

# **HHS Public Access**

Author manuscript *Nature*. Author manuscript; available in PMC 2012 February 04.

Published in final edited form as: *Nature*. ; 476(7358): 63–68. doi:10.1038/nature10279.

# A critical role for TCF-1 in T-lineage specification and differentiation

Brittany Nicole Weber<sup>1,#</sup>, Anthony Wei-Shine Chi<sup>1,#</sup>, Alejandro Chavez<sup>1</sup>, Yumi Yashiro-Ohtani<sup>1</sup>, Qi Yang<sup>1</sup>, Olga Shestova<sup>1</sup>, and Avinash Bhandoola<sup>1</sup>

<sup>1</sup>Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104

# Abstract

The vertebrate thymus provides an inductive environment for T-cell development. Within the thymus, Notch signals are indispensable for imposing the T-cell fate on multipotential hematopoietic progenitors, but the downstream effectors that impart T-lineage specification and commitment are not well understood. Here we show that transcription factor, T-cell factor 1 (TCF-1), is a critical regulator in T-cell specification. TCF-1 is highly expressed in the earliest thymic progenitors, and its expression is upregulated by Notch signals. Most importantly, when TCF-1 is forcibly expressed in BM progenitors, it drives the development of T-lineage cells in the absence of T-inductive Notch1 signals. Further characterization of these TCF-1-induced cells revealed expression of many T-lineage genes, including T-cell specific transcription factors *Gata3*, *Bcl11b*, and components of the T-cell receptor. Our data suggest a model where Notch signals induce TCF-1, and TCF-1 in turn imprints the T-cell fate by upregulating expression of T-cell essential genes.

Within the thymus, Notch1 signals drive development through sequential steps during which alternative lineage potentials are lost and T-lineage specific gene expression (specification) occurs<sup>1–4</sup>. Notch is necessary for early T-cell development but its downstream effectors remain unclear<sup>5–7</sup>. We found that HMG box transcription factor, TCF-1, is highly upregulated in early thymic progenitors (ETPs)(Fig. 1a). Indeed, TCF-1 expression is upregulated when progenitors are exposed to Notch1 signals<sup>8</sup>.

# TCF-1 in normal T-lymphopoiesis

TCF-1 deficiency greatly reduces thymic cellularity but does not abrogate T-cell development<sup>9–11</sup>(Fig. S1). When TCF-1<sup>-/-</sup> progenitors were assessed in the absence of

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial\_policies/license.html#terms

Address correspondence to Avinash Bhandoola, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. Phone: 215-573-0274, bhandooa@mail.med.upenn.edu. #B.N.W and A.W.C contributed equally to this work.

Gene expression Omnibus

Figure1f: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jpsdrykgkkggqhi&acc=GSE26559 Figure3a: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=dpkzjqqeakagcfq&acc=GSE26560

competition in irradiated mice, small numbers of T-lineage cells developed (Fig. S2a). The related transcription factor LEF-1 can compensate for TCF-1<sup>12</sup>; consistently, TCF-1<sup>-/-</sup> DN3 cells exhibited elevated LEF-1 expression (Fig. S2d). To more rigorously examine requirements for TCF-1 in early progenitors, we placed TCF-1<sup>-/-</sup> progenitors in competition with wild-type (wt) cells in mixed BM chimeras. TCF-1<sup>-/-</sup> progenitors reconstituted BM progenitor populations but were defective in generating ETPs, and downstream thymic populations were almost entirely absent (Fig. 1b,c). These data indicated a dramatic requirement for TCF-1 at very early stages of T-cell development, which was clearly revealed when TCF-1-deficient progenitors were placed in competition with TCF-1-sufficient cells.

