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Abstract
Background: Lung adenocarcinomas (LUAD) is the most common histological 
subtype of lung cancers. Tumor immune microenvironment (TIME) is involved in 
tumorigeneses, progressions, and metastases. This study is aimed to develop a robust 
immune-related signature of LUAD.
Methods: A total of 1774 LUAD cases sourced from public databases were included 
in this study. Immune scores were calculated through ESTIMATE algorithm and 
weighted gene co-expression network analysis (WGCNA) was applied to identify 
immune-related genes. Stability selections and Lasso COX regressions were im-
plemented to construct prognostic signatures. Validations and comparisons with 
other immune-related signatures were conducted in independent Gene Expression 
Omnibus (GEO) cohorts. Abundant infiltrated immune cells and pathway enrich-
ment analyses were carried out, respectively, through ImmuCellAI and gene set en-
richment analysis (GSEA).
Results: In Cancer Genome Atlas (TCGA) LUAD cohorts, immune scores of 
higher levels were significantly associated with better prognoses (P < .05). Yellow 
(n = 270) and Blue (n = 764) colored genes were selected as immune-related genes, 
and after univariate Cox regression analysis (P < .005), a total of 133 genes were 
screened out for subsequent model constructions. A four-gene signature (ARNTL2, 
ECT2, PPIA, and TUBA4A) named IPSLUAD was developed through stability se-
lection and Lasso COX regression. It was suggested by multivariate and subgroup 
analyses that IPSLUAD was an independent prognostic factor. It was suggested by 
Kaplan-Meier survival analysis that eight out of nine patients in high-risk groups had 
significantly worse prognoses in validation data sets (P < .05). IPSLUAD outper-
formed other signatures in two independent cohorts.
Conclusions: A robust immune-related prognostic signature with great performances 
in multiple LUAD cohorts was developed in this study.
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1 |  INTRODUCTION

According to estimates of cancer incidence in GLOBOCAN 
2018, lung cancers remain a leading cause of cancer-re-
lated deaths, which are cancers with the highest death inci-
dence worldwide.1 Approximately, 85% of lung cancers are 
NSCLCs, which can be further divided into three subtypes: 
large cell carcinomas, squamous cell carcinomas, and lung 
adenocarcinomas (LUAD).2,3 In most countries, LUAD is the 
most common histological subtype, which is a result of an in-
creasing number of nonsmokers.4 With rapid evolvements of 
precision medicines, novel therapeutic strategies, especially 
immunotherapies, have been proposed to improve clinical 
outcomes of LUAD patients.5,6 However, only a fraction of 
patients was benefited from immunotherapies, leaving urgen-
cies of finding potential biomarkers for efficient and prog-
nostic predictions.

Cytotoxic T-lymphocyte-associated Antigen 4 (CTLA-
4) and Programmed Death 1 (PD-1) immune checkpoints 
start a new paradigm shift in the field of immunotherapies.7 
Mechanisms of immune checkpoint inhibitors (ICIs) tar-
geting at these molecules are to relieve certain inhibitory 
pathways and thus, boosting the immune system to generate 
antitumor activities.8 Accordingly, efficacies of ICIs are con-
sidered strongly associated with hosts’ immune systems and 
tumor immune microenvironments (TIME). Crosstalk be-
tween cancer cells and TIME was sophisticated comprising 
both protumorigenic and antitumorigenic manners.9 A T cell 
inflamed TIME induced by a CDK4/6 Inhibitor was shown 
to enhance efficacies of ICIs in vitro.10 Therefore, in-depth 
understanding of TIME can assist identifications of novel 
predictive biomarkers and developments of new therapeutic 
strategies.

With diminishing costs, high-throughput sequencing 
has emerged as a commonplace technology in the field of 
molecular biology. Computational algorithms, including 
Cibersort,11 Timer,12 and ImmuCellAI,13 have also been 
developed for assessments on abundance of infiltrated im-
mune cells based on gene expression profiles. Altogether, 
these techniques provided valid and economical methods 
for providing detailed TIME profiles. Recently, several 
studies have been devoted to constructing immune-related 
signatures in LUAD14,15 and.16 Gene selections in their 
studies were based on prior knowledge sourced from ex-
ternal databases or differentially expressed genes (DEGs). 
Models based on these criteria might exclude immune-re-
lated genes that had not yet been confirmed or prognostic 
genes without different expressions. In addition, models 

containing too many genes limited feasibilities of their 
clinical applications. Therefore, there is an urgent need to 
construct a robust and simple immune-related prognostic 
signature.

