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Abstract

Introduction

Online surveys are a valuable tool for social science research, but the perceived anonymity

provided by online administration may lead to problematic behaviors from study participants.

Particularly, if a study offers incentives, some participants may attempt to enroll multiple

times. We propose a method to identify clusters of non-independent enrollments in a web-

based study, motivated by an analysis of survey data which tests the effectiveness of an

online skin-cancer risk reduction program.

Methods

To identify groups of enrollments, we used a hierarchical clustering algorithm based on the

Euclidean distance matrix formed by participant responses to a series of Likert-type eligibil-

ity questions. We then systematically identified clusters that are unusual in terms of both

size and similarity, by repeatedly simulating datasets from the empirical distribution of

responses under the assumption of independent enrollments. By performing the clustering

algorithm on the simulated datasets, we determined the distribution of cluster size and simi-

larity under independence, which is then used to identify groups of outliers in the observed

data. Next, we assessed 12 other quality indicators, including previously proposed and

study-specific measures. We summarized the quality measures by cluster membership,

and compared the cluster groupings to those found when using the quality indicators with

latent class modeling.

Results and conclusions

When we excluded the clustered enrollments and/or lower-quality latent classes from the

analysis of study outcomes, the estimates of the intervention effect were larger. This demon-

strates how including repeat or low quality participants can introduce bias into a web-based

study. As much as is possible, web-based surveys should be designed to verify participant
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quality. Our method can be used to verify survey quality and identify problematic groups of

enrollments when necessary.

Introduction

Public health researchers are increasingly using internet-based surveys and interventions in

their research. There are many benefits to web-based interventions, including the ability to

personalize, to more easily create disseminable public health interventions, and to economi-

cally reach a large number of research participants. Additionally, with approximately 99% of

U.S. young adults using the internet [1] and the evidence for the efficacy of internet interven-

tions [2], the internet is an appropriate modality with which to reach young adults and to test

public health interventions targeted at this population.

An issue unique to web-based surveys, particularly those with monetary incentives, is that

participants may enroll multiple times to obtain the incentives. This phenomenon has been

previously observed in internet survey research, such as a case study by Konstan et al [3],

where through a combination of email addresses, payment records, IP addresses, and other

quality indicators, the study team determined that 11% of their sample consisted of repeat

responses, including 1 subject who enrolled 65 times.

Generally, any anonymous survey-based research (web-based or otherwise) may be subject

to data quality issues beyond typical errors in self-reported data. Participants may not thought-

fully complete the questionnaire, a phenomenon termed “careless responding.” Meade and

Craig developed a method to evaluate survey responses to identify participants with low-qual-

ity survey data [4]. They suggest quantifying response consistency, the presence of outliers,

and response time, and using a latent class model to determine which subjects may have

responded carelessly.

In this paper, we develop methods to systematically identify non-independent enrollments

(i.e. a single individual enrolled in a study multiple times) when there is no way to confirm

subjects’ identities. We provide a novel simulation-based method for identifying such partici-

pants via hierarchal clustering methods, and demonstrate how it can be used in the context of

web-based surveys. We then compare our findings with other methods used to measure survey

quality, and demonstrate how inclusion of clustered participants may change study findings.

2. Identification of similar response patterns

2.1 Motivating study

This work was motivated by enrollment quality issues that arose during the conduct of a web-

based interventional study, designed to change participant behaviors associated with risk of

developing skin cancer. In this study, named UV4.me, the team developed the first web-based

intervention to modify skin cancer risk and protective behaviors targeted specifically for

young adults, which was informed by the Integrative Model for Behavioral Prediction (IM)

