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Abstract
Lung cancer is the leading cause of cancer-related death worldwide due to diagnosis in
the advanced stage and drug resistance in the subsequent treatments. Development of
novel diagnostic and therapeutic methods is urged to improve the disease outcome.
Exosomes are nano-sized vehicles which transport different types of biomolecules
intercellularly, including DNA, RNA and proteins, and are implicated in cross-talk
between cells and their surrounding microenvironment. Tumor-derived exosomes
(TEXs) have been revealed to strongly influence the tumor microenvironment, anti-
tumor immunoregulatory activities, tumor progression and metastasis. Potential of
TEXs as biomarkers for lung cancer diagnosis, prognosis and treatment prediction is
supported by numerous studies. Moreover, exosomes have been proposed to be prom-
ising drug carriers. Here, we review the mechanisms of exosomal formation and
uptake, the functions of exosomes in carcinogenesis, and potential clinical utility of
exosomes as biomarkers, tumor vaccine and drug delivery vehicles in the diagnosis
and therapeutics of lung cancer.
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INTRODUCTION

Lung cancer, which accounts for 11.6% of all cancer cases
and 18.4% of cancer related mortalities worldwide, represents
a serious public health problem.1 Non-small cell lung cancer
(NSCLC), consisting of adenocarcinoma, squamous cell carci-
noma and large cell carcinoma, is the predominant histologi-
cal subtype of lung cancer encompassing more than 80% of
total cases.2 Chemotherapy is currently the primary therapy
for advanced lung cancer. Targeted therapies with EGFR-,
ALK-, BRAF- or MET-inhibitors and immunotherapies with
PD-L1, PD1 or CTLA4 antibody have also been developed in
NSCLC treatment.3 While a number of potential biomarkers
have been explored, none are recommended for lung cancer
screening, which accounts for the current situation whereby
only 15% of lung cancer patients are diagnosed at an early
stage.4 Improvement of lung cancer outcome calls for the
development of biomarkers for lung cancer management.

Exosomes are a type of extracellular vehicle (EV) of
endosomal origin ranging from 30 to 150 nm in diameter
which are secreted by most cells and found in various body
fluids, such as plasma, saliva, urine, and ascites.5 Despite the
diversity in size and type of body fluid, all exosomes contain
a subgroup of membrane proteins, including TSG101, ALIX
and CD63, owing to their common endosomal origin.

When first discovered in 1983,6,7 exosomes were regarded
as garbage cans for unwanted materials from the cell of ori-
gin. Accumulative studies have subsequently illustrated that
exosomes are capable of conducting intracellular communica-
tion by transporting DNA, RNA, and proteins, which in turn
affects the physiological condition of the recipient cell.
Tumor-derived exosomes (TEX) can remold the tumor
microenvironment to favor tumor progression and metasta-
sis, for example, by transporting oncoproteins K-RAS and
MET or oncogenic miRNAs to surrounding healthy cells,8 or
by initiating a premetastatic niche and guiding tumor cells to
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prospective metastatic spots mediated by exosomal
integrins.9–11 TEXs can also serve as tumor vaccine to induce
immune response against tumor by affecting activities of nat-
ural killer (NK) cells.12 Moreover, the ability of exosomes to
transfer biomolecules and drugs to recipient cells makes them
promising drug delivery vehicles,13 and exosomal nucleic
acids (miRNA, mRNA, DNA) and proteins have shown
potential in serving as diagnostic, prognostic, and predictive
biomarkers for various cancers.

In the current review, we first portray recent studies on
the mechanisms of formation and uptake of exosomes. We
summarize tumor-promoting functions of exosomes in cor-
relation with crosstalk between cancer cells and tumor
microenvironment. Finally, we discuss the clinical potential
of exosomes as biomarkers, tumor vaccine and drug carrier
in lung cancer diagnosis and therapeutics.