In this study, immune scores of each case related to 
TCGA-LUAD were first calculated through ESTIMATE 
algorithm, then, weighted gene co-expression network 
analysis (WGCNA) was applied to identify immune-related 
modules. After that, a three-gene prognostic model was 
constructed based on stability selection and Lasso COX re-
gression, whose effectiveness was further evaluated based 
on nine independent data sets and compared with other 
previously reported immune-related signatures. Finally, it 
was suggested by infiltrated immune cells and pathway en-
richment analysis that our prognostic signature was closely 
related to components of innate immunities. In conclusion, 
we constructed a robust immune-related signature based on 
transcriptomics.

2 |  MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

RNA-seq mRNA expression profiles and clinical information 
of TCGA-LUAD cohorts were downloaded from the Cancer 
Genome Atlas (TCGA) Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). Microarray-based data about 
expressions, which contained nine Gene Expression Omnibus 
(GEO) data sets, was obtained from official website of GEO 
(https://www.ncbi.nlm.nih.gov/geo/) via GEOquery R pack-
age.17 Only patients with pathologically confirmed LUAD 
and complete information about transcriptomics overall 
survivals (OS) could be considered. Finally, a total of 1774 
LUAD cases (TCGA:504, GEO:1270) sourced from TCGA 
and GEO databases were included in our study.

For TCGA-LUAD cohorts, paired-normal samples were 
first removed according to their TCGA barcodes. Then, 
Fragments per Kilobase Million (FPKM) values were trans-
formed into Transcripts Per Million (TPM). Average expres-
sion value of multiple samples corresponding to the same 
patients was calculated for further analyses.

For GEO data sets, probe IDs were converted to gene 
symbols according to platform annotation files. Normalized 
expression values were logarithmically transformed and 
scaled before being used in model validations. Average value 
of genes with multiple probes was used as their expression 
value.

K E Y W O R D S

biomarker, infiltrated immune cell, lung adenocarcinoma, prognostic signature, tumor immune 
microenvironment
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2.2 | Evaluating tumor microenvironment in 
TCGA-LUAD cohort

ESTIMATE is a computerized algorithm which can be used to 
infer infiltration levels of stromal and immune cells in tumor 
tissues based on expression profiles.18 Stromal, immune, and 
ESTIMATE scores of each sample in TCGA-LUAD cohorts 
were downloaded from the official website (https://bioin forma 
tics.mdand erson.org/estim ate/). Survival and association analy-
ses were performed between tumor stages and these scores.

2.3 | Construction of weighted gene co-
expression networks and identification of 
immune-related modules

WGCNA is a systematic biological method developed by 
Langfelder et al19 It can be used to cluster highly correlated 
genes into modules and relative modules to phenotypes of 
interest. The WGCNA package of R software (http://www.
rproj ect.org/) was used for network developments and visual-
izations. In network construction processes, soft thresholding 
power β was chosen as the lowest power with which fit index 
of scale-free topology reached 0.90. The minimum module 
size was set as 30. After clustering, modules were displayed 
together through a dendrogram with colored assignments. To 
identify immune-related modules, a module-trait relationship 
heatmap was drawn with correlated coefficients and P-value. 
Two modules, which were positively and negatively related 
to immune scores, respectively, were selected after compre-
hensive considerations on both module size (n > 100) and 
significances of the association.

2.4 | Development and validation of the 
immune-related prognostic signature for lung 
adenocarcinomas (IPSLUAD)

A prognostic signature was developed in the following steps. 
First, expression values of 1057 genes were extracted from two 
selected modules of TCGA-LUAD cohort. Univariate Cox pro-
portional hazard regressions were performed on these genes to 
identify factors related to prognoses (P < .05). Then, stability 
selection method was implemented to further narrow the scope 
through R package c060.20 The logic of stability selection is to 
induce additional randomizations and find out which features 
are consistently important in every subsampling step. Finally, 
a Lasso-penalized Cox model was applied to construct a prog-
nostic model based on genes selected in previous steps through 
R package glmnet. A 10-fold cross validation was performed 
to determine the optimal value of Lasso penalty parameter. 
Coefficients of each gene in the model were determined by 
Lasso-penalized Cox model. The formula is: 

 where βk is coefficient of Gene k, and Gk is the normalized 
expression value of Gene k. Survival analyses were performed 
in TCGA-LUAD cohort using Kaplan-Meier estimator and 
multivariate Cox regression. Cutoff value was set as median of 
IPSLUAD score.

To further validate prognostic value of IPSLUAD, Kaplan-
Meier survival analysis and Cox regression were performed in 
nine independent GEO LUAD data sets (GSE3141, GSE13213, 
GSE14814, GSE29016, GSE30219, GSE31210, GSE37745, 
GSE50081, and GSE68465)21-28 and,29 where cutoff value was 
set as median of IPSLUAD score. Gene expression values were 
normalized and scaled before validations. Area under the curve 
(AUC) of each data set was calculated for detailed evaluations.

