TopoIndex100

27 Use ~ TopoIndex200

28 Use ~ TopoIndex300

29 Use ~ Ruggedness159

30 Use ~ Ruggedness25

31 Use ~ Ruggedness3

32 Use ~ Ruggedness9

33 Use ~ DistEdgeGrassRiparar + DistEdgeGrassShrub + DistRiparShrub

34 Use ~ DistTransmissionLine

Use ~ DistTree + DistTransmissionLine + DistPermStruct

doi:10.1371/journal.pone.0156290.t004
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tree edge, meters of riparian/tree edge, and increased distance from transmission lines (Fig 2;
Table 7). The remaining 3 variables were positively correlated with selection: percent shrub,
percent riparian, distance to tree, and distance to permanent structure (Fig 2).

From the k-folds cross validation, our mean adjusted r-squared was 0.96, mean slope was
17.67, and Pearson’s rank correlation coefficient was 0.95. The top model successfully predicted
75% (n = 84) of the 2009 to 2012 brood locations naïve to development of the models (Fig 3).
Variance inflation factors of our top models were< 5.

Discussion
Due to the fine spatial extent (1 m) of our input image, we were able to examine influences of
habitat edge on habitat selection by female sage-grouse with broods in a way that has not been
done before across such a large area. Our top model included two edge-associated variables
that sage-grouse appeared to avoid when selecting brood-rearing habitat: shrub/tree edge, and
riparian/tree edge. As we could not differentiate between shrub types, the shrub/tree edge may

Table 5. Model rankings (AIC and ΔAIC), model weights (wi), number of estimated parameters (K), and log likelihood (LL) for supported (model
weight� 1%) models of greater sage-grouse selection of brood-rearing habitat in Strawberry Valley, UT, 1998–2008 at three spatial extents and for
spatial extent-invariant variables.

Modela Structure AIC ΔAIC wi K LL

45 meters

33 Use~ShrubCover + GrassCover + RiparCover + PavedRoadCover + EdgeShrubTree
+ RiparianTree

1456.2 0 0.86 8 -720.07

35 Use~ShrubCover + GrassCover + RiparCover + PavedRoadCover + EdgeShrubTree 1460.5 4.2 0.10 7 -723.18

200 meters

33 Use~ShrubCover + GrassCover + RiparCover + PavedRoadCover + EdgeShrubTree
+ RiparianTree

1298.8 0 1.00 8 -641.36

795 meters

34 Use~ShrubCover + GrassCover + RiparCover + TreeCover + PavedRoadCover
+ EdgeShrubTree

1178.1 0 0.77 8 -581.01

35 Use~ShrubCover + GrassCover + RiparCover + PavedRoadCover + EdgeShrubTree 1181.5 3.4 0.14 7 -583.73

33 Use~ShrubCover + GrassCover + RiparCover + PavedRoadCover + EdgeShrubTree
+ EdgeRiparTree

1182.4 4.3 0.09 8 -583.16

Spatial extent
Invariant

35 Use~DistTree + DistTransmissionLine + DistPermStruct 1537.6 0 0.74 5 -763.78

24 Use~DistTree + DistTransmissionLine 1539.8 2.2 0.25 4 -765.87

a Model numbers correspond to those in Tables 3 and 4.

doi:10.1371/journal.pone.0156290.t005

Table 6. Akaike’s information criterion (AIC and ΔAIC) selectedmodels, model weights (wi), number of estimated parameters (K), and log likeli-
hood (LL) for supported (model weight� 1%) models from the combined analysis of sage-grouse selection for brood-rearing habitat in Strawberry
Valley, UT, 1998–2008.

