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ABSTRACT
Introduction  The study aimed to evaluate Choroidal 
Vascularity Index (CVI) of Haller’s and Sattler’s layers and 
their relationships with choroidal and retinal thickness, 
volumes measured on enhanced depth imaging–optical 
coherence tomography (OCT) scans in the eyes of patients 
without diabetes, patients with diabetes with no diabetic 
retinopathy (DR) and patients with diabetes and DR.
Research design and methods  Retrospective analysis 
of 165 eyes from 84 Singapore Indian Eye Study-2 study 
participants (group 1: no diabetes, group 2: diabetes 
with no DR and group 3: with DR). Groups 1 and 2 were 
matched by age and gender from group 3.
Results  In the eyes of patients with diabetes without 
DR, the macular CVI of Haller’s but not Sattler’s layer was 
significantly reduced compared with eyes of patients 
without diabetes. Eyes with >5 years of diabetes have 
significantly decreased CVI of Sattler’s layers (mean 
difference=0.06 ± 0.10, p=0.04) and also decreased 
subfoveal choroidal volume (mean difference=0.89 ± 0.16 
mm3, p=0.02), compared with those with ≤5 years of 
diabetes.
Conclusion  Diabetic eyes without DR had significantly 
lower CVI of macular Haller’s layer than those of healthy 
controls. With a longer duration of diabetes, CVI of 
subfoveal Sattler’s layer and choroidal volume continue 
to decrease, irrespective of diabetic control, suggesting 
that early diabetic choroidopathy mainly affects larger 
choroidal veins initially before medium-sized arterioles. 
The CVI of macular Haller’s layer could potentially be used 
as a marker on spectral domain OCT imaging in newly 
diagnosed patients with diabetes for the onset of DR and 
as a possible prognostication tool in diabetic eyes. Future 
prospective longitudinal studies in diabetic eyes would 
be useful in establishing the relationship between CVIs of 
Haller’s and Sattler’s layer with visual acuity as a marker of 
photoreceptor health and visual prognosis.

INTRODUCTION
Diabetic retinopathy (DR) is a major cause of 
visual loss worldwide and is estimated to affect 
up to 35% of patients with diabetes.1 The 
pathogenesis of DR is primarily attributed 
to a dysregulation of the retinal vascula-
ture involving a breakdown of the blood–
retinal barrier.2 Recently, the role of diabetic 

choroidopathy (DC) in the pathogenesis of 
DR3 4 and its complications of choroidal thin-
ning and decreased vision in DR have been of 
interest. The choroid is essential is providing 
nutrients and oxygenation to the outer retina 
layers.5 The choroidal vasculature is subdi-
vided into small vessels in the superficial 

Significance of this study

What is already known about this subject?
►► Diabetic retinopathy (DR) is a major cause of visual 
loss worldwide and affects up to 35% of patients 
with diabetes.

►► However, the pathogenesis of early diabetic choroi-
dopathy (DC) is still not well understood.

►► Earlier studies have reported choroidal thinning in 
the eyes of patients with diabetes compared with 
those of patients without diabetes, and a thinner 
choroid in eyes with a longer duration of diabetes. 
Furthermore, the Choroidal Vascularity Index (CVI) 
is decreased in the eyes of patients with diabetes 
compared with those of patients without diabetes.

►► No other study has looked at the differential chang-
es of CVI of Haller’s and Sattler’s layers separately 
in relation to changes in choroidal thickness (CT) in 
early DC. The relationships of CT, retinal thickness 
(RT), and their volumes with the vascular sublayers 
of Sattler and Haller have also not been established 
in the pathogenesis of DC.

What are the new findings?
►► Eyes of patients with diabetes with no DR have a 
lower macular CVI of Haller’s layer, but not Sattler’s 
layer, compared with those of healthy control eyes, 
although there were no significant differences in CTs 
and RTs or volumes between these two groups.

►► Interestingly, patients with diabetes with a disease 
duration of more than 5 years had a decreased cho-
roidal volume and subfoveal CVI of Sattler’s layer, but 
not CT or CVI of Haller’s layer compared with pa-
tients with diabetes with a disease duration of less 
than 5 years.