2.5 | Estimating immune cell infiltrations 
between high-risk and low-risk groups 
stratified by IPSLUAD

Infiltrated immune cells, particularly T cells, play indispen-
sable roles in tumor immunotherapies. To compare infiltrated 
immune cells in samples with different IPSLUAD scores, 
ImmuCellAI was adopted to calculate the abundance of 24 
immune cell types including 18 T-cell subsets. For cells with 
a median abundance that was higher than 0.1 and significant 
differences among groups (P  <  .05), association analyses 
between markers of these cells and IPSLUAD scores were 
performed to validate those differences. Cell markers were 
chosen according to CellMarker database.30

2.6 | Functional enrichment analysis of 
IPSLUAD using gene set enrichment analysis 
(GSEA)

To further understand biologic functions of IPSLUAD, 
GSEA was performed on TCGA-LUAD cohort based on GO 
Biological Process Ontology and KEGG gene sets.31 False 
discovery rate (FDR) was introduced as a control of Type I 
errors, and FDRs lower than 0.05 were considered signifi-
cant. All the analyses were implemented through GSEA soft-
ware (version 4.0.2).

2.7 | Comparison between IPSLUAD and 
other existing immune-related signatures

In order to further evaluate prediction accuracies of IPSLUAD, 
we compared IPSLUAD with other immune-related 
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signatures ranging from three to thirty genes (Table S3). Two 
large independent cohorts (n > 200, GSE31210, GSE68465) 
were employed for comparisons.22,29 Risk scores of each sig-
nature were calculated based on normalized expression val-
ues and coefficients provided by original articles. Two-year 
and five-year AUCs were calculated and compared based on 
two data sets.

2.8 | Statistical analysis

Continuous variables were summarized through mean and 
standard deviations and compared through Wilcoxon test. 
Categorized variables were presented by frequency (n) and 
proportion (%), and then compared through ANOVA. Both 
Cox proportional hazard model and Log-rank test were applied 
to survival analyses, all of which were performed through R 
software (Version 3.6.3, The R Foundation for Statistical 
Computing). P values were two-side and were considered to 
be statistically significant if they were lower than .05.

3 |  RESULTS

3.1 | Association between ESTIMATE-
calculated scores and clinicopathological 
indicators

The whole processes of signature constructions and data 
analyses were shown in Figure 1. After excluding 13 cases 
with incomplete stages or survival information, 504 cases 
in TCGA-LUAD cohort were eligible for analyses. In each 
sample, stromal, immune and ESTIMATE scores were ob-
tained, which, respectively, ranged from −1779.3 to 2106.9, 
−932.6 to 3237.6, and −2338.0 to 4907.6. In difference com-
parisons, immune and ESTIMATE scores were significantly 
associated with pathologic stages (Figure  2A-C, P  <  .05). 
The lowest stromal, immune, and ESTIMATE scores were 
all found in cases of Stage IV, which was the most pro-
gressive. In addition, cases with higher stromal, immune or 
ESTIMATE scores tended to have a better prognosis than 
those with scores of lower levels (Figure 2D-F).

F I G U R E  1  Flowchart of developments and validations of IPSLUAD

http://GSE31210
http://GSE68465
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3.2 | Construction of co-expression 
modules and identification of modules 
associated with immune scores

Network constructions and module detections were followed 
by a step-by-step approach. First, soft threshold power 5 
was chosen to calculate adjacencies since it was the lowest 

power with which fit index of scale-free topologies reached 
0.90 (Figure 3A and B). Then, module identifications were 
performed through a dynamic tree cut with a deepSplit pa-
rameter set as 2. After merging similar modules, a total of 
23 modules were identified and clustering dendrograms were 
presented (Figure 3C). A heatmap was drawn to shown cor-
related modules, in which red color represented positive 

F I G U R E  2  Associations between immune/stromal/ESTIMATE scores and clinicopathological indicators. A-C, Differences among stromal/
immune/ESTIMATE scores in different pathologic stages. Asterisk (*) indicated a significant difference between two groups (P < .05). D-F, 
Survival analyses of stromal/immune/ESTIMATE scores through Kaplan-Meier curve with log-rank test
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correlations and blue color represented negative ones (Figure 
S2A). To identify immune-related modules, module-trait as-
sociation plots were presented (Figure S1). Results demon-
strated that the top three modules with the greatest positive 
associations were colored with Yellow, Blue, and Tan, while 
the top three ones with the greatest negative associations were 
colored with Black, Purple, and Blue. Among these modules, 
genes colored with Blue (n  =  764) and Yellow (n  =  270) 
were selected in module constructions based on module sizes 
(n > 200) and association significances. Finally, association 
analyses of Gene Significances (GS) and module member-
ship (MM) were performed on Blue and Yellow modules. 
GSs of all the above three scores were significantly (P < .05) 
associated with MM in these two modules (Figure S2B-G).