Modela Structure AIC ΔAIC wi K LL

6 795ShrubCover + 795GrassCover + 45RiparCover + 795TreeCover + 795PavedRoadCover
+ 795EdgeShrubTree + 200EdgeRiparTree + DistTree + DistTransmissionLine

1145.0 0 0.80 11 -561.42

3 795ShrubCover + 795GrassCover + 795RiparCover + 795TreeCover + 795PavedRoadCover
+ 795EdgeShrubTree + DistTree + DistTransmissionLine

1147.9 2.8 0.19 10 -563.85

Null Constant 1875.5 730.5 0.00 2 -935.75

aModel numbers correspond to those in Tables 3 and 4.

doi:10.1371/journal.pone.0156290.t006
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have been avoided because the shrubs nearest the trees may not have been sagebrush but rather
a mountain shrub community. These edge-associated variables provide more information on
the relationship of selection for areas with high percent shrub and riparian and low percent
tree landcover. Sage-grouse not only avoided areas with a high percentage of trees but also
areas that consisted of a patchy mosaic of trees and sage-grouse habitat types at the 795 m

Fig 2. Resource selection functions for selected variables in the topmodel showing relative probability of use in
relation to explanatory variables for greater sage-grouse broods in Strawberry Valley, UT, 1998–2008.

doi:10.1371/journal.pone.0156290.g002
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spatial extent. In addition, sage-grouse broods were found farther from trees, representing an
inverse relationship to distance to trees (Fig 2).

The variables in our top model were similar to Atamain et al. 2010 [30]. They identified
“xeric mixed sagebrush” as a vegetation type that was selected during early brood-rearing and
“moist sites with riparian shrubs” and “montane sagebrush” as areas that were selected during
late brood-rearing. While we did not make the distinction between early and late brood-rearing
habitat due to the mesic nature of our study site, we did identify percent shrub at the 795 m
spatial extent and percent riparian at the 45 m spatial extent as factors selected by brood-rear-
ing sage-grouse. We also identified a negative relationship with percent tree at the 795 m spatial
extent where Atamain et al. 2010 [30] reported avoidance of pinyon/juniper woodlands. Dzia-
lak et al. 2011 [31] showed a positive relationship between brood-rearing habitat and percent
shrub at the 90 m spatial extent. Our results indicated that sage-grouse selected areas with a
higher percentage of shrubs, albeit at a much larger spatial extent. Dzialak et al. 2011 [31] and
Dinkins et al. 2014 [32] both showed mixed effects of distance to mesic habitat with sage-
grouse showing an aversion to mesic areas during early brood-rearing and a selection for mesic
areas during mid and late brood-rearing periods. Our top model did not contain distance to
mesic areas. Nonetheless, we did show selection for areas with higher proportions of riparian
habitat at the 45-m spatial extent.

Anthropogenic structures such as well pads have been identified as influencing habitat
selection by brooding sage-grouse, but negatively influencing survival rates [18]. Well pads did
not occur in our study area; however, numerous permanent structures (largely cabins) were
located in otherwise suitable brood-rearing habitat. Sage-grouse with broods avoided areas
close to permanent structures. The difference between our findings and previous research [18]
could be due to higher human activity at the permanent structures in our area compared to
well pads or some other difference between these structures and how sage-grouse perceived
them.

Distance to transmission lines was another anthropogenic structure included in our top
model. Sage-grouse with broods in our study area were found closer to transmission lines than
random locations. One possible explanation for this is that the right-of-way, cleared for the
transmission lines in our study area, may have created desirable microsite conditions for brood
rearing sage-grouse. Another possible explanation is that transmission lines in our study area
happened to be located in quality brood-rearing habitat and brood rearing sage-grouse did not
actively avoid them. Nonetheless, transmission lines are thought to have a negative influence

Table 7. Estimated coefficients (β-estimate), standard errors (SE), and 85% confidence intervals for variables in our final model-averagedmodel.