►► Glycosylated hemoglobin levels were not associated 
with changes of CTs, RTs or volumes or CVI.

http://drc.bmj.com/
http://orcid.org/0000-0002-0362-7285
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choriocapillaris, medium-sized vessels in the Sattler’s 
layer consisting of mostly choroidal arterioles and 
deeper large-sized vessels in the Haller’s layer composed 
of mostly choroidal veins.6 Histopathological analysis 
of diabetic choroids revealed changes such as microan-
eurysms, loss of choriocapillaris, drusenoid deposits on 
Bruch’s membrane, polymorphonuclear leukocytes in 
the choriocapillaris and choroidal neovascularization.7–10 
Indocyanine green angiography has affirmed the find-
ings of histopathological studies demonstrating reduced 
blood flow in the subfoveal choroid as evidenced by 
hypofluorescence and late filling that represent areas 
of vascular compromise.11 Choroidal perfusion is found 
to be associated with photoreceptor function, and it is 
hypothesised that choroidal hypoperfusion may lead to 
a reduced supply of oxygen and nutrients to the retinal 
pigment epithelium (RPE) and photoreceptors and have 
a subsequent profound impact on vision.12 13 This suggests 
that DC should be evaluated in detail for prognostica-
tion purposes, and as a potential therapeutic target in 
improving choroidal perfusion that could potentially 
attenuate photoreceptor damage and improve visual 
prognosis.

The usage of enhanced depth imaging (EDI) protocol 
for spectral domain optical coherence tomography (SD-
OCT) has allowed detailed non-invasive imaging of the 
choroid.14 Studies have been published earlier to assess 
choroidal thickness (CT) in DR, with conflicting results. 
While a few studies showed the thickening of CT in eyes 
with DR compared with healthy eyes,15 16 most studies 
report a decrease in CT in the eyes of patients with diabetes 
compared with patients without diabetes.15 17–20 The longer 
the duration of diabetes, the thinner the choroid in these 
eyes.15 21 Of recent, the Choroidal Vascularity Index (CVI) 
has been proposed to be a more robust and stable measure 
of the vascularity of the choroid and choroidal health 
compared with measuring CT alone due to physiolog-
ical and systemic-related variations in the CT.22 23 CVI is 
decreased in the eyes of patients with diabetes compared 
with those without diabetes.24 25 However, the pathogenesis 
of early DC is still not well understood. To our knowledge, 

no other study has looked at the differential changes of 
CVI of Haller’s and Sattler’s layers separately in relation to 
changes in CT in the early DC. The relationships of CT, 
retinal thickness (RT), and their volumes with the vascular 
sublayers of Sattler’s and Haller’s have also not been estab-
lished in the pathogenesis of DC.

Thus, we aimed to evaluate the CVIs of Haller’s and 
Sattler’s layers and their relationships with CT, RT, and 
volumes in eyes of patients without diabetes, patients with 
diabetes with no DR, and patients with diabetes and DR.

METHODS
This study was conducted as part of a study cohort 
from the Singapore Indian Eye Study-2 (SINDI-2), a 
population-based survey of major eye diseases in ethnic 
Indians aged 40–80 years living in the southwestern part 
of Singapore conducted from August 2007 to December 
2009.26 Written informed consent was obtained from the 
subjects after explanation about the details of the study 
and any potential risks and consequences involved with 
the study. Details of the study design and methodology 
have been reported elsewhere.26

In this study, we selected patients from SINDI-2 with at 
least mild non-proliferative DR and then selected age-
matched, gender-matched, and ethnicity-matched controls. 
We divided the subjects into three groups as follows: group 
1: healthy subjects without diabetes; group 2: subjects with 
diabetes without DR; and group 3: subjects with diabetes 
with at least mild or worse DR status. Subjects who met 
the following exclusion criteria were not included: any 
subjects with diabetic macular oedema, any treatment for 
DR previously, such as focal laser, panretinal photocoagula-
tion or intravitreal injections, previous retinal surgery and 
other retinal or choroidal pathology, such as age-related 
macular degeneration, vitreomacular traction, epiretinal 
membrane, macula hole, uveitis, or systemic disease that 
might affect CT (eg, uncontrolled hypertension, systemic 
lupus erythematosus, anemia, leukemia, and obstructive 
sleep apnea).

Each participant underwent a standardized examina-
tion. Ocular biometry, including axial length (AL), was 
measured using non-contact partial coherence inter-
ferometry (IOL Master V3.01, Carl Zeiss Meditec AG, 
Jena, Germany). A detailed interviewer-administered 
questionnaire was used to collect demographic data, 
medical history (eg, hypertension, diabetes, and hyper-
lipidemia), ocular history, and medication use from all 
participants. Non-fasting venous blood samples were 
analyzed at the National University Hospital Refer-
ence Laboratory for biochemical testing of serum total 
cholesterol, triglycerides, and glycosylated hemoglobin 
(HbA1C). DR was graded as no DR, ‘mild/moderate 
DR’, ‘severe non-proliferative diabetic retinopathy 
(NPDR)’ or ‘proliferative DR’ based on the modified 
Early Treatment Diabetic Retinopathy Study (ETDRS) 
retinopathy severity scale.27

Significance of this study

How might these results change the focus of research or 
clinical practice?