To more precisely elucidate the role of TCF-1 in early T-cell development, we used stromal cells expressing Notch ligands (OP9-DL4 or OP9-DL1). In this system, hematopoietic progenitors that respond to Notch signals differentiate into immature Thy1<sup>+</sup>CD25<sup>+</sup> T-lineage cells<sup>13,14</sup>. Both TCF-1<sup>+/-</sup> and TCF-1<sup>-/-</sup> lymphoid-primed multipotent progenitors (LMPPs) generated myeloid and B-lineage cells on control OP9 stroma and these fates were appropriately inhibited when progenitors were signaled through Notch. On OP9-DL1 stroma, however, TCF-1<sup>-/-</sup> progenitors failed to give rise to T-lineage cells (Fig. 1d,e), even when the survival factor Bcl-xL was ectopically expressed (Fig. S3a). Hence TCF-1 is dispensable for initial Notch1-mediated inhibition of alternative fates but is involved in promoting the T-cell fate.

To better examine the requirement for TCF-1 in promoting T-cell development, we cultured TCF-1<sup>-/-</sup> and TCF-1<sup>+/+</sup> LMPPs on OP9-DL4 for four days and performed global gene expression analysis on TCF-1<sup>-/-</sup> and TCF-1<sup>+/+</sup> lineage-negative precursors as well as TCF-1<sup>+/+</sup> Thy1<sup>+</sup>CD25<sup>+</sup> T-lineage cells. We found that TCF-1<sup>-/-</sup> progenitors failed to upregulate expression of many T-lineage genes (Fig. 1f, g). Both TCF-1<sup>+/+</sup> and TCF-1<sup>-/-</sup> progenitors upregulated expression of Notch target genes *Deltex1* and *Hes1* (Fig. S4), confirming that TCF-1-deficient progenitors sense Notch signals, but cannot upregulate expression of T-cell genes.

#### TCF-1 drives early T-cell development

To investigate the possibility that TCF-1 initiates T-lineage gene expression, we ectopically expressed human TCF-1 in LMPPs. T-lineage cells were observed from TCF-1 expressing wt LMPPs on OP9-DL4 stroma, as expected; and ectopic TCF-1 rescued T cell development from TCF-1<sup>-/-</sup> progenitors (Fig. 2a and S3b). Ectopic TCF-1 and Notch1 signals together enhanced T-cell development (Fig. S5). However, when TCF-1-expressing progenitors were placed on OP9 stromal cells lacking Notch ligands, we also observed the development of T-lineage cells; this population was absent from progenitors transduced with control virus cultured on OP9 stroma (Fig. 2a). Ectopic expression of TCF-1 also efficiently inhibited the development of B-lineage but not myeloid cells (Fig. 2b). However, because Notch signals efficiently inhibited the development of B cells from TCF-1<sup>-/-</sup> progenitors (Fig. 1e), other mechanisms apart from TCF-1 to enforce lineage commitment must exist.

We further investigated the TCF-1 mediated generation of Thy1<sup>+</sup>CD25<sup>+</sup> cells on OP9 stroma. These cells appeared early and expanded in number over time. They expressed surface markers of Double-negative (DN) 2 and DN3 pro-T cell stages. A different retroviral vector that expresses TCF-1 at lower levels failed to generate Thy1<sup>+</sup>CD25<sup>+</sup> cells, indicating a threshold level of TCF-1 expression is necessary. The generation of Thy1<sup>+</sup>CD25<sup>+</sup> cells was unaffected by inhibitors of Notch signaling (Fig. S6). When injected intrathymically, these cells completed T-cell differentiation, reconstituting both  $\alpha\beta$  and  $\gamma\delta$  T-cell lineages (Fig. 2c).