3.3 | Construction of IPSLUAD in TCGA-
LUAD cohort

A total of 1034 genes were selected through previous steps 
(Table  S1). To explore genes significantly associated with 
OS of patients with LUAD, univariate Cox regression anal-
ysis was performed and genes with P values of lower than 
.005 were chosen. 133 genes were screened out and selected 
for constructions of subsequent models (Table S2). Stability 

selection was first implemented to identify important features, 
and estimated sets of stable features comprised four genes, 
namely Aryl Hydrocarbon Receptor Nuclear Translocator 
Like 2 (ARNTL2), Epithelial Cell Transforming 2 (ECT2), 
Peptidylprolyl Isomerase A (PPIA), and Tubulin Alpha 4a 
(TUBA4A) (Figure S3A). Then, the optimal value of Lasso 
penalty parameter λ was determined as 0.0048 through 10-
fold cross validation (Figure S3B-C). λ was then substituted 
into the model to generate coefficients of each gene. The 
final IPSLUAD was calculated as follows: (0.2319 × EXPA

RNTL2) + (0.1595 × EXPECT2) + (0.1611 × EXPPPIA) + (0.12
86 × EXPTUBA4A).

IPSLUAD of each patient in TCGA-LUAD was calcu-
lated, and high-/low-risk groups were divided with median 
IPSLUAD as cutoff. Distributions of risk scores, survival 
statuses, and four-gene expression profiles were shown in 
Figure 4A. It was demonstrated by association analyses that 
factors including genders, T Stage, N Stage, pathological 
stages, and survival statuses were significantly correlated 
(P < .05) with different IPSLUAD groups (Table 1). Patients 
in high-risk group had significantly worse prognoses than 
those in low-risk group (Log-rank P < .05) (Figure 4B). In 
subgroup analyses, a significantly shorter OS was shown in 
high-risk group than low-risk group in Stage I and III (Log-
rank P < .05) (Figure 4C and E). A similar trend was found 

F I G U R E  3  Network constructions 
and module detections of LUAD. A and B, 
Analyses of network topologies for various 
soft-thresholding powers through scale-free 
fit index (A) and mean connectivity (B). C, 
Clustering dendrogram of genes based on 
topological overlapping. Different colors 
were assigned to corresponding modules. A 
total of 23 modules were identified
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among patients in Stage II, although there were no statistical 
significances (Log-rank P  =  .050) (Figure  4D). Univariate 
Cox regressions showed that T Stage, lymph node involve-
ments, distant metastases, pathological stage, and IPSLUAD 
were significantly associated with OS (Table  2). Further, 
multivariate Cox regressions demonstrated that T Stage, 
lymph node involvements, and IPSLUAD were independent 
prognostic factors (Table 2).

3.4 | Validation of IPSLUAD in nine GEO 
data sets

Summaries of the nine GEO data sets were shown in Table 3. 
In each data set, patients were stratified into high-/low-risk 
groups according to the median of IPSLUAD. It was sug-
gested by Kaplan-Meier survival analyses that patients 
in high-risk group had significantly worse prognoses in 
eight out of nine data sets (88.9%) (Figure 5A-D, I-K, Q). 
The same trend was also observed in IPSLUAD of one re-
maining data set, though it was not statistically significant 
(Figure 5L). AUC was also calculated to evaluate abilities of 

IPSLUAD, which was ranged from 0.617 to 0.753 in the nine 
data sets (Figure 5E-H, M-P, R). Importantly, there were five 
data sets (GSE3141, GSE13213, GSE29016, GSE31210, and 
GSE68465) with AUC values that were higher than 0.7.

3.5 | Comparisons between 
IPSLUAD and other existing immune-related 
prognostic signatures

Characteristics of other immune-related signatures used in 
this study were summarized in Table 4. Two largest GEO 
cohorts (GSE31210, GSE68465) with sample sizes higher 
than 200 were used in model comparisons. GSE31210 was 
an early-stage cohort: all patients were in Stage I or II, 
while GSE68465 was a multi-site cohort comprising both 
early-stage patients and those in more advanced stages. 
For all comparisons in these two cohorts, IPSLUAD out-
performed other signatures with superior predictive per-
formances according to AUC values (0.75 vs 0.64-0.73; 
0.70 vs 0.49-0.66; 0.72 vs 0.40-0.51; 0.66 vs 0.43-0.52) 
(Figure 6A-D).