►► Our results suggest that DC mainly affects larger choroidal veins 
initially before medium-sized arterioles in the early pathogenesis 
of DR.

►► The CVI of macular Haller’s layer could potentially be used as a 
marker on spectral domain optical coherence tomography imaging 
in newly diagnosed diabetics for the onset of DR and as a possible 
prognostication tool in the eyes of patients with diabetes.

►► Future prospective longitudinal studies in the eyes of patients with 
diabetes would be useful in establishing the relationship between 
CVIs of Haller’s and Sattler’s layer with visual acuity as a marker of 
photoreceptor health and visual prognosis.
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Retinal and choroidal optical coherence tomography (OCT) 
imaging acquisition
The retinal and choroidal architectural parameters were 
determined using EDI mode of Spectralis SD-OCT (Spec-
tralis, wavelength: 870 nm; Heidelberg Engineering, 
Heidelberg, Germany). OCT raster scans with EDI were 
acquired at the 3×3 mm macular region of both eyes of 
each subject. A volume scan of 20°×20° containing at least 
31 B-scans (each composed of 1536 A-scans) centering 
at the fovea was obtained for each eye. Individual B-scan 
was an average of 25 frames and 240 mm apart from the 
consecutive B-scan. All the scans included in the study 
had a quality index of at least 18, which is considered an 
acceptable quality.

Following Spectralis user manual guidelines, subjects’ 
keratometry readings and refraction were entered into the 
Spectralis software before imaging the retina and choroid 
to estimate optical magnification, thus allowing for more 
accurate comparisons across individuals. However, Spec-
tralis OCT does not allow AL to be entered, and hence our 
methods might still have residual errors (2%–7%)21 due to 
ocular magnification from methods that additionally use 
AL.28

The RT and CT were measured using the in-built 
callipers tool at five points (subfoveal, 0.5 and 1.0 mm 
temporal and nasal to the fovea each). The subfoveal CT 
was defined as the vertical distance between the ocular 
surface of the RPE and the choroidal–scleral interface 
(CSI) at the fovea, defined by a hyper-reflective dot 
echo at the innermost retinal layer. The macular CT was 
defined as the CT within the entire 3×3 mm macular 
area. The RT was measured manually using the calliper 
tool in the software from the inner surface of the RPE 
to the inner limiting membrane. Subfoveal choroidal 
and retinal volumes were recorded from the volume 
map with the ETDRS grid (central 1 mm). Thickness 
and volume of each of the following retinal layers were 
individually measured by the automatic segmentation 
algorithm on the imaging software Heyex (Heyex SP-X 
V.6.4.8.116): retinal nerve fiber layer, retinal ganglion 
cell, inner plexiform layer, inner nuclear layer, outer 
plexiform layer, outer nuclear layer RPE and photo-
ceptor layer.

Image delineation
Raw OCT images were loaded on a custom-written appli-
cation on MATLAB that enabled delineation for detailed 
morphological and vascular analyses.29–31 Three struc-
tures were delineated: the Bruch’s membrane, the junc-
tion between the Sattler’s and the Haller’s layer, and the 
CSI. Bruch’s membrane was delineated automatically by 
the Spectralis OCT device, whereas the foveal centre and 
three to four most prominent points corresponding to 
the junction between the Sattler’s and the Haller’s layers, 
and the CSI were manually marked by a single author 
(PG) using our custom application.

Measurement of choroidal vascular parameters using 
MATLAB
For each eye, the horizontal cross-sectional scan passing 
through the fovea was identified. Based on this cross-
sectional scan, we defined and calculated (in MATLAB) 
the following choroidal vascular parameters.