TCF-1 can function with β-catenin to mediate canonical Wnt signaling; however, deletion of  $\beta$ -catenin does not affect T-cell development<sup>15,16</sup>. Consistently, the generation of Thy1<sup>+</sup>CD25<sup>+</sup> cells was unaffected by deletion of β-catenin (Fig 2d,e). Furthermore, ectopic expression of a small molecule inhibitor of β and γ-catenin, ICAT<sup>17</sup>, had no effect on the generation of TCF-1 expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells, demonstrating that TCF-1 is not acting as an effector of canonical Wnt signaling in early T cell development (Fig. S7). Ectopic expression of TCF-1 in long term-HSCs but not in myeloerythroid progenitors resulted in development of T-lineage cells on OP9 stroma, indicating that TCF-1-directed T-lineage development is not restricted to lymphoid-biased progenitors (Fig. S8a), and requires factors absent from committed myeloerythroid progenitors (Fig. S8b). These results indicate TCF-1 is sufficient to induce the development of primitive hematopoietic progenitors into cells phenotypically and functionally resembling early T-cell precursors.

We studied the effects of ectopic expression of TCF-1 in vivo. When TCF-1-expressing progenitors were injected intravenously into irradiated mice, we did not observe T-cell leukemia, unlike forced expression of intracellular Notch1 (ICN1) (Fig. S9)<sup>18</sup>. These data signify that key gene targets of ICN1 that control growth and oncogenesis are not similarly triggered by TCF-1. We next intrathymically injected TCF-1-expressing or control vector-expressing progenitors from Notch1<sup>f/f</sup>MxCre<sup>+</sup>Rosa<sup>YFP/+</sup> mice that had been induced with poly(I:C). TCF-1-expressing progenitors lacking Notch1 gave rise to DN2/3-like Thy1<sup>+</sup>CD25<sup>+</sup> cells whereas control progenitors lacking Notch1 developed into B-lineage cells (Fig. 2d and S10). Hence forced expression of TCF-1 can drive early T-cell development in the absence of Notch1 signals in the thymus.

To investigate the frequency of TCF-1-expressing LMPPs able to give rise to T-lineage cells, we performed limiting dilution analysis with TCF-1-expressing LMPPs on OP9 stromal cells and vector-control expressing LMPPs on OP9-DL4. The frequencies of T-lineage cells developing in these cultures were similar (Fig. 2e). Thus, ectopic TCF-1 generates phenotypic T-cell precursors with frequencies comparable to Notch.

# TCF-1 directs T-lineage specification

To understand whether TCF-1 is sufficient to direct a program of T-lineage specific gene expression, we performed global gene expression analysis on TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> T-lineage cells that developed on OP9 stroma. We found upregulated expression of many T-cell genes, including transcription factors *Gata3* and *Bcl11b*, and T-cell structural genes including components of the T cell receptor (Fig. 3a). Established direct Notch1 gene targets such as *Ptcra* and *Deltex1*<sup>19</sup> failed to be upregulated, confirming that

these T-lineage cells arose independently of Notch1 signals (Fig. 3b). QRT-PCR confirmed expression of key T-lineage genes, including *Gata3*, *Bcl11b*, *CD3g*, *Lat*, *Lck*, and endogenous Tcf7 (TCF-1) (Fig. 3b). At the time-points examined (d10–d14), expression of some genes in adult TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells was lower than levels in DN3 thymocytes. Fetal liver progenitors exhibit accelerated differentiation in vitro<sup>14</sup>; consistently, TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells from fetal liver expressed T-cell genes at levels comparable to DN3 thymocytes by day 10 in culture (Fig. S11). However, some genes such as endogenous *Tcf7* and *CD3g* never reached DN3 levels, suggesting additional regulatory inputs. These data indicate ectopic expression of TCF-1 drives expression of many T-cell lineage-specific genes.