FORMATION OF EXOSOMES

Exosomes are generated by inward budding of the membrane
of a type of endosomes called multivesicular bodies (MVBs)
to form intraluminal vesicles (ILVs)14,15followed by release of
the ILVs into the extracellular space upon fusion of the MVBs
with the cellular membrane16 (Figure 1). Alternatively, MVBs
can fuse with the lysosome, which results in the degradation
of ILVs-containing MVBs and their contents, and may there-
fore modulate the secretion of exosomes.17Biogenesis of
exosomes starts with the formation of ILVs within MVBs.
The endosomal membrane is first restructured and gets
enriched with tetraspanins (such as CD9 and CD63) which
play a crucial role in exosomal formation.18 The endosomal
sorting complexes required for transport (ESCRTs) are then
anchored to the site of ILV formation.15,19 ESCRT I/II initiate
and drive the inward budding of endosomal membrane and
ESCRT III terminates this course, respectively.20,21 Recruit-
ment of ESCRT I/II to the cytoplasmic side of the early
endosomal membrane is stimulated by a variety of factors,
such as hepatocyte growth factor-regulated tyrosine kinase
substrate (HRS), the ubiquitination of the cytosolic tail of
endocytosed proteins, phosphatidylinositol 3-phosphate
(PIP3), and curved membrane topology.22–27Despite the pre-
dominant role of the ESCRT pathway in exosomal biogenesis,
Stuffers and colleagues revealed that, depending on the cell
type, depletion of the ESCRTs did not block the formation of
MVBs, indicative of the existence of ESCRT-independent
mechanisms of exosomal biogenesis in parallel to the ESCRT
pathway.28 In a recent study, Baietti et al. have shown that an
alternative pathway, the syndecan-syntenin-ALIX pathway
which includes heparanase, syndecan heparan sulfate proteo-
glycans, ADP ribosylation factor 6 (ARF6), phospholipase D2
(PLD2) and syntenin, is involved in mediating exosomal bio-
genesis.14Release of exosomes into the extracellular milieu is
initiated by fusion of the MVB membrane with the plasma
membrane, a process revealed to involve a variety of mecha-
nisms and facilitated by a couple of Rab GTPases, including
RAB11 and RAB35, or RAB27A/B.29–31

EXOSOMAL CONTENTS AND THEIR
SELECTIVE LOADING INTO EXOSOMES

Exosomes contain various cytoplasmic proteins, lipids, and
genetic materials including DNA, mRNA, and non-coding
RNAs from the cell of origin (Figure 1). These data along
with the purification procedures used to isolate the exosomes
have been assembled into four publicly accessible databases:
Exocarta,32 EVpedia,33 Vesiclepedia34 and exoRBase.35 Exten-
sive research has revealed that exosomal contents change with
different cell types and physiological conditions.Proteins
involved in exosomal biogenesis, including different types of
tetraspanins (for example, CD9, CD63, and CD81), in exo-
somal release (such as RAB27A and RAB11) and in the
endosome-related pathways (for example, ESCRT compo-
nents, ALIX, ARF6, and TSG101, etc.), are universally pre-
sent in exosomes. In addition, endosomal trans-membrane
proteins and proteins involved in signal transduction and
antigen presentation (such as TfR, LAMP1, EGFR, MHC
I/II), are also commonly found in exosomes. In contrast,
resident proteins of the endoplasmic reticulum, Golgi, and
nucleus are barely present in exosomes.36 A large amount of
RNAs, including mRNAs, rRNAs, tRNA, miRNAs, long
non-coding RNAs (lncRNAs) and circular RNAs, have been
characterized in exosomes by next-generation sequencing
(NGS) and other techniques.37–40 The majority of exosomal
RNAs are no longer than 200 nucleotides and only a minor-
ity can reach up to 4 kb.41 After exosomes are released from
the donor cell, the exosomal membrane is believed to
protect the RNAs in the exosomes from RNase digestion
in the extracellular environment.42Despite that, exosomes
share similar lipid composition with the donor cells,
sphingomyelin, cholesterol, ganglioside GM3, phos-
phatidylserine, and ceramide were revealed to be enriched in
exosomes, whereas phosphatidylcholine and diacyl-glycerol
are reduced in exosomes comparing to the cell of origin.43,44

Studies have indicated that phosphatidylserine enrichment
in exosomal membrane may promote their uptake into
recipient cells via the internalization pathway.45,46