Choroidal vascular area within foveal and macular regions
To measure the CVI, image binarization was performed 
using our custom-written application on MATLAB, as 
described previously.29 The choroidal area of interest 
was selected using the polygon tool and was added to 
the region of interest manager. After converting the 
image into 8 bit, Niblack autolocal thresholding was 
applied,32 which gave the mean pixel value with SD for 
all the points. On the OCT scans, the luminal area (LA) 
was highlighted by applying the colour threshold. Black 
areas within the choroid after binarization were assumed 
to represent stromal area (SA), which corresponds to 
the interstitial or stromal component of the choroid. 
The CVI was calculated respectively for the Sattler’s layer 
(defined as the region between the Bruch’s membrane 
and the lower border of the Sattler’s layer) and Haller’s 
layer (defined as the region between the lower border of 
the Sattler’s layer and the CSI (figure 1). The area of this 
region was measured within the subfovea as well as the 
macula, as described previously.29

In the previous work published by our group, we had 
demonstrated excellent intragrader (interclass correla-
tion (ICC): 0.97–0.99 for TCA and ICC: 0.91–0.98 for 
LA) and intergrader reliability (ICC: 0.90–0.97 for TCA 
and ICC: 0.89–0.97 for LA) for CVI measurements using 
the same binarization method.22

Statistical analysis
All analyses were performed in SPSS V.20.0 (IBM Corp.) 
and statistical significance was evaluated at the 5% level. 
All quantitative variables were estimated using mean and 
SD. Qualitative or categorical variables were described as 
frequencies (n) and percentages (%). Independent t-test 
and χ2 tests were used for continuous and categorical 
variables, respectively, across all groups (overall), model 
1 (group 1 vs group 2), and model 2 (group 2 vs group 
3). CT and CVI were analyzed independently using a 
generalised linear effects model, adjusted separately for 
age, gender, hypertension, duration of diabetes, and AL.

Data and resource availability
The datasets and resources generated and analyzed 
during the current study are not publicly available as it 
belongs to the Singapore Eye Research Institute but are 
available from the corresponding author on reasonable 
request.

RESULTS
A total of 167 eyes from 84 patients which were age-
matched and gender-matched across three different 
groups with EDI-OCT scans were included in the study. 
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The overall mean age was 50.8±5.8 years (age range 
43–66), and the mean age was 50.8±6.1 (age range 
44–61), 50.3±5.1 (age range 43–62), and 53.6±7.5 (age 
range 44–62) years for groups 1, 2 and 3, respectively. 
The baseline demographic characteristics of the study 
group are shown in table 1. There are significantly more 
subjects with hypertension in group 2 (68.0%) and group 

3 (83.3%) compared with group 1 (39.2%) (p<0.001), 
and group 3 subjects had a significantly longer duration 
of diabetes than group 2 subjects (12.33±7.14 vs 4.24±6.76 
years, p<0.001).

Comparing the three groups, we found that there 
were no significant differences in terms of volume and 
thickness of all retinal layers (table  2). In eyes with 
DR (group 3), subfoveal CT (269.50±64.67 μm) and 
choroidal volume (7.38±1.52 mm3) were significantly 
reduced compared with eyes without DR (subfoveal CT: 
307.16±62.47 μm vs 312.14±68.61 μm in groups 2 and 1, 
respectively, p=0.0047; choroidal volume: 8.35±1.50 mm3 
vs 8.61±1.69 mm3 in groups 2 and 1, respectively, p=0.02), 
respectively (table  2). There were no significant differ-
ences in CT and volume between groups 1 and 2 (model 
1, p>0.05 for all). After adjusting for age, gender, hyper-
tension, AL, and groups of eyes, we found that decreased 
choroidal volume was still associated with group 3 (OR 
−1.10, 95% CI −1.88 to to 0.33) but not subfoveal CT 
(table 3).

In eyes with DR (group 3), CVI of the macula’s Haller’s 
layer was also significantly reduced compared with eyes 
without DR (group 1 and group 2 separately) (0.42±0.06 
um vs 0.44±0.05 vs 0.45±0.05, respectively, p=0.02) 
(table 2). In models 1 and 2, the CVI of macular Haller’s 
layer was found to be reduced in group 2 compared with 
group 1, and in group 3 compared with group 2, sepa-
rately (p<0.05, table 2). There were no significant differ-
ences in the subfoveal or macular CVI of the Sattler’s layer 
across all three groups (overall) or in model 1 or 2. After 
adjusting for age, gender, hypertension, AL and groups 
of eyes in separate models, CVI of macular Haller’s layers 
was significantly associated with group 2 (OR −0.02, 95% 
CI −0.03 to 0) and group 3 (OR −0.03, 95% CI −0.05 to 
0). The CVIs of subfoveal and macular Sattler’s layers and 
subfoveal Haller’s layers were not associated with either 
group (p>0.05).