F I G U R E  4  Prediction performances of IPSLUAD in TCGA-LUAD cohort. A, Distributions of risk scores (top), survival statuses of patients 
in low-risk and high-risk groups (middle), and four-gene expression profiles of each patient (bottom). B-E, Kaplan-Meier curves of OS between 
low-risk and high-risk groups based on whole-TCGA cohort (B), Stage I (C), Stage II (D), and Stage III subgroup (E)

http://GSE3141
http://GSE13213
http://GSE29016
http://GSE31210
http://GSE68465
http://GSE31210
http://GSE68465
http://GSE31210
http://GSE68465


   | 5967SUN et al

3.6 | Estimating the composition of 
infiltrated immune cells

To further characterize immune microenvironment of tumors, 
ImmuCellAI was employed to estimate the abundance of 24 
types of immune cells in TCGA-LUAD cohort based on RNA-
Seq data. Abundant immune cell populations with various 
kinds in each sample were shown in Figure 7A. Several cell 
types, namely CD4 naïve T cells, exhausted T cells (Tex), Type 
1 regulatory T cells (Tr1), natural regulatory T (nTreg), Th1, 
Th2, Th17, Tfh, effector memory T (Tem) cells, natural killer 
T (NKT) cells, mucosal-associated invariant T cells (MAIT), 
dendritic cells (DC), B cells, monocytes, macrophages, natural 
killer cells (NK), Neutrophil, Gamma delta T cells (Tgd), CD4 
T cells, and CD8 T cells, were significantly different (P < .05) 
in high-risk and low-risk groups (Figure 7B).

3.7 | Associations between IPSLUAD and 
immune cell markers

Different abundances of infiltrated immune cells between 
high-risk and low-risk groups were further validated through 
correlation analyses on gene markers and IPSLUAD. Markers 
significantly correlated with IPSLUAD included CD4 for CD4 
T cells, CD66b and CD11b for neutrophil, CD56, CD16, and 
CD94 for NK cells, CD206 for M2 macrophages, CD14 for 
monocytes, CD19 and CD79A for B cells, CD11c and HLA-
DRA for dendritic cells, BCL6 and CD185 for Tfh, CD196, 
RORC, STAT3 for Th17, STAT1 for Th1 and STAT5B and 
HELIOS for Tregs (Table 5). It was suggested by these find-
ings that IPSLUAD was strongly linked with innate immunities 
since it was closely related to several critical innate immunity-
related components (neutrophil, NK cells, and dendritic cells).

Category
Cases, 465 
(100%)

IPSLUAD
P 
valueLow (n = 232) High (n = 233)

Age, mean (SD) 66.1 (9.5) 64.3 (10.5) 0.060

Gender

Male 211 (45.4%) 90 (38.8%) 121 (51.9%) 0.005

Female 254 (54.6%) 142 (61.2%) 112 (48.1%)

Smoking

Ever 400 (86.0%) 199(85.8%) 201 (86.3%) 0.985

Never 65 (14.0%) 33 (14.2%) 32 (13.7%)

T stage

T1 161 (34.6%) 98 (42.2%) 63 (27.0%) 0.006

T2 245 (52.7%) 110 (47.4%) 135 (57.9%)

T3 44 (9.4%) 17 (7.3%) 27 (11.6%)

T4 15 (3.2%) 7 (3.0%) 8 (3.4%)

N stage

N0 314 (67.5%) 175 (75.4%) 139 (59.7%) 0.004

N1 84 (18.1%) 33 (14.2%) 51 (21.9%)

N2 65 (14.0%) 23 (9.9%) 42 (18.0%)

N3 2 (0.4%) 1 (0.4%) 1 (0.4%)

M stage

M0 444 (95.5%) 225 (97.0%) 219 (94.0%) 0.184

M1 21 (4.5%) 7 (3.0%) 14 (6.0%)

TNM stage

I 257 (55.3%) 146 (62.9%) 111 (47.6%) 0.005

II 112 (24.1%) 51 (22.0%) 61 (26.2%)

III 75 (16.1%) 28 (12.1%) 47 (20.2%)

IV 21 (4.5%) 7 (3.0%) 14 (6.0%)

Status

Survival 300 (64.5%) 172 128 <0.001

Death 165 (35.5%) 60 105

Significant values of P < 0.05 is indicated in bold.

T A B L E  1  Correlations between 
IPSLUAD and clinicopathological 
parameters of 465 patients in TCGA-LUAD 
cohort
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3.8 | Pathway enrichment 
analysis of IPSLUAD

To further investigate molecular functions of IPSLUAD 
in immune systems, a GSEA was performed based on GO 
Biological Process Ontology and KEGG gene sets. Two 

significant immune-related pathways were identified, 
namely innate immune response activating cell surface re-
ceptor signaling and interleukin 1 mediated signaling path-
way (Figure 8A-D). Again, close associations between genes 
of IPSLUAD and innate immunities were validated through 
this result.