Analysis of T-lineage genes upregulated upon ectopic TCF-1 expression revealed many to contain evolutionarily conserved TCF-1 binding sites, suggesting a role for TCF-1 in directly regulating these genes. To validate these putative TCF-1 binding sites we performed chromatin immunoprecipitation assay (ChIP) on CD4<sup>-</sup>CD8<sup>-</sup> (DN) thymocytes with an antibody against TCF-1. We found TCF-1 was enriched at *Gata3*, *Bcl11b*, *ll2ra*, *Cd3ɛ* and *TCF-1* itself (Fig. 3C). In addition, T-lineage genes were already upregulated in TCF-1-expressing Lin<sup>-</sup>Sca1<sup>+</sup>Kit<sup>+</sup> (LSK) progenitors (Fig. S12). Indeed, TCF-1 was initially cloned as a factor enriched at the CD3ɛ enhancer<sup>20</sup> and TCF-1 has also been shown to regulate Gata3 in Th2 cells<sup>21</sup>. Gata3 is required in ETPs<sup>22</sup>, which may explain the paucity of ETPs from TCF-1<sup>-/-</sup> progenitors. Bcl11b is critical for maintenance of T-lineage commitment, as deletion of Bcl11b in committed T-cells results in developmental arrest or diversion to the NK lineage<sup>23-25</sup>.

### **Regulation of TCF-1**

To examine how TCF-1 expression is initially upregulated by Notch signals, we cultured LMPPs on OP9-DL4. We found upregulated TCF-1 expression within 2 days that continued to rise over time, as expected<sup>8</sup> (Fig. 4a). ChIP revealed enrichment of Notch1 at a conserved -31kb CSL binding site in DN thymocytes and in "DN3-like" Scid.adh cells (Fig. 4b); this binding was greatly decreased when Notch1 signals were blocked in vitro (Fig. 4c). The -31kb CSL binding site was also active in a reporter assay (Fig S13). These data indicate Notch1 regulates TCF-1 expression.

Although TCF-1 is initially expressed downstream of Notch1 signals, TCF-1 may also regulate its own expression. TCF-1 binds to the TCF-1 locus (Fig. 3d), and ectopic expression of human TCF-1 is sufficient to induce mouse TCF-1 gene expression (Fig. 3b). Consistently, we found that TCF-1 activates a reporter containing the TCF-1 promoter; mutation of the TCF-1 binding site decreased activation (Fig. 3d). Positive autoregulation may be one mechanism by which TCF-1 remains highly expressed after Notch1 signals cease after the  $\beta$ -selection checkpoint<sup>26,27</sup>, contributing to the stability of T-cell specific gene expression

# Conclusions

In B-cells, a network of transcription factors composed of E47, EBF1, FoxO1 and Pax5 drives B-lineage gene expression28. For T-cells, similar factors were previously unknown; the present study implicates TCF-1 in this role. Our results suggest a model in which TCF-1 is induced by Notch signals in ETPs, and subsequently TCF-1 drives T-cell lineage specification. Among the genes induced by TCF-1 are components of the TCR, as well as T-cell essential transcription factors Gata3 and Bcl11b. TCF-1 likely plays a role in inhibiting the B-cell fate early in T-cell development, although redundant mechanisms to inhibit B-cell development from ETPs must exist<sup>29</sup>. Additional functions for TCF-1 in T-cell development and function remain to be explored in future work. The present study establishes TCF-1 as a critical regulator that is not only essential for normal T-cell development but is sufficient to establish many components of T-cell identity.

#### **Methods Summary**

#### Mice

Mice were males or females, age 5–18 weeks. C57BL/6 (CD45.2) and B6-Ly5.2 (CD45.1) mice were purchased from the NCI animal facility. Other mice used were  $Tcf7^{-/-}$  (TCF-1<sup>-/-</sup> VII) mice<sup>9</sup>, Notch1<sup>f/f</sup>MxCre<sup>+</sup>Rosa<sup>YFP/+</sup> mice<sup>30</sup>, and  $\beta$ -catenin<sup>f/f</sup>MxCre<sup>+/-</sup> mice<sup>31</sup>. All live animal experiments were performed according to protocols approved by the Office of Regulatory Affairs of the University of Pennsylvania in accordance with guidelines set forth by NIH.