[5]. The UV4.me intervention was targeted to young adults, personally tailored, and included

interactive, multimedia, and goal-setting components. Study methods and interventions have

been described previously [6]. Briefly, participants were recruited nationally online by a con-

sumer research company, using their US consumer opinion panel and partnerships with other

panels and online communities. Panelists were exposed to brief web banner ads about the

study from which they could click to link to the study website. Once at the study website, inter-

ested candidates were asked to complete the Brief Skin Cancer Risk Assessment Tool (BRAT)
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[7], which was scored automatically. Eligible participants were 18–25 years old, had never had

skin cancer, and were at moderate to high risk of developing skin cancer based on the BRAT

[7]. In a national randomized controlled trial [6], the UV4.me intervention was found to be

efficacious in significantly decreasing ultraviolet radiation exposure and increasing skin pro-

tection behaviors among young adults at risk of skin cancer. The effects of the intervention

have been previously described in detail elsewhere [6, 8]. This project was approved by Fox

Chase Cancer Center’s IRB, and electronic informed consent was obtained from all research

participants.

During enrollment of subjects into the UV4.me study, the research team detected individu-

als who attempted to enroll in the study multiple times. Some re-enrollments were clear and

could be manually removed, as when multiple enrollments used the same name or email

address. Later in the study, based on email interactions with study participants, the team

noticed a series of suspicious enrollments. These participants appeared to be coming from out-

side of the US, which would make them ineligible, but this could not be objectively confirmed.

The participants used different email addresses and names for the enrollments; however, their

responses to the screener questionnaire were unusually consistent. The team was unable to

find a single unique identifier that could separate these problematic enrollments from valid

participants; IP addresses, for example, were not available. We therefore sought to develop an

objective criteria based on multiple factors by which we could exclude repeat enrollments. In

our main analysis of intervention efficacy, we used clustering and latent class models in

attempt to remove the most problematic enrollments [6]. In this work, we further develop

these methods, and propose a novel simulation-based approach to objectively detect unusual

clusters of enrollments.

Every subject interested in participating in the UV4.me study filled out the Eligibility

Screener (ES) to determine whether they meet the study inclusion criteria. A key portion of

the ES was the BRAT, a validated instrument which identifies subjects at high risk of develop-

ing skin cancer [7]. The eight Likert-type items on this scale are weighted according to the

amount of risk that each characteristic conveys, and are summed to give a single aggregate risk

score. In the UV4.me study, participants were eligible if they were at moderate to high risk of

skin cancer with a total risk score of 27 or more (out of a possible 89). The items, their scoring,

and the proportion of participants in the final eligible sample are given in supplementary S1

Table. Due to the large number of potential response patterns for the BRAT questionnaire, it

provided an opportunity to identify unusually similar enrollments. In addition to the BRAT

items, we also considered self-reported age. Further, as problematic subjects appeared to be

clustered in time (Supplementary S1 Fig), we also considered order of enrollment. Other items

in the ES, such as prior skin cancer diagnosis and state of residence in childhood were

excluded due to sparseness or lack of variability.

Methods

Hierarchical clustering. We identified groups of similar enrollments from the 1,234 par-

ticipants who met all study inclusion criteria by applying hierarchical clustering [9] to their

responses on the ES. Hierarchical clustering is a common method for clustering high-dimen-

sional data, which uses an agglomerative (“bottom-up”) approach based on a dissimilarity (e.g.

distance) measure between each pair of observations. The algorithm begins with each observa-

tion in a different cluster and proceeds iteratively, joining the two most “similar” clusters at

each step. Similarity can be defined in several ways, one common choice being complete link-

age. Under this definition, the maximum dissimilarity between each pair of observations in the

two candidate clusters is calculated. Therefore, the clusters which are joined minimize the
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maximum within-cluster distance. This value then becomes the “height” at which the two clus-

ters merged, which can then be displayed using a dendrogram (see Fig 1), with height repre-

sented on the y-axis. Cluster membership can be defined by choosing a height threshold; any

observations that are joined at a smaller value than the chosen height are considered to be in

the same cluster. The choice of height therefore defines the number and membership of

clusters.