We did a subanalysis comparing patients with diabetes 
with diabetes duration of ≤5 years and those >5 years 
of the disease. Patients with diabetes with a duration 
of diabetes of >5 years had a significantly decreased 

Table 1  Baseline characteristics of participants in the study (N=167)

Group 1
(n=74)

Group 2
(n=75)

Group 3
(n=18) P value*

Age (years), mean (SD) 50.8 (6.1) 50.3 (5.1) 53.6 (7.5) 0.09

Gender, male, n (%) 41 (55.4) 41 (54.7) 10 (55.6) 0.99

Hypertension, n (%) 29 (39.2) 51 (68.0) 15 (83.3) <0.001

HbA1c (%), mean (SD) 5.75 (0.37) 8.18 (1.90) 9.39 (1.71) <0.001

Duration of diabetes (years), mean (SD) 0 4.24 (6.76) 12.33 (7.14) <0.001

Axial length (mm), mean (SD) 23.58 (0.93) 23.50 (0.84) 23.35 (0.99) 0.59

Data are expressed as numbers (percentages) for categorical variables or means (SDs) for continuous variables.
Bold values are statistically significant.
*Based on χ2 or Wilcoxon test (categorical), or independent sample t-tests, comparing characteristics among participants across all three 
groups.
HbA1c, glycosylated hemoglobin.

Figure 1  Delineation of choroid (A) Sattler’s and (B) Haller’s 
layers obtained by our custom-written application on 
MATLAB on choroidal images acquired by enhanced depth 
imaging spectral domain optical coherence tomography. 
Black areas indicate vascular areas and white areas indicate 
stromal areas.
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subfoveal choroidal volume (8.10±1.41 mm3 vs 8.99±1.57 
mm3, p=0.02) and CVI of subfoveal Sattler’s layers 
(0.41±0.11 vs 0.47±0.01, p=0.04), compared with those 
with a duration of diabetes of 5 years or less. CT, CVI of 
macular Sattler’s layer and CVI of subfoveal and macular 
Haller’s layer were not significantly different between 
these two groups (p>0.05 for all) (table 4). HbA1c levels 
had no significant associations with the choroidal thick-
ness or CVI (not shown).

DISCUSSION
In the current study, we evaluated the CVI of Haller’s 
and Sattler’s layers at the subfoveal and entire macular 
region and their relationships with choroidal and RT and 
volumes across a spectrum of eyes (normal, diabetic eyes 
with no DR and eyes with DR). CT and choroidal volume 
were decreased in eyes with DR compared with those with 
no DR. Diabetic eyes with no DR have a lower macular 
CVI of Haller’s layer, but not Sattler’s layer, compared 

Table 2  Retinal and CT and volume measurements and CVI of macular and subfoveal layers (N=167)

Group 1
(n=74)

Group 2
(n=75)

Group 3
(n=18)

Overall P 
value*

Model 1
P value†

Model 2
P value‡

Total retina volume (mm3) 8.53 (0.38) 8.49 (0.38) 8.40 (0.45) 0.45 0.55 0.39

Subfoveal retina thickness (μm) 277.54 (24.81) 275.13 (24.86) 285.94 (21.75) 0.25 0.56 0.09

Total RNFL volume (mm3) 0.93 (0.12) 0.91 (0.11) 0.90 (0.11) 0.47 0.30 0.76

Subfoveal RNFL thickness (μm) 16.71 (4.78) 16.27 (5.96) 17.94 (5.01) 0.49 0.62 0.27

RGC volume (mm3) 1.03 (0.08) 1.10 (0.09) 1.00 (0.09) 0.19 0.09 0.92

Subfoveal RGC thickness (μm) 20.24 (6.03) 18.99 (6.02) 20.89 (4.58) 0.30 0.21 0.21

Inner plexiform layer volume 
(mm3)

0.85 (0.07) 0.83 (0.06) 0.83 (0.05) 0.16 0.08 0.91

Subfoveal inner plexiform 
thickness (μm)

21.86 (4.71) 20.97 (4.76) 23.22 (4.01) 0.16 0.26 0.07

INL volume (mm3) 1.07 (0.07) 1.01 (0.08) 1.00 (0.03) 0.06 0.46 0.70

Subfoveal INL thickness (μm) 26.82 (5.04) 27.41 (6.32) 29.33 (5.19) 0.25 0.53 0.24

OPL volume (mm3) 0.76 (0.07) 0.77 (0.07) 0.75 (0.04) 0.78 0.63 0.53

Subfoveal OPL thickness (μm) 27.82 (6.92) 28.56 (0.81) 29.06 (3.80) 0.70 0.52 0.77