#### Intravenous transfers and Intrathymic Injections

Chimeric mice were generated by intravenously injecting T-depleted TCF-1<sup>+/+</sup> or TCF-1<sup>-/-</sup> BM (CD45.2) that was mixed with wt T-depleted BM (CD45.1) at 1:1 or 2:1 ratios into lethally (900 rad) irradiated mice (CD45.1). Mice were analyzed after 12–14 weeks for donor chimerism. Notch1<sup>f/f</sup>MxCre<sup>+</sup>Rosa<sup>YFP/+</sup> LSK progenitors were transduced with TCF-1 or control virus; 24 hours later  $2\times10^4$  cells were intrathymically injected into sublethally (650rad) irradiated mice (CD45.1). Mice were analyzed 10–16 days later. For intrathymic injections of TCF-1 expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells, cells were isolated by cell sorting from day 8 cultures and  $3\times10^5$  cells were injected into sublethally irradiated mice and analyzed for thymic reconstitution 1–3 weeks later.

#### **OP9 and OP9-DL cell culture**

OP9-GFP (OP9), OP9-DL1, and OP9-DL4 cells were provided by Dr. J.C. Zuniga-Pflucker (University of Toronto, Canada) and used as described<sup>13</sup>.

#### Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

#### Abbreviations used in this paper

| BM   | bone marrow                            |
|------|----------------------------------------|
| CLP  | common lymphoid progenitor             |
| ELP  | early lymphoid progenitor              |
| ETP  | early thymic progenitor                |
| HSC  | hematopoietic stem cell                |
| LSK  | lineage marker-negative Sca1+ Kit+     |
| LMPP | lymphoid-primed multipotent progenitor |
| NK   | natural killer                         |

#### References

- Schwarz BA, et al. Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol. 2007; 178(4):2008–2017. [PubMed: 17277104]
- Spangrude GJ, Scollay R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny. J Immunol. 1990; 145(11):3661–3668. [PubMed: 2123223]
- Doulatov S, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 11(7):585–593. [PubMed: 20543838]
- Rothenberg EV, Zhang J, Li L. Multilayered specification of the T-cell lineage fate. Immunol Rev. 238(1):150–168. [PubMed: 20969591]
- Pui JC, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999; 11(3):299–308. [PubMed: 10514008]
- Radtke F, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999; 10(5):547–558. [PubMed: 10367900]
- 7. Sambandam A, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005; 6(7):663–670. [PubMed: 15951813]
- Taghon TN, David ES, Zuniga-Pflucker JC, Rothenberg EV. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 2005; 19(8):965–978. [PubMed: 15833919]
- Verbeek S, et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature. 1995; 374(6517):70–74. [PubMed: 7870176]
- Schilham MW, et al. Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol. 1998; 161(8):3984–3991. [PubMed: 9780167]
- 11. Goux D, et al. Cooperating pre-T-cell receptor and TCF-1-dependent signals ensure thymocyte survival. Blood. 2005; 106(5):1726–1733. [PubMed: 15890681]
- Okamura RM, et al. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity. 1998; 8(1):11–20. [PubMed: 9462507]
- Schmitt TM, Zuniga-Pflucker JC. T-cell development, doing it in a dish. Immunol Rev. 2006; 209:95–102. [PubMed: 16448536]
- 14. Huang J, et al. Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation. J Immunol. 2005; 175(8):4858–4865. [PubMed: 16210587]
- Cobas M, et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004; 199(2):221–229. [PubMed: 14718516]
- 16. Jeannet G, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of betacatenin and gamma-catenin. Blood. 2008; 111(1):142–149. [PubMed: 17906078]