For the purposes of defining dissimilarity, we treated the ordinal Likert-type items as con-

tinuous. We constructed a Euclidean distance matrix using the eight fields in the ES, age, and

enrollment order after standardizing the items to their corresponding standard deviation. This

distance matrix formed the dissimilarity measures used by the hierarchical clustering algo-

rithm. Formally, the distance between any two participants, i and j, was defined as

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P10

k¼1

xjk � xik

sk

� �2
s

;

Fig 1. Dendrogram representing clustering of screener responses in participants who went on to complete the baseline questionnaire.

https://doi.org/10.1371/journal.pone.0204394.g001
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where xik and xjk are the value of the kth field observed for participants i and j, respectively, and

σk is the standard deviation of the kth field. We applied the hierarchical clustering algorithm

with complete linkage to the resulting distance matrix D, consisting of all pairs of elements dij.

Cluster size was defined by the number of participants in a cluster at a given height. We

measured within-cluster similarity using the average silhouette (sil) width. Sil width is a mea-

sure of similarity of an observation to others within its identified cluster, compared to those in

the closest other cluster. For a given observation i, sil width is defined as

s ið Þ ¼
bðiÞ � aðiÞ

max½aðiÞ; bðiÞ�
;

where a(i) is the average distance between observation i and the other observations in its own

cluster, and b(i) is the average distance between observation i and all other observations in the

closest other cluster [10]. Average Sil Width (ASW) of cluster k is the average of s(i) for all

observations within that cluster. Larger values of ASW indicate better fit, and negative values

may indicate that that the number of clusters (here defined by the specified height) is too small

or too large.

2.2.2 Simulating cluster characteristics under independence. Testing for evidence of

clustering is challenging, and is often done empirically. Suzuki and Shimodaira [11] proposed

a bootstrap based procedure for testing stability of clusters in genetic analyses, for example, in

DNA microarrays. Unlike a typical bootstrap procedure, instead of resampling the observa-

tions (participants) the variables which are used to define distances are resampled instead, and

the clustering algorithm is re-calculated with the updated distance matrix. In typical DNA

experiments the number of variables is large, but in our application we only have 10 variables

on which the clusters are defined, so we cannot reliably use this type of bootstrap resampling.

We therefore propose a simulation based approach, where we generate independent obser-

vations based on the empirical distribution of the variables of interest. The hierarchical cluster-

ing algorithm is then applied to the simulated dataset, and we summarize resulting clusters

using relevant measures of size and similarity. This process is then repeated many times. As

the simulated cluster is based on independent data, we can determine the distribution of its

characteristics when no clustering is present, and determine if the observed dataset deviates

substantially from the expected distribution under independence. Our approach is comparable

to that described by Hennig et al. [12] for k-medoid clustering, a “top-down” clustering

method where all observations are fit into a number of pre-specified clusters, k. However, their

goal was to identify stable clusters encompassing the whole dataset, while our objective was to

identify large, unusually similar groups of responses. Therefore, we considered both cluster

size and within-cluster similarity, as quantified by ASW. Key to this approach is the simulation

of the “null” distribution, from non-clustered, independent observations (Steps 2–3). For

Likert-type items, we recommend using the GenOrd R package, or another comparable tool.

This program allows the user to specify the observed marginal proportions of each ordinal cat-

egory, and the observed correlation matrix [13]. It then simulates data from the multivariate

normal distribution, and these continuous values are categorized based on quantiles of the

normal distribution such that the simulated samples have the same proportions as the

observed data. This program also applies a correction to the correlation matrix used to gener-

ate the multivariate normal data, so that when the simulated values are categorized as ordinal,

the correlation matrix reflects that of the original ordinal data.