Sphingolipid ceramide has been found to be required for the
formation of ILVs by facilitating the inward budding of
MVB membrane through its cone-shaped structure.46 In
accordance with this observation, ceramide and its deriva-
tives were detected to be abundant in exosomes.47,48 How-
ever, inactivation of neutral sphingomyelinase (nSMase), a
protein which produces ceramide, does not inhibit MVB
formation or exosomal release in some cell types. Different
molecular machineries, therefore, may be involved in exo-
somal formation in different cell types and related to the dif-
ference in the exosomal contents.Indeed, exosomes released
via RAB11 and RAB35 were enriched with flotillin and cell-
specific proteins including Wnt, PLP and the transferrin
receptor (TfR),44 while exosomes released via RAB27A/B
were enriched with late endosomal resident proteins, such as
CD63, ALIX, and TSG101.30,49 Yang and colleagues indi-
cated proteins can be loaded into vesicles by associating with
the plasma membrane as an oligomeric complex.50 More
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efforts are required to unveil molecular mechanisms
involved in the selective loading of exosomal proteins.Stud-
ies have shown that exosomal RNA profiles, to some extent,
were different from the cytosolic counterparts of the cells of
origin, indicating selective recruitment of RNA cargos into
the exosmes.51–53 Various molecular mechanisms have been
unveiled in selective loading of miRNAs into the exosome.
An interaction between a four nucleotide (GGAG) motif
enriched in exsomal miRNAs and the ribonucleoprotein
hnRNPA2B1 has been proposed to sort these miRNAs into
MVBs.54 In addition, 30-uridylation of miRNAs may
contribute to recruitment of the miRNAs into exosomes
while 30-adenylation can block exosomal loading of the
miRNAs.55

UPTAKE OF EXOSOMES

Apart from components on the exosomal membrane, such
as EGFRvIII, Notch1 and Rheb, which can trigger signal-
ing in the recipient cell by ligand-receptor interactions
without exosomal merge, functionality of exosomal con-
tents necessitate their discharge into the recipient cell to

work.56,57 Indeed, a number of studies have observed the
transfer of exosomal RNAs into the recipient cell, both
in vitro and in vivo.58–60Exosomes released from donor
cells are either taken up by neighboring cells or travel
through the circulation system followed by merging into
cells at distance. Merging of exosomes into the recipient
cell can be accomplished either by fusion of the exosomal
membrane with the plasma membrane, resulting in release
of exosomal contents into the cytosol, or via the cellular
endocytosis pathway61,62 (Figure 1). By the endocytosis
pathway, exosomes are first encompassed in the
endosomal compartments followed by fusion of the exo-
somal membrane with the endosomal membrane to escape
their destination for lysosomal degradation, leading to dis-
charge of exosomal cargos into the cytosol of the recipient
cell.63 Spatiotemporal tracking by fluorescence microscopy
has shown that exosomes in the medium were first docked
onto plasma membrane and diffused slowly in the cyto-
plasm followed by switching to a rapid and directed move-
ment mode, indicative of active trafficking along actin
filaments or microtubules.64 The mechanisms of exosomal
cargo discharge from the endosome require further
investigation.

F I G U R E 1 Biogenesis and secretion of exosomes by donor cells and uptake of exosomal contents by recipient cells. Exosomes originate by membrane
invagination of the multivesicular bodies (MVBs) to form intraluminal vesicles (ILVs). MVBs fuse either with lysosomes or with the cellular membrane,
leading to degradation of the MVBs or secretion of the exosomes into the extracellular space. Exosomes merge with the recipient cell either by fusion of the
exosomal membrane with the cellular membrane or via the endocytosis pathway, leading to the discharge of exosomal contents into the cytosol of the
recipient cell. Components generally found in the exosome include miRNA, mRNA, DNA and proteins such as tetraspanins (CD9, CD63, and CD81)
involved in exosomal biogenesis, RAB GTPases (RAB11, RAB27A/B and RAB35) involved in exosomal secretion, ALIX, ARF6 and TSG101 in the endosome-
related pathways, and proteins involved in the signal transduction and antigen presentation (such as TfR, c-Met, EGFR, MHC I/II). Abbreviations: miRNA,
microRNA; ARF, ADP-ribosylation factor; TSG101, tumor susceptibility gene 101; MHC, major histocompatibility complex; EGFR, epidermal growth factor
receptor; TfR, transferrin receptor
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FUNCTIONALITY OF EXOSOMES