- Tago K, et al. Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev. 2000; 14(14):1741–1749. [PubMed: 10898789]
- Pear WS, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996; 183(5):2283–2291. [PubMed: 8642337]
- 19. Deftos ML, et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity. 2000; 13(1):73–84. [PubMed: 10933396]
- 20. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 1991; 10(1):123–132. [PubMed: 1989880]
- Yu Q, et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol. 2009; 10(9):992–999. [PubMed: 19648923]
- 22. Hosoya T, et al. GATA-3 is required for early T lineage progenitor development. J Exp Med. 2009; 206(13):2987–3000. [PubMed: 19934022]
- Ikawa T, et al. An essential developmental checkpoint for production of the T cell lineage. Science. 329(5987):93–96. [PubMed: 20595615]
- 24. Li L, Leid M, Rothenberg EV. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science. 329(5987):89–93. [PubMed: 20595614]
- Li P, et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science. 329(5987):85–89. [PubMed: 20538915]
- Taghon T, et al. Developmental and molecular characterization of emerging beta- and gammadeltaselected pre-T cells in the adult mouse thymus. Immunity. 2006; 24(1):53–64. [PubMed: 16413923]
- Yashiro-Ohtani Y, et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 2009; 23(14):1665–1676. [PubMed: 19605688]
- Lin YC, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 11(7):635–643. [PubMed: 20543837]
- 29. Wendorff AA, et al. Hes1 Is a Critical but Context-Dependent Mediator of Canonical Notch Signaling in Lymphocyte Development and Transformation. Immunity. 33(5):671–684. [PubMed: 21093323]
- Liu Z, et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest. 121(2):800–808. [PubMed: 21266774]
- Brault V, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001; 128(8): 1253–1264. [PubMed: 11262227]
- 32. Huang J, et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest. 2009; 119(12):3519–3529. [PubMed: 19959876]



#### Figure 1. TCF-1 is necessary for early T-lineage development and specification

**a**, TCF-1 gene expression in BM, thymic progenitors and T-cells. Expression is shown relative to 18sRNA and LMPP. **b**, Mixed BM chimeras were generated using TCF-1<sup>-/-</sup> BM and wt BM. **c**, Chimerism of TCF-1<sup>-/-</sup> cells was normalized to HSC (4 mice/group; 3 independent experiments), \*\*p<0.005. **d**, TCF-1<sup>+/-</sup> and TCF-1<sup>-/-</sup> LSK progenitors were seeded onto OP9 and OP9-DL1 stroma and analyzed for myeloid (Mac1<sup>+</sup>Gr1<sup>+</sup>) and T development (Thy1<sup>+</sup>CD25<sup>+</sup>). **e**, Cellularity of d6 cultures, including B (CD19<sup>+</sup>) is shown. **f**, TCF-1<sup>-/-</sup> and TCF-1<sup>+/+</sup> LMPPs were seeded onto OP9-DL4 and lineage-negative cells from

TCF-1<sup>+/+</sup> and TCF-1<sup>-/-</sup> cultures were harvested at day 4 for gene expression. The right side of panel. **f**, corresponds to T lineage cells made from normal progenitors at day 4 in culture. Lineage-negative cells from these early cultures retain progenitor activity<sup>8</sup>. Heat map shows a selection of T-lineage genes enhanced greater than 2 fold from TCF-1<sup>+/+</sup> lineage-negative cells and represents the log2 value of normalized signal level. Rows represent two independent samples for each population. **g**, QRT-PCR validation of selected genes. All error bars, mean +/– s.e.m.



Figure 2. Ectopic expression of TCF-1 elicits T-lineage cells in vitro

CD45.2 (B6)

CD25

a, Wt LMPPs were transduced with control MSCV-VEX or MSCV containing human TCF-1 (MSCVTCF-1-VEX). Transduced cells were isolated by cell sorting, and seeded onto OP9 or OP9-DL4. Plots are gated on VEX<sup>+</sup>CD45.2<sup>+</sup> Mac1<sup>-</sup>Gr1<sup>-</sup> cells, shown on day 12. b, On OP9 stroma, TCF-1-expressing progenitors gave rise to myeloid cells (Mac1<sup>+</sup>Gr1<sup>+</sup>), shown on day 3, but TCF-1 inhibited the development of CD19<sup>+</sup> B-cells, shown on day 12. c, TCF-1 expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells were isolated from OP9 cultures after 8 days and injected intrathymically into congenic recipients. Shown is 19 days post injection. **d**, β-