Because of the restriction imposed by requiring total score of�27 points, we could not

directly use the marginal response rates to simulate observations based on the final sample of

eligible individuals, as by chance, some simulated responses would not have been eligible for
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inclusion. Instead, we drew from the full distribution of all responses to the ES from all indi-

viduals in the acceptable age range without a personal history of cancer, and then applied the

score restriction. Some participants who met the score restriction did not go on to complete

the Baseline Questionnaire (BQ). We modeled the probability of completing the BQ in this

population based on age and answers to the BRAT questionnaire using logistic regression. For

each simulated sample, we estimated the probability that they would complete the BQ, and

then used this estimate to randomly assign them as completing/not completing the BQ. We

used rejection sampling (based on simulated scores and BQ completion indicators) until we

obtained a sample of 1,234 simulated observations with valid scores. Enrollment order was

then permuted, assuming that enrollment characteristics would be stable over time under

independence. This procedure was repeated 1,000 times, and performed the hierarchical clus-

tering algorithm on each of the simulated datasets.

To identify repeat enrollments, we wished to find clusters with unusual within-cluster simi-

larity and large size. Small clusters tend to have wide variability in similarity measures (ranging

from low to high similarity), while large clusters tend to have smaller within-cluster similarity.

We therefore proposed the following measure Size and Sil Width (SSW) for each cluster c (out

of all clusters C).

SSWc ¼
Nc

maxj2CðNjÞ
þ

ASWc

maxj2CðASWjÞ
;

where N is the number of samples in the cluster, and ASW is the average sil width. As these

measures are on different scales, we standardize them by dividing by the maximum observed

values for all clusters, so that both components are equally important. This measure is highest

for large, similar clusters. We then calculate this statistic for the simulated samples as

SSW�

c ¼
N�c

maxj2CðNjÞ
þ

ASW�
c

maxj2CðASWjÞ
;

where N� and ASW� are the sizes and average sil widths of the clustered samples. We normalize

them to the maximum sizes and sil widths of the original samples to maintain the same scale.

We then compare the SSWs for the original dataset to distribution of maxðSSW�
c Þ, the maxi-

mum SSWs observed in each of the simulated samples.

Summary of algorithm. Below, we summarize the steps used to identify unusual clusters.

R code for implementation of this procedure is available in the supplementary materials (S1

Code).

1. Perform hierarchical clustering on original dataset (X) where the columns are the K vari-

ables used to define clusters, and the rows are the N samples.

a. Calculate the Euclidean distance matrix D, were the elements of D are defined by dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

k¼1

xjk� xik
sk

� �2
r

(Euclidean distance between every pair of individuals).

b. Run a hierarchical clustering analysis on D.

c. Apply several height thresholds to partition the samples into clusters.

d. Choose a height threshold which results in good fit (e.g. as measured by ASW).

2. Let Vi be the ith variable (column) in X. Estimate the multivariable distribution F̂NðVÞ
assuming independence between samples (the “null” distribution).

A hierarchical clustering approach to identify repeated enrollments in web survey data
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3. Draw N independent samples, such that V� i.i.d. F̂NðVÞ, to create a simulated dataset X�.

4. Repeat the simulation procedure (step 3) M times.

5. Apply the hierarchical clustering procedure to the M simulated datasets (X�).

a. Repeat step 1a-b for each X�.

b. Using the height threshold chosen in 1d, partition the N rows into clusters.

6. Compare the observed clusters found in step 1 to the simulated clusters from step 5.

a. Quantify size and within-cluster similarity (SSW) of each cluster c found in step 1 (based

on X).

b. For each of the M simulated clusters, find maxðSSW�
c Þ.

c. For each cluster c from the observed data, calculate PrðSSWc > maxðSSW�
c ÞÞ, the pro-

portion of the times the observed SSW is greater than the maximum SSWs from each of

the M simulations.

Note that steps 2–4 are similar to those proposed by Hennig et al. [12] to assess the proper-

ties of k-medoid clustering using a simulated “null” distribution. Our method mainly differs in

steps 1, 5, and 6, as we need to evaluate the properties of each observed cluster, not overall fit.

