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ABSTRACT

The correlation coefficient is a statistical measure often used in studies to show an association between variables or to look
at the agreement between two methods. In this paper, we will discuss not only the basics of the correlation coefficient, such
as its assumptions and how it is interpreted, but also important limitations when using the correlation coefficient, such as
its assumption of a linear association and its sensitivity to the range of observations. We will also discuss why the
coefficient is invalid when used to assess agreement of two methods aiming to measure a certain value, and discuss better
alternatives, such as the intraclass coefficient and Bland–Altman’s limits of agreement. The concepts discussed in this
paper are supported with examples from literature in the field of nephrology.
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BACKGROUND

‘Correlation is not causation’: a saying not rarely uttered
when a person infers causality from two variables occurring
together, without them truly affecting each other. Yet,
though causation may not always be understood correctly,
correlation too is a concept in which mistakes are easily
made. Nonetheless, the correlation coefficient has often
been reported within the medical literature. It estimates the
association between two variables (e.g. blood pressure and
kidney function), or is used for the estimation of agreement

between two methods of measurement that aim to measure
the same variable (e.g. the Modification of Diet in Renal
Disease (MDRD) formula and the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) formula for estimating
the glomerular filtration rate (eGFR)]. Despite the wide use of
the correlation coefficient, limitations and pitfalls for both
situations exist, of which one should be aware when drawing
conclusions from correlation coefficients. In this paper, we
aim to describe the correlation coefficient and its limitations,
together with methods that can be applied to avoid these
limitations.
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The basics: the correlation coefficient
Fundamentals

The correlation coefficient was described over a hundred years ago
by Karl Pearson [1], taking inspiration from a similar idea of corre-
lation from Sir Francis Galton, who developed linear regression
and was the not-so-well-known half-cousin of Charles Darwin [2].
In short, the correlation coefficient, denoted with the Greek char-
acter rho (q) for the true (theoretical) population and r for a sample
of the true population, aims to estimate the strength of the linear
association between two variables. If we have variables X and Y
that are plotted against each other in a scatter plot, the correlation
coefficient indicates how well a straight line fits these data. The
coefficient ranges from �1 to 1 and is dimensionless (i.e., it has no
unit). Two correlations with r ¼ �1 and r¼ 1 are shown in Figure
1A and B, respectively. The values of �1 and 1 indicate that all
observations can be described perfectly using a straight line, which
in turn means that if X is known, Y can be determined determinis-
tically and vice versa. Here, the minus sign indicates an inverse as-
sociation: if X increases, Y decreases. Nonetheless, real-world data
are often not perfectly summarized using a straight line. In a scat-
terplot as shown in Figure 1C, the correlation coefficient represents
how well a linear association fits the data.

It is also possible to test the hypothesis of whether X and Y
are correlated, which yields a P-value indicating the chance of
finding the correlation coefficient’s observed value or any value
indicating a higher degree of correlation, given that the two var-
iables are not actually correlated. Though the correlation coeffi-
cient will not vary depending on sample size, the P-value
yielded with the t-test will.

The value of the correlation coefficient is also not influenced
by the units of measurement, but it is influenced by measure-
ment error. If more error (also known as noise) is present in the
variables X and Y, variability in X will be partially due to the er-
ror in X, and thus not solely explainable by Y. Moreover, the cor-
relation coefficient is also sensitive to the range of observations,
which we will discuss later in this paper.

An assumption of the Pearson correlation coefficient is that
the joint distribution of the variables is normal. However, it has
been shown that the correlation coefficient is quite robust with
regard to this assumption, meaning that Pearson’s correlation
coefficient may still be validly estimated in skewed distribu-
tions [3]. If desired, a non-parametric method is also available
to estimate correlation; namely, the Spearman’s rank correla-
tion coefficient. Instead of the actual values of observations, the
Spearman’s correlation coefficient uses the rank of the observa-
tions when ordering observations from small to large, hence the
‘rank’ in its name [4]. This usage of the rank makes it robust
against outliers [4].

Explained variance and interpretation

One may also translate the correlation coefficient into a mea-
sure of the explained variance (also known as R2), by taking its
square. The result can be interpreted as the proportion of statis-
tical variability (i.e. variance) in one variable that can be
explained by the other variable. In other words, to what degree
can variable X be explained by Y and vice versa. For instance, as
mentioned above, a correlation of �1 or þ1 would both allow us
to determine X from Y and vice versa without error, which is

FIGURE 1: Different shapes of data and their correlation coefficients. (A) Linear association with r ¼ �1. (B) A linear association with r¼1. (C) A scatterplot through

which a straight line could plausibly be drawn, with r¼0.50. (D) A sinusoidal association with r¼0. (E) A quadratic association with r¼0. (F) An exponential association

with r¼0.50.
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also shown in the coefficient of determination, which would be
(�1)2 or 12 ¼ 1, indicating that 100% of variability in one variable
can be explained by the other variable.