ONL volume (mm3) 1.67 (0.19) 1.70 (0.14) 1.65 (0.25) 0.35 0.23 0.21

Subfoveal ONL thickness (μm) 79.78 (12.81) 78.80 (10.59) 80.22 (12.73) 0.84 0.61 0.62

Retinal pigment epithelial volume 
(mm3)

0.45 (0.04) 0.44 (0.04) 0.45 (0.06) 0.51 0.41 0.33

Subfoveal retinal pigment 
epithelium thickness (μm)

18/08 (1.96) 17.84 (2.01) 18.44 (4.58) 0.60 0.46 0.39

Photoreceptor layer volume 
(mm3)

2.28 (0.07) 2.45 (0.87) 2.72 (1.34) 0.06 0.09 0.29

Subfoveal photoreceptor layer 
thickness (μm)

88.24 (4.18) 92.39 (20.42) 92.39 (32.13) 0.07 0.09 0.32

Choroidal volume (mm3) 8.61 (1.69) 8.35 (1.40) 7.38 (1.52) 0.02 0.32 0.016

Subfoveal CT (μm) 312.14 (68.61) 307.16 (62.47) 269.50 (64.67) 0.047 0.65 0.025

CVI across different groups

 � Subfoveal Haller’s layer (SD) 0.46 (0.07) 0.45 (0.07) 0.44 (0.0) 0.33 0.21 0.71

 � Subfoveal Sattler’s layer (SD) 0.46 (0.11) 0.45 (0.10) 0.40 (0.15) 0.13 0.66 0.08

 � Macular Haller’s layer (SD) 0.45 (0.05) 0.44 (0.05) 0.42 (0.06) 0.02 0.034 0.21

 � Macular Sattler’s layer (SD) 0.46 (0.08) 0.44 (0.07) 0.42 (0.12) 0.17 0.17 0.36

Data are expressed as numbers (percentages) for categorical variables or means (SDs) for continuous variables.
Bold values are statistically significant.
*Based on χ2 or Wilcoxon test (categorical), or independent sample t-tests, comparing characteristics across all three groups.
†Based on χ2 or Wilcoxon test (categorical), or independent sample t-tests, comparing characteristics between groups 1 and 
2.
‡Based on χ2 or Wilcoxon test (categorical), or independent sample t-tests, comparing characteristics between groups 2 and 
3.
CT, choroidal thickness; CVI, Choroidal Vascularity Index; INL, inner nuclear layer; ONL, outer nuclear layer; OPL, outer 
plexiform lay; RGC, retinal ganglion cell; RNFL, retinal nerve fiber layer.
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with that of healthy control eyes. There were no signifi-
cant differences in choroidal and RT or volumes between 
these two groups. The CVI of subfoveal Haller’s layer is 
significantly associated with DR. Interestingly, patients 
with diabetes with a disease duration of more than 5 
years had a decreased choroidal volume and subfoveal 
CVI of Sattler’s layer, but not CT or CVI of Haller’s layer, 
compared with patients with diabetes with a disease dura-
tion of fewer than 5 years. HbA1c levels were not associ-
ated with changes of CT, RT, or volumes or CVI.

We found a decrease in CT and choroidal volume in 
eyes with at least mild NPDR compared with eyes with no 
DR. The relationship between CT and volume and DR 
severity remains controversial in treatment-naïve eyes in 
the current literature. Earlier studies have proposed that 
CT is reduced in eyes with DR compared with eyes with 
no DR due to possible vascular sclerosis and connective 
tissue changes in the aging unhealthy choroid in type 
2 diabetes.33 Also, type 2 diabetes is often accompanied 
by systemic pathologies such as hypertension or hyper-
cholesterolemia, which have cumulative effects on the 
choroidal thickness and resultant choroidal thinning.19 20 
On the contrary, Kim et al showed an increase in CT in 
eyes with mild NPDR before its decrease with worsening 
DR severity, but concluded that thickening of the choroid 
in the early stages of DR is likely due to stromal thick-
ening and not contributed by the vascular component.34 
Borrelli et al described the association between foveal 
choriocapillaris perfusion and choroidal structural OCT 
parameters (LA, SA and CVI) in healthy subjects as a 
reference for comparison of disease states.35 His findings 
suggested that while an initial expansion of the choroid 
is accompanied by an increase in choriocapillaris perfu-
sion, a further increase in LA and SA values seems to be 
associated with a progressive reduction in choriocapillaris 
perfusion, explaining why initial choroidal thickening in 
early DR might eventually compromise choriocapillaris 
perfusion and lead to choroidal thinning.35 In our study, 
we did not manage to assess the CVI of the choriocapil-
laris, and future studies would be needed to confirm such 
a finding. Nonetheless, other inciting physiological and 
systemic factors affecting CT are likely to account for the 
discrepancies in the relationship between CT and DR.