2.3 Results

Applying the hierarchical clustering approach described in Section 2.2.1, we created a dendro-

gram to illustrate the structure of the study data (Fig 1). A figure showing the structure of

Euclidean pairwise distances is available in the supplementary files (S1 Fig).

Visual inspection of the dendrogram shows that there are two clusters which seem to have a

large degree of similarity compared to the remainder of the population. The clusters are

unusual in that they have especially low dissimilarity and large size. As cluster definition

depended on height, we explored several thresholds: 4.5, 5.0, and 5.5. Based on the observed

ASWs, we chose a height of 4.5, as ASWs were more often negative for the larger heights. We

did not explore smaller height thresholds as we wished to split the dataset into the fewest possi-

ble number of clusters. This resulted in a set of 80 clusters, ranging in size from 1 to 65 partici-

pants per cluster, with ASWs ranging from -0.042 to 0.441.

The distribution of N versus ASW and SSW from the original data and a single simulated

dataset are shown in Fig 2A. Gray points are from the simulated dataset and black points are

from the original dataset. We note that most of the clusters in the observed data have similar

characteristics to those of the simulated clusters; however, this method detected two outlying

clusters, consisting of 65 and 49 participants each. After calculating the maximum observed

SSWs from 1,000 simulated datasets, we found that these clusters had SSWs greater than 100%

and 99.6% of the simulated values of maxðSSW�
c Þ, respectively. The cluster with the next largest

SSW only had values greater than 88.0% of the simulated values. (See Fig 2B) Although this

method does not give a true p-value, it provides substantial evidence that these clusters would

be unlikely to occur by chance if the data were truly independently distributed.

2.3.1 Verification of algorithm. Next, we evaluated our method of identifying non-inde-

pendent enrollments in two ways. First, we re-ran the algorithm including participants who

were previously dropped for known issues (N = 257), including one participant who re-

enrolled 53 times (detected by similar nonsense registration names, e.g. “asdf”). The clustering

method identified an additional cluster (with 91 total enrollments), including 44 of the 53

enrollments from the known repeater (83%).

A hierarchical clustering approach to identify repeated enrollments in web survey data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204394 September 25, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0204394


Second, we generated synthetic datasets where we introduced a true cluster (with correlated

observations), and used our method to see if this known cluster could be identified. By

Fig 2. (A) shows the distribution of the observed cluster sizes and sil widths (black) compared to the distribution of size and sil widths from

one simulated sample. (B) shows the distribution of the maximum SSWs from each of 1,000 simulations, compared to the top three observed

SSWs in the true data. The two outliers of interest are represented by an X through a circle in both plots.

https://doi.org/10.1371/journal.pone.0204394.g002
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repeating this many times, we evaluated the method’s false positive and false negative rates

under different data-generating mechanisms. Due to the computational complexity of this

procedure, we explored a limited number of scenarios, and used 100 synthetic datasets per sce-

nario. Most observations in each synthetic dataset were generated independently, using the

method described in Section 2.2.2. We also generated a much smaller clustered sample where

the correlation matrix (∑) consisted of a series of blocks. The blocks along the diagonal, S,

defined the correlation of items within an individual. We then defined the off-diagonal blocks

to be rS, where 0� r�1, which induced a correlation between individuals. R code and a sup-

porting datafile are available in Supplementary files S2 Code and S1 File.

In the synthetic datasets, we specified the number of samples, vector of means and correlation

matrices to reflect approximately what was present in the true dataset. We varied r to determine

how the algorithm performs under varying degrees of correlation. For our base case, we used

r = 0.8, anticipating that the clustered samples would be highly correlated (i.e. a cluster of repeated

enrollments from one individual). We specified that if PrðSSWc > maxðSSW�
c ÞÞ > 0:95, a cluster

was considered to be unusual. The mean number of non-clustered individuals was 1296 and the

mean number of individuals in the cluster was 59. The algorithm identified clustering in 74% of

the synthetic datasets. When clustering was detected, 88.4% of the clustered samples were identi-

fied as unusual by the simulation-based algorithm, leading to an overall sensitivity of 65.4%. Speci-

ficity was excellent, with only 0.5% of non-clustered samples falsely identified as belonging to an

unusual cluster (specificity = 99.5%). When we reduced the correlation to r = 0.6, sensitivity was