Abundant research has illustrated that tumor-derived
exosomes (TEXs) play important roles in regulation of cell
proliferation, migration and invasion. TEXs regulate tumor
progression and metastasis by modulating local immune
response,65,66 epithelial-mesenchymal transition (EMT),67

angiogenesis68 and drug resistence.69 Various molecular
mechanisms have been unveiled to be involved in the modu-
lation of tumor progression and metastasis conducted by
TEX contents, such as proteins and microRNAs.The
immune response significantly affects cancer outcomes.70 As
important roles of EVs being revealed in regulation of
inflammatory reactions in different inflammatory diseases
including lung inflammation and injury,71,72 TEXs can trig-
ger the release of cytokines/chemokines from immune cells
which result in the stimulation of anti-tumor immune reac-
tions or in a systemic immunosuppression.73 TEXs have
been reported to suppress CD8+ T cells-induced anti-tumor
immune activities stimulated by tumor-specific antigens,
resulting in promotion of tumor growth.74 Exosomes
derived from exhausted CD8+ T cells could be uptake by
non-exhausted CD8+ T cells and subsequently impaired the
anticancer function of normal CD8+ T cells.75 Rather than
suppress tumor growth by undermining cancer cells, the
affected immune system promotes tumor progression by
supporting the chronic inflammation and suppressing anti-
tumor immunity.76 Epithelial–mesenchymal transition
(EMT) is a process by which epithelial cells acquire mesen-
chymal cell properties, which enables the cells to be invasive
and migrate to distant sites leading to metastasis and tumor
progression.77,78 The importance of EMT in lung cancer has
also been illuminated in various studies.79,80 Serum TEXs
isolated from patients with late stage lung cancer can induce
EMT in recipient human bronchial epithelial cells.81 These
TEXs contain high levels of vimentin, which is a member of
the type III intermediate filament protein family and a
marker for EMT. The correlation between vimentin expres-
sion level and metastasis and invasion ability has been
observed in lung cancer81–83 and many other cancers,
including prostate, colorectal and gastric cancers. Angiogen-
esis, a process regulated by various mechanisms and angio-
genic factors, is crucial for tumor progression and
metastasis. Hypoxia, a hallmark of the tumor microenviron-
ment, has been reported to cause enhanced TEX production
and a change in their content which enables TEXs to induce
angiogenesis.84–86Among the exosomal contents, miRNAs
are most studied. MiRNAs are a type of short noncoding
RNAs which can mediate paracrine and endocrine effects by
post-transcriptionally modulating gene expression and cellu-
lar function in the recipient cells.87 Specifically, TEX pro-
duction and the level of exosomal miR-23a were detected to
be increased during hypoxia-induced angiogenesis in CL1-5
lung adenocarcinoma cells. Uptake of TEX-associated miR-
23a, in turn, leads to targeting of prolyl hydroxylase 1 and
2 (PHD1 and 2), the accumulation of hypoxia-inducible fac-
tor (HIF)-1α, and the boost of angiogenesis.85 Studies have

demonstrated that hepatocellular carcinoma (HCC) cell-
derived exosomal miRNA-21 could convert hepatocyte stel-
late cells to cancer-associated fibroblasts and thus promote
tumor progression by secreting angiogenic cytokines
selected,88 while metastatic breast cancer cells secrete miR-
105 to boost cell migration by down-regulating expression
of the tight junction protein ZO-1.89 Additionally, studies
have identified exosomal proteins that may play crucial roles
in the recipient cells.90 EVs of tumor origin induced tumor
angiogenesis by transporting proangiogenic peptides (for
example, EGFRvIII) to the surrounding endothelial cells of
microvessels, leading to activation of transforming signal
pathways and regulation of the expression levels of vascular
endothelial growth factor (VEGF).91 In recent years, func-
tional research on exosomal dsDNAs,92 lncRNA93 and
circRNA94 has also greatlyincreased.Formation of a
premetastatic niche is the primary step required for metasta-
sis, and is initiated through various mechanisms that pro-
mote a series of events beginning with vascular leakage
which facilitates colonization of CTCs to the premetastatic
site.95,96 Exosomes released by breast cancer play an impor-
tant role in promoting breast cancer bone metastasis, which
is associated with the formation of a premetastatic niche via
transferring miR-21 to osteoclasts.97 Hypoxia-induced exo-
somal miR-135a-5p could initiate LATS2-YAP-MMP7 axis
to form a premetastatic niche, and eventually promote the
occurrence of CRC liver metastasis.98MiR-25-3p, a
metastasis-promoting miRNA of colorectal cancer (CRC),
can be transferred from CRC to endothelial cells via
exosomes, and promotes premetastatic niche formation by
inducing vascular permeability and angiogenesis.99 TLR3 in
lung epithelial cells can be activated by the small RNA con-
tent of TEXs, and subsequently stimulate chemokine secre-
tion and neutrophil recruitment to the lung, which together
promote the niche formation and tumor lung metastasis.100