What is novel in our study is that we found a differen-
tial decrease of macula CVI of Haller’s layer first between 
diabetic eyes with no DR compared with healthy eyes, but 
not of CVI of Sattler’s layer. Previously, Tan et al24 eval-
uated the CVI in patients with diabetes (both with and 

Table 3  Relationships of choroidal thickness, volume, CVI of Haller’s and Sattler’s layers and diabetic retinopathy status

Group

Choroidal volume P 
value

Subfoveal CT P 
value

CVI subfoveal 
Haller’s layer P 

value

CVI subfoveal 
Sattler’s layer P 

valueOR (95% CI)* OR (95% CI)* OR (95% CI)* OR (95% CI)*

1 1 – 1 – 1 – 1 –

2 −0.35 (−0.94 to 0.13) 0.16 2.56 (−21.39 to 26.51) 0.834 −0.02 (−0.04 to 0.01) 0.14 −0.01 (−0.05 to 0.03) 0.58

3 −1.10 (−1.88 to −0.33) 0.005 −27.56 (−65.86 to −10.74) 0.158 −0.02 (−0.06 to 0.02) 0.293 −0.05 (−0.12 to 0.01) 0.09

Group

CVI macular Haller’s 
layer P 

value

CVI macular Sattler’s 
layer

P valueOR (95% CI)* OR (95% CI)*

1 1 – 1 –

2 −0.02 (−0.03 to 0.00) 0.046 −0.02 (−0.05 to 0.00) 0.069

3 −0.03 (−0.05 to 0.00) 0.019 −0.03 (−0.08 to 0.01) 0.108

Bold values are statistically significant.
*ORs and 95% CIs adjusted for age, gender, hypertension, axial length and three separate groups.
CVI, Choroidal Vascularity Index.

Table 4  Choroidal thickness and volume measurements 
and CVI comparing subjects segregated according to the 
duration of diabetes (N=75, excluding patients without 
diabetes)

Duration of 
diabetes

<5 years
(n=54)

>5 years
(n=21)

P 
value*

Choroidal 
volume, mm3 
(SD)

8.99 (1.57) 8.10 (1.41) 0.02

Subfoveal CT 
(μm) (SD)

327.52 (64.93) 299.24 (60.24) 0.08

CVI, subfoveal 
Haller’s layer

0.45 (0.07) 0.45 (0.07) 0.75

CVI, subfoveal 
Sattler’s layer

0.47 (0.10) 0.41 (0.11) 0.04

CVI, macular 
Haller’s layer

0.44 (0.05) 0.44 (0.05) 0.99

CVI, macular 
Sattler’s layer

0.45 (0.07) 0.42 (0.07) 0.67

Data are expressed as numbers (percentages) for categorical 
variables or means (SDs) for continuous variables.
Bold values are statistically significant.
*Based on χ2 or Wilcoxon test (categorical), or independent 
sample t-tests, comparing characteristics between participants 
with 5 years and less or more than 5 years of diabetes duration.
CT, choroidal thickness; CVI, Choroidal Vascularity Index.
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without DR) and showed reduced CVI values compared 
with controls. However, they analyzed a smaller group 
of 38 eyes. Gupta et al25 and Kim et al36 showed that CVI 
was significantly decreased in eyes with worsening DR 
and DME compared with controls. Our current study 
demonstrated that patients with diabetes with a disease 
duration of more than 5 years had a decreased subfoveal 
CVI of Sattler’s layer compared with those with shorter 
disease duration. From this, we cautiously speculate that 
a decrease in CVI of macular Haller’s layer precedes an 
actual decrease in CT in diabetic eyes before the onset of 
DR. To the best of our knowledge, this is the first study 
to suggest that in DC, choroidal vascularity is decreased, 
affecting Haller’s layer first as shown by the initial part of 
our results, followed by a decrease in CVI of Sattler’s layer 
after a longer duration of disease.