59.7% and specificity was 99.5%. Finally, we tested whether we could improve sensitivity by lower-

ing the value of PrðSSWc > maxðSSW�
c ÞÞ to 0.8; which resulted in increased sensitivity of 70.7%

with only a small decrease in specificity (99.4%). In our application, we considered high specificity

to be critical, as we wanted to limit the number of true enrollments excluded from the analysis.

This motivated our use of the 0.95 threshold; however, these results indicate that lower thresholds

could be considered to improve sensitivity.

3. Comparison with survey quality measures

3.1 Methods

Use of self-reported data is the standard in psychology and behavioral science. However, in

addition to the known issues of using self-reported data such as participant memory and study

demand characteristics [14], survey participants may not complete questionnaires thoughtfully

and carefully, which has been described as “careless responding”. [4] Meade and Craig pro-

posed several metrics which, in combination, can be used to identify careless respondents. For

our study, we performed a similar type of analysis to that proposed by Meade and Craig,

which we adapted based on measures available for our study. We identified 12 relevant quality

measures, which are described in detail in the supplementary files (S2 Table). We adapted five

relevant metrics proposed by Meade and Craig, including time to complete the survey, three

measures of response consistency/similarity, and patterned responding (repeated identical

responses on the same page). We also incorporated seven other indicators of potential prob-

lems that were collected by the study team during enrollment and follow-up, including dis-

crepancies between self-reported characteristics (e.g. skin color or gender) at different parts of

the questionnaires and non-US phone numbers. Note that the variables used in the clustering

procedure above were from the Eligibility Screener (ES), while the quality measures relied on

data from the Baseline Questionnaire (BQ), and other measures collected during the enroll-

ment/study process. Therefore, the quality variables were measured separately from variables

used to identify clustering.
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We performed latent class modeling based on the quality variables to identify underlying

groups. Continuous measures were categorized into deciles, as some of the measures were

highly skewed, and for ease of fitting a latent class model with mixed variable types. We fit

models with two to four classes, and selected the three class model as it minimized the Bayesian

Information Criterion (BIC). We then determined predicted class membership for each obser-

vation [15]. We also tried including an indicator for membership in one of the clusters as an

additional variable in the latent class model; however, these models had worse overall fit as

measured by the BIC. See supplementary materials (S) for R code.

3.2 Results

The relationship between latent class membership and cluster membership is shown in

Table 1. Interestingly, individuals from the two clusters were mainly fit in two separate classes.

As the final latent class model did not include an indicator for cluster membership, or depend

on any of the variables from the ES, this provides further evidence that these groups of unusual

registrations were non-independent. Table 2 describes the quality measures, separately by clus-

ter membership and by latent class membership.

From the observed values of the quality measures by cluster membership, we see that cluster

1 exhibits higher than average similarity (as quantified by items 2–4), with high correlation of

synonyms (items with highest correlation across the whole sample), high correlation of even/

odd numbered items in unidimensional scales, and overall responses very close to the mean

response (as measured by Euclidean distance). They also completed the questionnaire in

shorter times, had high rates of giving fake names, providing nonsensical feedback, and giving

inconsistent answers about their characteristics (e.g. skin color or gender). Members of cluster

2 had different patterns of behavior. Their median completion time was very high (indicating

that they left their sessions open for a long time before submitting), and their responses had

low correlation of synonyms, short runs of identical responses, high rates of inconsistencies

between state and climate region of the US, and high rates of giving a non-US phone number.