85% CI

Variable description Variable β-estimate SE Lower Upper

Percent Shrub, 795-m extent X795ShrubCover 1.09 0.19 0.82 1.36

Percent Grass, 795-m extent X795GrassCover -0.71 0.11 -0.87 -0.55

Percent Riparian, 45-m extent X45RiparCover 0.07 0.10 -0.07 0.21

Percent Tree, 795-m extent X795TreeCover -0.30 0.20 -0.58 -0.01

Percent Paved Road, 795-m extent X795PavedRoadCover -0.42 0.08 -0.54 -0.31

Meters of sage-tree edge, 795-m extent X795SageTree -0.46 0.12 -0.63 -0.29

Meters of riparian-tree edge, 200-m extent X200EdgeRiparTree -0.46 0.19 -0.73 -0.18

Meters to trees DistTree 0.47 0.14 0.27 0.67

Meters to power lines DistTransmissionLine -0.32 0.08 -0.44 -0.20

Percent Riparian, 795-m extent X795RiparCover -0.18 0.10 -0.32 -0.05

doi:10.1371/journal.pone.0156290.t007
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on sage-grouse for a variety of reasons including provision of raptor perches which has the
potential to negatively influence survival rates [16]. We did not measure survival in our analy-
ses and it is possible that there could be decreased fitness of broods that selected areas near
transmission lines. A similar phenomenon has been demonstrated with other anthropogenic
disturbance features. In two separate studies, sage-grouse selected areas closer to anthropogenic
disturbance, but exhibited decreased fitness in these areas [18, 33].

Sage-grouse with broods selected habitat characteristics at a variety of spatial extents with at
least one variable included from each of the three spatial extents we examined. The majority of
these variables in the top model were best at the largest spatial extent, which reemphasizes the
need to examine sage-grouse habitat selection at larger extents [16, 35–36]. However, inclusion
of percent riparian at the 45-m spatial extent in the top model illustrates the importance of
examining small spatial extent habitat characteristics as well. While the spectral resolution of

Fig 3. Predicted brood-rearing habitat for greater sage-grouse in Strawberry Valley, Utah based on logistic regression models of landscape
features identified using 1-m NAIP imagery.Data used to generate the predictive model were collected between 1998 and 2008. Locations used to verify
accuracy of the habitat map were collected between 2009 and 2012. Grey areas represent water.

doi:10.1371/journal.pone.0156290.g003
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NAIP imagery limits the specificity of the classes to broad categories (i.e. all shrubs vs. sage-
brush only), the accuracy for these broad classes was sufficient to create a model that success-
fully predicted 75% of the 2009 to 2012 brood locations. With the success of classified NAIP
imagery in this study, we suggest it may be applicable to other sage-grouse populations, species
of conservation concern or any other species in habitat conducive to these methods. The accu-
racy of our NAIP classification was of critical importance to the validity of our model selection
results. While overall accuracy of 78.5% and a kappa of 0.707 could be improved, it is within
the range of other widely used vegetation classifications in the western United States (e.g.,
LANDFIRE = 69.3% to 87.1% overall accuracy across all western United States super zones, no
Kappa reported; SWReGAP = 0.60 Kappa; SAGEMAP = 0.537 to 0.878 Kappa across all map-
ping zones).

The benefits or tradeoffs of using our methods with NAIP imagery are dependent upon the
question of interest. The rapid and complex changes to modeling techniques as well as the
availability, cost, and quality of imagery influence project applicability. Early efforts by Homer
et al. in 1993 [56] demonstrated the immediate utility of remotely sensed data in mapping cur-
rent-day sagebrush habitats as well as future applications in multispatial-extent modeling.
Since then many others have assessed and classified habitat on a national [57], state-wide [58],
or project-level [59] using medium or lower resolution Landsat imagery. One advantage to
our approach was that we were able to determine the importance of edge at the patch scale
on brooding female habitat selection. This may not be possible with more course resolution.
Newer, more sophisticated methods combine the use of imagery, often at different spatial
extents, with ancillary geospatially explicit data sets [43, 60–61], and at times, ground based
verification to assess habitat change. A pitfall to our approach (using higher resolution imag-
ery– 1m), is that currently, it cannot be used at larger scales [57–58, 60–61] due to processing
time and extensive field verification. Other studies [62–63] used a similar approach to assess
rangeland tree cover characteristics with relatively accurate classification and similar results.
Though its efficacy may be limited to project level analyses, the classification of NAIP imagery
as a base layer for landscape spatial extent analyses was a cost-effective method for examining
habitat selection at varying spatial extents.

Supporting Information
S1 File. This table contains the data used to inform the habitat modeling and resource
selection function processes.
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