The sequential involvement of decreased vascularity of 
Haller’s layer followed by Sattler’s layer in the pathogenesis 
of DR needs to be further explored. Evidence of pre-DR 
choroidal microvasculature parameter disturbances in 
patients with diabetes have been reported.18 Choroidal 
blood flow deficit is an early pathological change in DR 
in an animal model,26 with a reduction in the size and 
density of choroidal vessels37 38 and an associated decrease 
in choroidal blood flow in diabetic eyes before DR manifes-
tation.39 Choroidal abnormalities in diabetic eyes include 
microaneurysms, choriocapillaris obstruction, vascular 
remodelling with increased tortuosity, vascular dropout 
and areas of vascular non-perfusion.11 Ferrara et al40 
demonstrated in a histological study a loss of intermediate 
and large blood vessels in the Sattler’s and Haller’s layer 
in diabetic eyes. Adhi et al41 showed that on SD-OCT, the 
mean subfoveal large and medium choroidal vessel layer 
thickness and subfoveal CT were significantly reduced in 
eyes with DR compared with controls. In a subgroup anal-
ysis of eyes with more severe DR such as in proliferative DR, 
subfoveal choriocapillaris thickness was further reduced 
compared with control eyes. Borrelli et al compared OCT 
angiography changes in healthy and NPDR eyes and found 
that both retinal and choroidal perfusions were affected 
in NPDR eyes. There was, however, a strong relationship 
between choriocapillaris perfusion and photoreceptor 
health measured by ellipzoid zone reflectivity in NPDR but 
not healthy eyes, implying that choriocapillaris perfusion 
was affected early on in diabetes even before retinal vessels’ 
changes manifested.42 Together with our study findings, 
these observations suggest that DC might preferentially 
affect larger choroidal veins (Haller’s layer) initially before 
medium-sized arterioles (Sattler’s layer) and smaller-sized 
choriocapillaris in the early pathogenesis of DC. Although 
no histological evidence has been documented in the 
literature on the exact temporal sequence of decreased 
choroidal vascularity of different choroidal layers in DR 
pathogenesis, we postulate that with time, the decrease 
in intermediate and large blood vessels in patients with 
diabetes would eventually lead to a decrease in CT.

The duration of the disease had an effect on CVI that 
is independent of HbA1c levels in diabetics. Endo et al 

showed similar findings to our study of decreased CVI 
in eyes with a longer duration compared with eyes with a 
shorter duration of diabetes.21 Also, there were no signif-
icant differences in RT or volume across all three groups 
of eyes, suggesting that the retinal layers are relatively 
preserved in the pathogenesis of DR at the early onset.

The strengths of our study include the inclusion of 
only treatment-naïve patients, and inclusion of AL in the 
adjustment of analyses for retinal and choroidal thick-
ness and volumes. The main limitation is that our study is 
cross-sectional and we are unable to confirm the tempo-
rality of the results. The analysis of choroidal changes 
using CT may have some limitations due to various factors 
such as age, sex, diurnal variation, smoking, systolic 
blood pressure, and AL, which might affect CT. In these 
respects, the CVI of Haller’s layer might be a more stable 
and objective quantitative marker in diabetic eyes and a 
possible predictor for the onset of DR. Also, due to the 
small number of eyes with more severe DR, we were not 
able to observe the differences between these groups and 
propose further insights on the continuous changes of 
CVI and CT. Furthermore, we chose to evaluate the CVI 
only at the subfoveal and macular region instead of that 
beyond the posterior pole. We are also unable to eval-
uate the CVI of the choriocapillaris, which is not resolved 
enough in cross-sectional OCT.

In conclusion, we have established greater insight 
into the pathophysiology of DC by indirectly comparing 
changes of choroidal vascularity and thickness as the 
disease progresses from healthy to affected eyes with DR. 
CT and choroidal volume were decreased in eyes with DR 
compared with those without DR. Diabetic eyes with no 
DR have a lower macular CVI of Haller’s layer compared 
with that of healthy control eyes, although there were no 
significant differences in CT and RT or volumes between 
these two groups. The CVI of macula Haller’s layer is 
significantly associated with DR. With a longer duration 
of diabetes, the CVI of subfoveal Sattler’s layer and the 
choroidal volume are reduced, irrespective of the level 
of diabetic control, suggesting DC mainly affects larger 
choroidal veins initially before medium-sized arterioles in 
the early pathogenesis of DC. The CVI of macular Haller’s 
layer could potentially be used as a marker for onset of 
DR in newly diagnosed patients on SD-OCT imaging. 
Future prospective longitudinal studies in diabetic eyes 
would be useful in establishing the relationship between 
CVIs of Haller’s and Sattler’s layers with visual acuity as 
a marker of photoreceptor health and visual prognosis.
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