In some cases, the interpretation of the strength of correla-
tion coefficient is based on rules of thumb, as is often the case
with P-values (P-value <0.05 is statistically significant, P-value
>0.05 is not statistically significant). However, such rules of
thumb should not be used for correlations. Instead, the inter-
pretation should always depend on context and purposes [5].
For instance, when studying the association of renin–angioten-
sin–system inhibitors (RASi) with blood pressure, patients with
increased blood pressure may receive the perfect dosage of RASi
until their blood pressure is exactly normal. Those with an al-
ready exactly normal blood pressure will not receive RASi.
However, as the perfect dosage of RASi makes the blood pressure
of the RASi users exactly normal, and thus equal to the blood
pressure of the RASi non-users, no variation is left between users
and non-users. Because of this, the correlation will be 0.

The linearity of correlation

An important limitation of the correlation coefficient is that it
assumes a linear association. This also means that any linear
transformation and any scale transformation of either variable
X or Y, or both, will not affect the correlation coefficient.
However, variables X and Y may also have a non-linear associa-
tion, which could still yield a low correlation coefficient, as seen
in Figure 1D and E, even though variables X and Y are clearly re-
lated. Nonetheless, the correlation coefficient will not always
return 0 in case of a non-linear association, as portrayed in
Figure 1F with an exponential correlation with r¼ 0.5. In short, a
correlation coefficient is not a measure of the best-fitted line
through the observations, but only the degree to which the
observations lie on one straight line.

In general, before calculating a correlation coefficient, it is
advised to inspect a scatterplot of the observations in order to
assess whether the data could possibly be described with a

linear association and whether calculating a correlation coeffi-
cient makes sense. For instance, the scatterplot in Figure 1C
could plausibly fit a straight line, and a correlation coefficient
would therefore be suitable to describe the association in the
data.

The range of observations for correlation

An important pitfall of the correlation coefficient is that it
is influenced by the range of observations. In Figure 2A, we illus-
trate hypothetical data with 50 observations, with r¼ 0.87.
Included in the figure is an ellipse that shows the variance of
the full observed data, and an ellipse that shows the variance of
only the 25 lowest observations. If we subsequently analyse
these 25 observations independently as shown in Figure 2B, we
will see that the ellipse has shortened. If we determine the
correlation coefficient for Figure 2B, we will also find a substan-
tially lower correlation: r¼ 0.57.

The importance of the range of observations can further be
illustrated using an example from a paper by Pierrat et al. [6] in
which the correlation between the eGFR calculated using inulin
clearance and eGFR calculated using the Cockcroft–Gault for-
mula was studied both in adults and children. Children had a
higher correlation coefficient than adults (r¼ 0.81 versus
r¼ 0.67), after which the authors mentioned: ‘The coefficients of
correlation were even better [. . .] in children than in adults.’
However, the range of observations in children was larger than
the range of observations in adults, which in itself could explain
the higher correlation coefficient observed in children. One can
thus not simply conclude that the Cockcroft–Gault formula for
eGFR correlates better with inulin in children than in adults.
Because the range of the correlation influences the correlation
coefficient, it is important to realize that correlation coefficients
cannot be readily compared between groups or studies. Another
consequence of this is that researchers could inflate the correla-
tion coefficient by including additional low and high eGFR
values.

FIGURE 2: The effect of the range of observations on the correlation coefficient, as shown with ellipses. (A) Set of 50 observations from hypothetical dataset X with

r¼0.87, with an illustrative ellipse showing length and width of the whole dataset, and an ellipse showing only the first 25 observations. (B) Set of only the 25 lowest

observations from hypothetical dataset X with r¼0.57, with an illustrative ellipse showing length and width.
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The non-causality of correlation

Another important pitfall of the correlation coefficient is that it
cannot be interpreted as causal. It is of course possible that
there is a causal effect of one variable on the other, but there
may also be other possible explanations that the correlation co-
efficient does not take into account. Take for example the phe-
nomenon of confounding. We can study the association of
prescribing angiotensin-converting enzyme (ACE)-inhibitors
with a decline in kidney function. These two variables would be
highly correlated, which may be due to the underlying factor al-
buminuria. A patient with albuminuria is more likely to receive
ACE-inhibitors, but is also more likely to have a decline in kid-
ney function. So ACE-inhibitors and a decline in kidney function
are correlated not because of ACE-inhibitors causing a decline
in kidney function, but because they have a shared underlying
cause (also known as common cause) [7]. More reasons why
associations may be biased exist, which are explained else-
where [8, 9].