Tumor exosome integrins also play important roles in pre-
paring the premetastatic niche. A different tumor exosomal
integrin subtype has been linked to specific organ metastasis
and exosomal integrins have been suggested to be used for
predicting organ-specific metastasis.10TEXs are also
involved in drug resistance in cancer. Recent studies indi-
cated that exosomal delivery of functional P-glycoprotein
and multidrug resistance associated protein-1 (MRP-1) from
drug resistant cancer cells led to acquired multidrug resis-
tance by drug sensitive cancer cells.101,102 Tumor-associated
macrophage-derived mir21 can be transferred to the gastric
cancer cells, where it suppresses cell apoptosis and enhances
activation of PI3K/AKT signaling pathway by down-
regulation of PTEN, thus confer cisplatin resistance in gas-
tric cancer.103 In lung cancer, hypoxia-induced exosomal
PKM2 reprogrammed CAFs to create an acidic microenvi-
ronment promoting NSCLC cells proliferation and transmit-
ted cisplatin-resistance to sensitive NSCLC cells, led to
cisplatin resistance in vitro and in vivo.104 Therefore,
exosomes play an important role in drug resistance by trans-
fer of biomolecules to affect the characteristics of receptor
cells or microenvironment, and exosomes may be used as
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drug delivery vehicles to tumor drugs or gene therapy.105

Accordingly, exosomal miRNAs and mRNAs may predict
drug resistance and help improve treatment options.Epige-
netic modification plays an important role in tumor occur-
rence and development. TEX signaling participates in the
adjustment of epigenetic modification. Exosome-derived
ncRNAs may serve as potential drivers of epigenetic repro-
gramming of cancer stem cells.106 In NSCLC cell lines
(A549 and H1299), exosome-transmitted UFC1 promote
progression by inhibiting PTEN expression via
EZH2-mediated epigenetic silencing.107Normal human gas-
tric epithelial GES-1 Cells absorbed gastric cancer cells
released exosomal lncHEIH can upregulate EZH2 expres-
sion, which inhibited the expression of the tumor suppressor
GSDME by methylation of the GSDME promoter, thus pro-
moting the malignant transformation of normal gastric
cells.108 SNHG9, a papillary thyroid cancer cell exosome-
enriched lncRNA, inhibits cell autophagy and promotes cell
apoptosis of normal thyroid epithelial cell.109 LINC00470 in
exosomes from glioma patients inhibiting autophagy and
enhancing the proliferation of glioma cells by regulating
WEE1 expression and activation of the PI3K/AKT/mTOR
pathway.

The tumor microenvironment (TME) is a highly
heterogeneous system incorporating cancer cells, endothelial
cells, fibroblasts, adipocytes, mesenchymal stem cells,
immunocyte and extracellular matrix. Tumor cells are
closely connected with immune and stromal cells in TME
and interact to form an environment of chronic inflamma-
tion and immunosuppression. Tumor-associated macro-
phages (TAMs) are macrophages derived from peripheral
blood monocytes recruited into solid tumor tissue microen-
vironment. Increased infiltration of tumor-associated mac-
rophages (TAMs) is observed in most cancer tissues
compared with paracancer or normal tissues.110,111 TAMs
lose their killing ability and acquire an inhibitory phenotype,
which promotes tumor development. Generally, macro-
phages differentiate into two main phenotypes: classically
activated (M1) and alternatively activated (M2)112 .TEXs
can polarize M1113 or M2 macrophage114 and consequently
inhibit or promote tumor metastasis. Exosomes from M2
macrophage promote the development of cancer.115 Cancer-
associated fibroblasts (CAFs) are activated fibroblasts in
tumor tissues. Extensive evidence suggests that CAFs are
involved in stimulating cancer cell proliferation and progres-
sion.116 TEXs can activate fibroblasts and promote CAF
conversion. In cervical cancer, tumor-secreted exosomal
Wnt2B activates fibroblasts and promotes CAF conversion
to promote cervical cancer progression.117 Tumor-secreted
exosomal lncRNA POU3F3 promotes cisplatin resistance in
ESCC by inducing fibroblast differentiation into CAFs.118