Univariate analysis Multivariate analysis

P value HR 95% CI P value HR 95% CI

Age

≤66 years 0.091 1.302 0.959-1.769

>66 years

Gender

Female 0.353 1.156 0.851-1.569

Male

Smoking

Never 0.985 0.996 0.640-1.549

Ever

T stage

I-II <0.001 2.313 1.557-3.436 0.003 1.920 1.246-2.959

III-IV

Lymph node metastasis

Negative <0.001 2.507 1.843-3.411 <0.001 2.088 1.429-3.050

Positive

Distant metastasis

No 0.018 1.188 1.030-1.369 0.283 1.091 0.931-1.278

Yes

TNM stage

I-II <0.001 2.343 1.687-3.254 0.825 1.054 0.660-1.683

III-IV

IPSLUAD

Low-risk <0.001 2.178 1.582-2.999 <0.001 1.875 1.351-2.602

High-risk

Significant values of P < 0.05 is indicated in bold.

T A B L E  2  Univariate analysis and 
multivariate analysis of risk factors for 
prognosis in TCGA-LUAD cohort

T A B L E  3  Characteristics of GEO data sets used in this study

Author
GEO 
Accession Year of publication Platform Number of patients Events

Nevins et al GSE3141 2006 GPL570 [HG-U133_Plus_2] 58 32

Tomida et al GSE13213 2009 GPL6480 117 49

Tsao et al GSE14814 2010 GPL96 [HG-U133A] 71 35

Staaf et al GSE29016 2012 GPL6947 38 28

Rousseaux et al GSE30219 2013 GPL570 [HG-U133_Plus_2] 85 45

Okayama et al GSE31210 2011 GPL570 [HG-U133_Plus_2] 226 35

Botling et al GSE37745 2012 GPL570 [HG-U133_Plus_2] 106 77

Pintilie et al GSE50081 2013 GPL570 [HG-U133_Plus_2] 127 51

Heiskanen et al GSE68465 2015 GPL96 [HG-U133A] 442 236

http://GSE3141
http://GSE13213
http://GSE14814
http://GSE29016
http://GSE30219
http://GSE31210
http://GSE37745
http://GSE50081
http://GSE68465
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F I G U R E  5  Prediction performances of IPSLUAD in validating data sets. Kaplan-Meier survival curves of overall survivals in (A) GSE3141, 
(B) GSE13213, (C) GSE14814, (D) GSE29016, (I) GSE30219, (J) GSE31210, (K) GSE37745, (L) GSE50081, (Q) GSE68465. Receiver operating 
curve (ROC) analysis of IPSLUAD in (E) GSE3141, (F) GSE13213, (G) GSE14814, (H) GSE29016, (M) GSE30219, (N) GSE31210, (O) 
GSE37745, (P) GSE50081, (R) GSE68465

http://GSE3141
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http://GSE31210
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http://GSE68465


5970 |   SUN et al

4 |  DISCUSSION

With rapid developments of molecular biology and high-
throughput sequencing, contributions of tumor micro-
environment to cancer developments, progressions, and 
metastases have been increasingly acknowledged in recent 
years.32,33 There is a complex dynamic crosstalk between 
tumor and non-cancer cells including infiltrated immune 
cells and adjacent stroma cells.32 However, tumors are con-
sidered as autonomous subjects by TNM staging system, 

which ignores significant effects of TIME. In the present 
study, a novel 4-gene immune-related prognostic signature 
was developed to assist TNM staging for more accurate 
predictions.

Several immune-related signatures for LUAD have been 
used to divide patients into different prognostic subgroups in 
previous researches.14-16 A list of genes for model construc-
tions was extracted from public immune databases or through 
differential analyses. In contrast, we applied a different selec-
tion method based on co-expression networks, which might 

Study
Number of 
genes Gene list

Li et al 5 SLCO4C1, ELAC1, HLF, ZNF204P, ST3GAL5

Yue et al 3 ADAM12, BTK, ERG

Song et al 30 PSMC6, LIFR, PIK3CG, CTF1, RELA, MAP3K8, 
HLA-DOB, LGR4, RXRB, CD79A, ADIPOR2, 
CCL20, PTPN6, HSPA4, GPI, ADM, IL22RA1, 
ANGPTL4, XCR1, AP3B1,RFXAP, HSPA2, IL23R, 
PDGFB, DKK1, PAK4, PSMD2,VEGFC, SHC1, 
HGF