It is however possible to adjust for such confounding effects,
for example by using multivariable regression. Whereas a univari-
able (or ‘crude’) linear regression analysis is no different than cal-
culating the correlation coefficient, a multivariable regression
analysis allows one to adjust for possible confounder variables.
Other factors need to be taken into account to estimate causal
effects, but these are beyond the scope of this paper.

Agreement between methods

We have discussed the correlation coefficient and its limitations
when studying the association between two variables. However,
the correlation coefficient is also often incorrectly used to study
the agreement between two methods that aim to estimate the
same variable. Again, also here, the correlation coefficient is an
invalid measure.

The correlation coefficient aims to represent to what degree
a straight line fits the data. This is not the same as agreement

between methods (i.e. whether X¼Y). If methods completely
agree, all observations would fall on the line of equality (i.e. the
line on which the observations would be situated if X and Y had
equal values). Yet the correlation coefficient looks at the best-
fitted straight line through the data, which is not per se the line
of equality. As a result, any method that would consistently
measure a twice as large value as the other method would still
correlate perfectly with the other method. This is shown in
Figure 3, where the dashed line shows the line of equality, and
the other lines portray different linear associations, all with
perfect correlation, but no agreement between X and Y. These
linear associations may portray a systematic difference, better
known as bias, in one of the methods.

This limitation applies to all comparisons of methods, where
it is studied whether methods can be used interchangeably, and
it also applies to situations where two individuals measure a
value and where the results are then compared (inter-observer
variation or agreement; here the individuals can be seen as the
‘methods’), and to situations where it is studied whether one
method measures consistently at two different time points
(also known as repeatability). Fortunately, other methods exist
to compare methods [10, 11], of which one was proposed by
Bland and Altman themselves [12].

Intraclass coefficient

One valid method to assess interchangeability is the intraclass
coefficient (ICC), which is a generalization of Cohen’s j, a mea-
sure for the assessment of intra- and interobserver agreement.
The ICC shows the proportion of the variability in the new
method that is due to the normal variability between individu-
als. The measure takes into account both the correlation and
the systematic difference (i.e. bias), which makes it a measure
of both the consistency and agreement of two methods.
Nonetheless, like the correlation coefficient, it is influenced by
the range of observations. However, an important advantage of
the ICC is that it allows comparison between multiple variables
or observers. Similar to the ICC is the concordance correlation
coefficient (CCC), though it has been stated that the CCC yields
values similar to the ICC [13]. Nonetheless, the CCC may also be
found in the literature [14].

The 95% limits of agreement and the Bland–Altman plot

When they published their critique on the use of the correlation
coefficient for the measurement of agreement, Bland and Altman
also published an alternative method to measure agreement,
which they called the limits of agreement (also referred to as a
Bland–Altman plot) [12]. To illustrate the method of the limits of
agreement, an artificial dataset was created using the MASS pack-
age (version 7.3-53) for R version 4.0.4 (R Corps, Vienna, Austria).
Two sets of observations (two observations per person) were de-
rived from a normal distribution with a mean (m) of 120 and a ran-
domly chosen standard deviation (r) between 5 and 15. The mean
of 120 was chosen with the aim to have the values resemble meas-
urements of high eGFR, where the first set of observed eGFRs was
hypothetically acquired using the MDRD formula, and the second
set of observed eGFRs was hypothetically acquired using the CKD-
EPI formula. The observations can be found in Table 1.

The 95% limits of agreement can be easily calculated using
the mean of the differences (d�) and the standard deviation (SD)
of the differences. The upper limit (UL) of the limits of agree-
ment would then be UL ¼ d�þ1:96�SD and the lower limit (LL)
would be LL ¼ d��1:96�SD. If we apply this to the data from

FIGURE 3: A set of linear associations, with the dashed line (- - -) showing the

line of equality where X¼Y. The equations and correlations for the other lines

are shown as well, which shows that only a linear association is needed for

r¼1, and not specifically agreement.
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Table 1, we would find d�¼ 0.32 and SD ¼ 4.09. Subsequently, UL
¼ 0.32þ 1.96 * 4.09¼ 8.34 and LL ¼ 0.32 � 1.96 * 4.09 ¼ �7.70. Our
limits of agreement are thus �7.70 to 8.34. We can now decide
whether these limits of agreement are too broad. Imagine we
decide that if we want to replace the MDRD formula with the

CKD-EPI formula, we say that the difference may not be larger
than 7 mL/min/1.73 m2. Thus, on the basis of these (hypotheti-
cal) data, the MDRD and CKD-EPI formulas cannot be used inter-
changeably in our case. It should also be noted that, as the
limits of agreement are statistical parameters, they are also
subject to uncertainty. The uncertainty can be determined by
calculating 95% confidence intervals for the limits of agreement,
on which Bland and Altman elaborate in their paper [12].