catenin<sup>f/f</sup>MxCre+ and control mice were induced with poly(I:C) and LMPPs were isolated, transduced with MSCV-TCF-1-VEX, and 2000 transduced cells were seeded/well on OP9 stroma and analyzed at day 7 and 12. Plots are gated on VEX<sup>+</sup>CD45.2<sup>+</sup> Mac1<sup>-</sup>Gr1<sup>-</sup> cells, shown on day 12. **e**, Relative cellularity of day 7 cultures. Results represent triplicates +/– SD. **f**, Notch1<sup>f/f</sup>MxCre<sup>+</sup>Rosa<sup>YFP/+</sup> mice were induced with poly(I:C) and YFP<sup>+</sup> LSK progenitors were isolated and transduced with TCF-1 or vector control and intrathymically injected into sublethally irradiated recipients. Shown is day 10 analysis, 2 independent experiments, 4–6 mice per experiment. Frequency of donor-derived TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> cells compared to control, *p*=0.03. **g**, Limiting dilution analysis was performed on TCF-1-expressing LMPPs co-cultured with OP9 stroma; this was compared to LMPPs cultured on OP9-DL4 stroma. Frequencies of lineage-competent cells were similar (TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> lineage on OP9: 1 in 17 [95% confidence interval 1 in 12–26], control Thy1<sup>+</sup>CD25<sup>+</sup> lineage on OP9-DL4: 1 in 23 [95% confidence interval 1 in 15–34].)

Weber et al.

Page 12





**a**, Microarray-based analysis of gene expression in TCF-1-expressing Thy1<sup>+</sup>CD25<sup>+</sup> T cells on OP9, control Thy1<sup>+</sup>CD25<sup>+</sup> on OP9-DL4, and LMPPs. Shown are selected T-lineage genes upregulated greater than 2-fold in TCF-1-expressing T-lineage cells. Scale represents the log2 value of normalized signal level. **b**, QRT-PCR validation of selected genes normalizing to GAPDH and LMPP. U.D=undetectable. **c**, ChIP on DN thymocytes utilizing TCF-1 or IgG antibodies. QRT-PCR was performed with primers flanking putative TCF-1binding sites. *Axin2* is a positive control and *CD3* $\varepsilon$  negative control refers to region lacking

TCF-1 binding sites. **d**, ChIP as described in (**c**). **e**, TCF-1 enhances TCF-1 promoter activity. 293T cells were cotransfected with the pGL3 vector containing the TCF-1 promoter and -1.3kb TCF-1 binding site or a mutated TCF-1 binding site, and with either empty vector or MSCV-TCF-1. Luciferase activity is shown relative to Renilla and normalized to empty vector. All bars are means  $\pm$  s.e.m of triplicate samples. \*p<0.05, \*\*p<0.005.



**Figure 4. TCF-1 is expressed in the earliest T cell progenitors and is downstream of Notch1 a**, LMPPs from wt BM were seeded onto OP9-DL4 and Mac1<sup>-</sup>Gr1<sup>-</sup> cells were harvested over a five-day period. Relative gene expression of *Tcf7* and the Notch target genes *Ptcra* and *Deltex* is shown after normalizing to 18sRNA and LMPP. **b**, TCF-1 locus with conserved putative CSL binding sites. ChIP on DN thymocytes utilizing Notch1 or control IgG antibodies. QRT-PCR was performed with primers flanking putative CSL-binding sites. Shown is the relative percentage of input DNA. **c**, Scid.adh cells were treated with 1um GSI or DMSO for 6 hours in culture. Cells were subjected to ChIP analysis as in (**b**). Shown is

the relative percentage of input DNA in GSI or DMSO treated cultures. All bars are means  $\pm$  s.e.m of triplicate samples, \**p*<0.05, \*\**p*<0.005.