T A B L E  4  Summary of existing 
immune-related prognostic signatures

F I G U R E  6  Comparisons of IPSLUAD 
with other published immune-related models 
in GSE31210 and GSE68465 data sets. A, 
Two-year ROC in GSE31210. B, Five-year 
ROC in GSE31210. C, Two-year ROC in 
GSE68465. D, Five-year ROC in GSE68-
465

http://GSE31210
http://GSE68465
http://GSE31210
http://GSE31210
http://GSE68465
http://GSE68
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identify immune-related genes that had not been reported. 
In addition, by means of deliberately adding noises during 
model constructions, IPSLUAD was found to be robust with 
respect to OS predictions in various independent data sets. 
Both multivariate and subgroup analyses stratified through 
TNM staging suggested that IPSLUAD be used as an inde-
pendent prognostic factor. Furthermore, IPSLUAD outper-
formed other immune-related signatures in both early-stage 
LUAD and multicenter cohorts. Therefore, IPSLUAD could 
not only significantly supplement traditional staging systems, 
but also be used as an accurate OS predictor for patients with 
LUAD.

Among the four genes in IPSLUAD, ECT2, and PPIA 
were widely studied in previous researches. ECT2 was rec-
ognized as an oncogenic gene necessary for Kras-Trp53 
lung tumorigeneses in vivo.34 Liu et al also reported on 
collaborations of ECT2 with growths of lung squamous 
cell carcinomas promoted by PRKCI.35 It was suggested 
by Meta-Analysis that ECT2 was a promising prognos-
tic factor in cancers.36 PPIA is a housekeeping gene in-
volved in several cancers including NSCLC, pancreatic 
adenocarcinomas as well as head, and neck squamous 

cell carcinomas.37-39 PPIA was also reported to partic-
ipate in tumor proliferations and invasions.40 However, 
relationships between immune cells and these genes have 
not been illustrated. Although little is known about roles 
of ARNTL2 and TUBA4A in LUAD, ARNTL2 was re-
ported to be associated with tumor progressions and me-
tastases in colorectal and breast cancers.41,42 TUBA4A 
was found highly expressed in exosomes secreted by 
NSCLC cell lines in vitro.43 Underlying mechanisms of 
these two genes in LUAD still need further cellular-level 
explorations.

Infiltrated immune cells constitute important parts 
of tumors and have been widely studied in recent years. 
Certain immune cell types were found to be indicative 
of responses to immunotherapies and OSs. Based on 
quantifications and locations of demonstrated T cells, 
the immunoscore developed by Galon et al showed supe-
rior predictive accuracies in prognoses compared to that 
of traditional TNM staging in colorectal carcinomas.44 
High-level expressions of PD1 or PD1 and CTLA4 on in-
filtrated CD8+ T cells were reported to be predictive of 
responses to ICIs in NSCLC.45 In addition, dysfunctional 

F I G U R E  7  Compositions of infiltrated immune cells between low-risk and high-risk groups in TCGA-LUAD cohort through ImmuCellAI. A, 
Abundance of 24 immune cell types in TCGA. B, Comparisons between immune cells in low-risk and high-risk groups in TCGA
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T cells were also considered as predictive markers of im-
munotherapeutic responses in melanomas.46 Since T cells 
were at the central position of antitumor immunity, a novel 
algorithm named ImmuCellAI was implemented to eval-
uate the abundance of infiltrated immune cells in TCGA 
cohort.13 Compositions of 18 T cell subsets can be cal-
culated by ImmuCellAI, which is of superior accuracies 
than other frequently-used methods including Cibersort 
and Timer.11-13 In addition to differences in multiple T 
cell subsets among IPSLUAD subgroups, one more in-
triguing finding was the significantly different pattern of 
innate immune systems.

In respect of innate immunity, some types of cells in-
cluding DCs and macrophages are context-specific that may 
exert either protumorigenic or antitumorigenic functions.47 
The most popular “don't eat me” signals including CD47 and 
CD24 have been extensively studied, and drugs targeted at 
these molecules are currently under prudent trials.48,49 High 
expressions of CD47 were also found to be associated with 
worse prognoses in various types of tumors.50 Through pre-
vious researches, innate immunity might play a more im-
portant role in the field of antitumor therapies. However, 
clinical significances of different innate immune statuses ob-
served among IPSLUAD subgroups need further systematic 
explorations.

There were several limitations that should be stated in the 
present study. First, missing data and selection biases were 
inevitable as this was a retrospective study. Second, values 
of gene expressions extracted from RNA-seqs or microarrays 
were all relative. Thus, absolute thresholds for stratifications 
among different cohorts could not be calculated. Since me-
dian cutoff values were used in each data set, accurate ex-
ternal validations would be needed in the future. Third, due 
to lack of data about immunotherapies, we were unable to 
investigate relationships between IPSLUADs and responses 
of ICIs.