EXOSOMES AS DISEASE BIOMARKERS

Abundant evidence has shown that cells from individuals
with diseases and healthy subjects secreted exosomes

containing different proteins and RNAs into the circulation
and body fluid, which makes exosomes applicable for liquid
biopsy as potential diagnostic biomarkers.119,120 Melo and
coworkers found that exosomal proteoglycan glypican-1
(GP1) was specifically present in the serum of patients with
pancreatic cancer with high sensitivity and exosomal GP1
level is highly positively correlated with the tumor burden.
Correspondingly, exosomal GP1 level is also correlated with
survival of pre- and post-surgical patients, indicating exo-
somal GP1 ideal to serve as diagnostic and prognostic bio-
markers for pancreatic cancer.121 Exosomal cytoskeleton-
associated protein 4 (CKAP4) was secreted by pancreatic
ductal adenocarcinoma (PDAC) cells and was highly
detected in pancreatic tumor-bearing xenografted mice and
patients with PDAC, whereas CKAP4 was barely detectable
in normal mice and postoperative patients, suggests that
CKAP4 secreted in exosomes may represent a biomarker for
PDAC.122 In addition, exosomes released by tumor tissues
are enriched with miRNAs and exosomal miRNAs may be
explored as potential biomarkers for early diagnosis of can-
cers.123,124 A number of clinical studies on exosomes as
diagnostic biomarkers of cancer are ongoing.Potential of
exosomes as biomarkers for noncancer diseases have been
investigated as well. The expression of exosomal miR-
331-5p and miR-505 were significantly higher in patients
with Parkinson’s disease (PD) compared with healthy con-
trols with the ROC curve 0.849 and 0.898, respectively,
which suggests that exosomal miRNAs could potentially act
as biomarkers for PD.125 Exosomes collected from
bronchoalveolar lavage fluid from patients with asthma and
healthy subjects contain different miRNA contents,
exhibiting potential to serve as diagnostic biomarker of
asthma.126

EXOSOMAL miRNAs AS DIAGNOSTIC,
PREDICTIVE AND PROGNOSTIC
BIOMARKERS FOR LUNG CANCER

Studies have illustrated that the composition of exosomal
miRNAs differs among NSCLC subtypes and may serve as
biomarkers for diagnosis, therapeutics and prognosis of
NSCLC127,128(Figure 2).As early as in 2009, Rabinowits
et al.129 described a set of 12 miRNAs (including miR-
17-3p, miR-21, miR-106a, miR-146, miR-155, miR-199,
miR-192, miR-203, miR-205, miR-210, miR-212 and miR-
214) isolated from serum exosomes of NSCLC patients while
not from those of healthy subjects, suggesting that exosomal
miRNAs could be used for NSCLC diagnosis. In another
study, 746 exosome-derived miRNAs were globally screened
in lung adenocarcinoma (LAC) patients, lung granuloma
patients and healthy controls. 2 miRNA panels consisting of
4 miRNAs (miR-378a, miR-379, miR-139-5p and miR-
200-5p) and 6 miRNAs (miR-151a-5p, miR-30a-3p, miR-
200b-5p, miR-629, miR-100 and miR-154-3p), respectively,
were explored for screening of LAC against healthy subjects
and patients with benign lung nodules with high sensitivity
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(96% and 97.5%) but probably insufficient specificity (60%
and 72%).130 More recently, an miRNA panel containing let-
7b-5p, let-7e-5p, miR-23a-3p, and miR-486-5p were devel-
oped for NSCLC diagnosis with sensitivity of 80.25%, speci-
ficity of 92.31% and AUC value of 0.899, respectively. In the
meanwhile, levels of miR-181b-5p and miR-361b-5p, and of
miR-10b-5p and miR-320b were indicated to identify lung
adenocarcinoma (LAC) and lung squamous cell carcinoma
(LSCC), respectively, with sensitivity of 80.65% and 83.33%,
specificity of 91.67% and 90.32%, and AUC value of 0.936
and 0.911, respectively.131Exosomal miRNAs have also been
illustrated in prediction of treatment response of lung cancer
patients. Two studies showed that upregulation of miR-96,
and miR-208-a in NSCLC promoted tumor growth and resis-
tance to radiotherapy, indicative of potential novel therapeu-
tic targets.132,133 Level of exosomal miR-146a-5p was
demonstrated to predict sensitivity of NSCLC to the cisplatin
therapy through regulating autophagy pathway.134 Similarly,
exosomal miR-100-5p was shown to be downregulated in
cisplatin-resistant A549 (A549/DDP) cells in comparison
with that in wild-type A549, and A549/DDP-derived
exosomes were capable of endowing cisplatin resistance to
wild-type A549 cells mediated by mTOR pathway.135 In a
recent study, Poroyko et al.136 analyzed exosomal miRNAs
from the serum of NSCLC, SCLC and healthy controls by
shotgun sequencing and identified 17 differentially displayed
miRNAs between lung cancer patients and healthy subjects.
A set of exosomal miRNAs were differentially displayed in
the patient cohort before and after chemotherapy, indicative
of the potential of exosomal miRNA profiling in disease sub-
typing and treatment efficacy evaluation of lung cancer. exo-
somal could be a noninvasive diagnostic and prognostic