There was substantial overlap between class and cluster membership, and similarities in

overall patterns of behavior. The majority of subjects in cluster 1 (55/65, or 85%) were grouped

in latent class 2, although they made up only a small proportion of this class (with 465 total

subjects). Likewise, the majority of subjects in cluster 2 were fitted into latent class 3 (43/49, or

88%). Cluster 2 made up a larger proportion of latent class 3, although they were still a minor-

ity of the total cluster membership (142 total subjects). It is interesting to see that many sub-

jects who were not identified as members of one of the clusters had similar behavior patterns

as the clustered subjects, as shown by the quality indicators in Table 2.

4. Implications for study findings

The goal of the UV4.me intervention was to increase beneficial behaviors (skin protection)

and decrease detrimental behaviors (ultraviolet radiation [UV] exposure) related to skin

Table 1. Cluster membership vs. latent class membership.

Cluster Membership Latent Class Membership

Class 1 Class 2 Class 3 Total

Other� 610 406 104 1120

Cluster #1 7 55 3 65

Cluster #2 2 4 43 49

Total 619 465 150 1234

�“Other” denotes membership in one of the clusters not identified as usually large/similar

https://doi.org/10.1371/journal.pone.0204394.t001
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cancer. As described in prior work [6], we used linear regression models to identify the effect

of the intervention versus the control condition (assessment only) at the time of the final ques-

tionnaire (12-weeks post enrollment). We accounted for within-subject correlation across the

measurement times using robust sandwich variance estimates with Generalized Estimating

Equations (GEE). The linear regression model included main effects for treatment and time

(both categorical), and interactions between treatment and time. The model used an auto-

regressive working correlation structure with clusters defined by patients [16]. See supplemen-

tary file S3 Code for R code to run these models.

Table 3 shows the results in the full sample (N = 1,234), in the participants who were not

members of one of the unusual clusters (N = 1,120), and in participants with predicted mem-

bership in the best quality latent class (Class 1, N = 622).

Although the intervention had a statistically significant effect regardless of the exclusions,

the strength of the effect varied. The effect on exposure was substantively stronger when we

removed the 114 participants clustered based on their screener responses, although the effect

on protection outcomes was largely unchanged. For both outcomes, the intervention effect

Table 2. Quality variables by cluster membership and predicted latent class.

Quality variables Full sample Cluster Membership Latent Class Membership

Other� 1 2 1 2 3

1. Minutes to complete questionnaire (median) 21 21 14 935 20 15 935

2. Correlation of synonyms (mean)

within-person correlation of items with strongest overall correlation
0.4 0.39 0.58 0.33 0.28 0.59 0.33

3. Even-odd item correlation (mean)

Correlation of even/odd items on unidimensional scales
0.62 0.61 0.74 0.66 0.60 0.64 0.62

4. Distance from average (mean)

Euclidean distance between participant’s responses and population average responses
15.64 15.82 12.85 15.33 17.40 13.45 15.18

5. Runs of identical responses (mean)

Average over pages with many items
0.43 0.44 0.47 0.27 0.43 0.49 0.27

6. Inconsistent state/climate selection 15.0% 12.9% 16.9% 61.2% 6.8% 13.8% 52.7%

7. Non-US phone 16.0% 15.3% 13.9% 36.7% 13.1% 8.4% 52.0%

8. Wrong phone number 13.0% 13.8% 9.2% 2.0% 8.9% 22.4% 1.3%

9. Obviously fake name 6.8% 6.8% 12.3% 0.0% 0.5% 16.3% 3.3%

10. Nonsensical feedback

e.g. “dsadasdasd”
2.8% 2.0% 20.0% 0.0% 0.3% 7.1% 0.0%

11. Discrepancies within questionnaire 4.3% 3.8% 16.9% 0.0% 2.3% 7.7% 2.0%

12. Other 9.3% 9.7% 6.2% 4.1% 7.4% 12.5% 7.3%

Note: Shading emphasizes unusual behavior patterns as measured by the quality indicators

�“Other” denotes membership in one of the clusters not identified as usually large/similar

https://doi.org/10.1371/journal.pone.0204394.t002

Table 3. Intervention effects on primary outcomes at 12 weeks, by cluster and latent class membership.