The limits of agreement are also subject to two assumptions:
(i) the mean and SD of the differences should be constant over
the range of observations and (ii) the differences are approxi-
mately normally distributed. To check these assumptions, two
plots were proposed: the Bland–Altman plot, which is the differ-
ences plotted against the means of their measurements, and a
histogram of the differences. If in the Bland–Altman plot the
means and SDs of the differences appear to be equal along the
x-axis, the first assumption is met. The histogram of the differ-
ences should follow the pattern of a normal distribution. We
checked these assumptions by creating a Bland–Altman plot in
Figure 4A and a histogram of the differences in Figure 4B. As of-
ten done, we also added the limits of agreement to the Bland–
Altman plot, between which approximately 95% of datapoints
are expected to be. In Figure 4A, we see that the mean of the
differences appears to be equal along the x-axis; i.e., these data-
points could plausibly fit the horizontal line of the total mean
across the whole x-axis. Nonetheless, the SD does not appear to
be distributed equally: the means of the differences at the lower
values of the x-axis are closer to the total mean (thus a lower
SD) than the means of the differences at the middle values of
the x-axis (thus a higher SD). Therefore, the first assumption is
not met. Nonetheless, the second assumption is met, because
our differences follow a normal distribution, as shown in Figure
4B. Our failure to meet the first assumption can be due to a
number of reasons, for which Bland and Altman also proposed

Table 1. Artificial data portraying hypothetically observed MDRD
measurements and CKD-EPI measurements

Participant ID

eGFR with
MDRD, mL/min/

1.73 m2

eGFR with
CKD-EPI,

mL/min/1.73 m2

Difference
(CKD-EPI –

MDRD)

1 119.1 118.4 �0.7
2 123.7 121.6 �2.1
3 123.5 117.6 �5.9
4 121.1 118.1 �3.0
5 115.7 119.4 3.7
6 117.4 120.5 3.1
7 119.2 120.8 1.6
8 120.0 119.4 �0.6
9 126.7 118.0 �8.7
10 122.1 123.1 1.0
11 117.8 120.9 3.1
12 116.8 118.8 2.0
13 119.2 121.7 2.5
14 119.2 117.8 �1.4
15 118.9 118.8 �0.1
16 120.7 115.8 �4.9
17 117.5 124.1 6.6
18 121.2 122.1 0.9
19 116.6 125.4 8.8
20 119.4 120.0 0.6

Mean: 0.32
SD: 4.09

FIGURE 4: Plots to check assumptions for the limits of agreement. (A) The Bland–Altman plot for the assumption that the mean and SD of the differences are constant

over the range of observations. In our case, we see that the mean of the differences appears to be equal along the x-axis; i.e., these datapoints could plausibly fit the

horizontal line of the total mean across the whole x-axis. Nonetheless, the SD does not appear to be distributed equally: the means of the differences at the lower val-

ues of the x-axis are closer to the total mean (thus a lower SD) than the means of the differences at the middle values of the x-axis (thus a higher SD). Therefore, the

first assumption is not met. The limits of agreement and the mean are added as dashed (- - -) lines. (B) A histogram of the distribution of differences to ascertain the as-

sumption of whether the differences are normally distributed. In our case, the observations follow a normal distribution and thus, the assumption is met.
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solutions [15]. For example, data may be skewed. However, in
that case, log-transforming variables may be a solution [16].

It is often mistakenly thought that the Bland–Altman plot
alone is the analysis to determine the agreement between
methods, but the authors themselves spoke strongly against this
[15]. We suggest that authors should both report the limits of
agreement and show the Bland–Altman plot, to allow readers to
assess for themselves whether they think the agreement is met.

CONCLUSION

The correlation coefficient is easy to calculate and provides a
measure of the strength of linear association in the data.
However, it also has important limitations and pitfalls, both
when studying the association between two variables and when
studying agreement between methods. These limitations and
pitfalls should be taken into account when using and interpret-
ing it. If necessary, researchers should look into alternatives to
the correlation coefficient, such as regression analysis for
causal research, and the ICC and the limits of agreement com-
bined with a Bland–Altman plot when comparing methods.
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