T A B L E  5  Correlation analysis between IPSLUAD and immune 
cell markers

Marker

IPSLUAD

P 
value

Low, median 
(IQR)

High, median 
(IQR)

CD8+ T cell

CD8A 2.39 (1.87, 2.95) 2.55 (1.82, 3.18) 0.148

CD8B 1.56 (1.08, 2.17) 1.68 (1.13, 2.35) 0.136

CD4+ T cell

CD4 4.36 (3.80, 4.71) 4.19 (3.70, 4.60) 0.035

Neutrophil

CD66b 0.12 (0.04, 0.44) 0.06 (0.02, 0.15) <0.001

CD11b 2.79 (2.26, 3.27) 2.72 (2.06, 3.22) 0.315

Natural killer cell

CD56 0.42 (0.23, 0.71) 0.30 (0.16, 0.61) 0.001

CD16 4.36 (3.78, 4.94) 4.61 (4.03, 5.16) <0.001

CD94 0.41 (0.26, 0.68) 0.50 (0.30, 0.79) 0.014

M1 Macrophage

CD86 2.81 (2.27, 3.18) 2.87 (2.41, 3.31) 0.139

CD80 1.04 (0.67, 1.35) 1.04 (0.72, 1.40) 0.533

iNOS 0.57 (0.34, 0.90) 0.65 (0.37, 0.97) 0.120

M2 Macrophage

CD163 3.65 (3.07, 4.15) 3.75 (3.03, 4.39) 0.178

CD206 3.79 (2.92, 4.32) 3.49 (2.64, 4.17) 0.033

Monocyte

CD14 4.86 (4.40, 5.26) 5.00 (4.46, 5.48) 0.043

CD33 1.31 (0.92, 1.72) 1.24 (0.83, 1.62) 0.156

CD172a 3.49 (3.06, 3.84) 3.56 (3.08, 3.94) 0.107

B cell

CD19 1.65 (0.94, 2.40) 1.25 (0.78, 1.76) <0.001

CD79A 4.03 (3.02, 4.78) 3.40 (2.76, 4.18) <0.001

Dendritic cell

CD11c 2.90 (2.50, 3.38) 2.77 (2.39, 3.28) 0.035

CD205 1.77 (1.39, 2.13) 1.82 (1.38, 2.27) 0.160

HLA-
DRA

8.17 (7.62, 8.68) 8.00 (7.32, 8.46) 0.002

Tfh

BCL6 3.71 (3.46, 4.00) 3.58 (3.34, 3.90) 0.001

CD185 0.16 (0.06, 0.35) 0.10 (0.04, 0.20) <0.001

CD278 1.27 (0.85, 1.69) 1.31 (0.90, 1.82) 0.417

Th17

CD196 0.23 (0.10, 0.41) 0.13 (0.05, 0.28) <0.001

RORC 3.39 (2.85, 3.86) 3.20 (2.52, 3.59) <0.001

STAT3 4.82 (4.57, 5.03) 4.76 (4.46, 4.98) 0.033

Th1

CD183 2.26 (1.70,2.79) 2.15 (1.60, 2.73) 0.472

(Continues)

Marker

IPSLUAD

P 
value

Low, median 
(IQR)

High, median 
(IQR)

T-bet 1.00 (0.73, 1.48) 1.00 (0.64, 1.56) 0.410

STAT1 4.89 (4.53, 5.30) 5.35 (4.86, 5.75) <0.001

STAT4 1.80 (1.51, 2.18) 1.75 (1.38, 2.25) 0.331

Treg

FOXP3 1.96 (1.47, 2.38) 1.98 (1.57, 2.40) 0.572

STAT5B 3.46 (3.27, 3.68) 3.39 (3.13, 3.60) 0.002

TGFβ 4.32 (3.99, 4.60) 4.26 (3.77, 4.66) 0.619

CD304 3.77 (3.43, 4.18) 3.85 (3.35, 4.24) 0.612

HELIOS 1.71 (1.37, 1.96) 1.79 (1.44, 2.06) 0.038

Significant values of P < 0.05 is indicated in bold.

T A B L E  5  (Continued)
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F I G U R E  8  Different immune statuses between low-risk and high-risk groups in TCGA-LUAD cohort. A and B, Significant enrichments of 
immune-related pathways among high-risk patients were indicated through gene set enrichment analysis (GSEA). C and D, Gene sets between low-
risk and high-risk groups were analyzed through expression profiles of the two enrichments
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5 |  CONCLUSIONS

In conclusion, a robust immune-related prognostic signature 
was developed and validated in nine independent data sets. 
Different innate immune statuses were observed between 
low-risk and high-risk groups. This signature may serve as 
a promising prognostic biomarker for LUADs in the future.
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