UV exposure outcome Effect SE 95% CI P-val

All participants -0.19 0.054 -0.30 -0.09 0.0003

Only non-clustered participants -0.24 0.058 -0.36 -0.13 <0.0001

Only members of latent class 1 -0.31 0.081 -0.47 -0.15 0.0001

Skin protection outcome Effect SE 95% CI P-val

All participants 0.31 0.081 0.15 0.47 0.0001

Only non-clustered participants 0.32 0.085 0.16 0.49 0.0001

Only members of latent class 1 0.58 0.116 0.35 0.81 <0.0001

https://doi.org/10.1371/journal.pone.0204394.t003
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was much larger in the subgroup of participants in latent class 1 (best quality class); however,

using only this subgroup excludes almost half of otherwise eligible participants, leading to con-

cerns about generalizability.

5. Conclusions

In this work, we proposed a method to identify groups of non-independent study participants,

as might result from a single individual repeatedly enrolling in a web-based study. Unlike

other procedures based on clustering algorithms [10, 11], our method is designed to separate

non-independent clusters from a mixed population of clustered and non-clustered data, and

can be used when the number of variables which defines distance between pairs of observa-

tions is small.

One limitation of the procedure we used to identify clusters is that distribution of the test

statistic generated via simulation assumed independence. This study recruited participants

using web advertisements and participant referrals, which could lead to some dependence

between subjects. Nevertheless, the clustering procedure successfully revealed unusual groups

of participants with characteristics not easily explained by modest sources of within-group cor-

relations. Another limitation of this method is that it can only identify large clusters of non-

independent enrollments; however, it is most important to be able to detect large groups of

repeated enrollments as these are most likely to cause substantial changes in study results.

Finally, our method of cluster identification demonstrated excellent specificity; however, fur-

ther development is needed to improve sensitivity. Future work should determine whether an

optimal threshold for identifying unusual clusters can be found, or if modifying the specifica-

tion of the hierarchical clustering algorithm (i.e. distance metrics and linkage) can improve

sensitivity while maintaining specificity.

We compared our results to an adapted version of the method used to identify careless

respondents proposed by Meade and Craig [4]. In our application, that approach lacked speci-

ficity needed to identify careless responders; however, we were not able to directly replicate all

their measures. Although we followed the principles outlined in their method, we could not

directly use some of the proposed measures, such as proposed “bogus items” (questions with

answers which were obviously wrong). We instead included our own study specific quality

measures. Further, due to the discrete nature of some of our measures, we fit latent class mod-

els instead of using latent profile analysis. This may have led to some of the differences between

our results and those described in the example given in the original paper. Only about half of

our samples were fit into the “best quality” cluster, whereas in Meade and Craig’s application,

almost 90% of samples were in a single class.

We recommend that all web-based studies are designed with the ability to verify data qual-

ity in mind. Kramer and colleagues provide a set of recommendations to decrease enrollment

of otherwise ineligible participants [17]. Ideally, sufficient information would be gathered to

identify repeat enrollments automatically during the course of the study, not manually or in a

post-hoc analysis. As much as is practical, researchers should use metrics that uniquely identify

individuals. In the current study, we were not able to obtain information on IP addresses or

other unique identifiers. However, such methods are not infallible, as a determined individual

can use software to circumvent such identifiers (for example, by varying their IP address) [18].

Further, for socially sensitive topics, researchers may opt not to collect potentially identifying

information for the privacy of participants and to minimize the risk of accidental disclosure of

participant data. Our clustering method should be used in conjunction with other best prac-

tices to look for evidence of repeat enrollments, and potentially exclude problematic subjects.
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