marker of radioresistant NSCLC For patients who received
tyrosine kinase receptor inhibitors, exosomal miRNAs has
also shown the predictive effect in drug response. MiR-184
and miR-3913-5p derived from exosomes in the peripheral
blood of NSCLC patients could be used as biomarkers to
indicate osimertinib resistanceLevels of miR-21 and miR-
4257 were found to be significantly increased in relapsing
NSCLC patients after surgery and predict low disease free
survival.137 Low level of miR-146a-5p in serum exosomes
indicated poor progression free survival of NSCLC
patients.134 Higher level of plasma exosomal miR-451a from
NSCLC patients of stages I, II or III before surgery were
detected in those with recurrence and poor disease-free and
overall survival, indicative of the potential of exosomal miR-
451a serving as the prognostic biomarker for NSCLC
patients.138 In another study, 83 tumor-related miRNAs in
serum exosomes were screened and nine miRNAs were
detected to be differentially present in exosomes of NSCLC
patients. Among these nine miRNAs, miR-23b-3p, miR-10b-
5p and miR-21-5p were upregulated in NSCLC compared to
healthy subjects, and higher levels of the three miRNAs
predicted low overall survival of the patients.139

EXOSOMAL PROTEINS AS DIAGNOSTIC
AND PROGNOSTIC BIOMARKERS FOR
LUNG CANCER

Recent studies by proteomic analysis have detected a number
of lung cancer exosome-enriched proteins that are involved
either in biogenesis, transport and fusion of exosomes or play
important roles in tumor metastasis, angiogenesis and immu-
noregulation.140 These exosomal proteins can reflect the
donor cells and pathological state of disease, which make
them potential biomarkers for diagnosis and prognosis of
lung cancer (Figure 2).Quantitative proteomic analyses of
exosomal proteins in NSCLC cells and normal bronchial epi-
thelial cells have identified NSCLC exosome-enriched pro-
teins involved in cell signaling, cell adhesion and extracellular
matrix remodeling. Levels of EGFR and SRC as well as their
downstream effectors GRB2 and RALA, and MET, RAC1
and KRAS proteins were detected to be upregulated in
NSCLC exosomes.141 In contrast to similar plasma EGFR
levels between lung cancer patients and normal subjects,
remarkable higher level of exosomal EGFR was observed in
lung cancer patients in comparison to normal subjects142

with 80% of serum exosomes from NSCLC being identified
to be EGFR positive.143 These studies indicated exosomal
EGFR as potential diagnostic biomarker for lung cancer.
Jakobsen and coworkers used an extracellular vesicle array
containing 37 antibodies against lung cancer-related proteins
to capture and phenotype serum exosomes of NSCLC
patients. A combined 30-marker model was explored to dis-
tinguish NSCLC with sensitivity of 75%, specificity of 76%
and diagnostic accuracy of 75.3%.144 Another study of
581 patients by the same team indicated three markers
CD151, CD171, and tetraspanin 8 as the strongest separators

F I G U R E 2 Potential applications of exosomes in lung cancer
management. Tumor-derived exosomes can serve as promising biomarkers
for diagnosis, prognosis and treatment efficacy of lung cancer. Exosomes
could also act as drug delivery vehicles and anticancer vaccine in lung
cancer therapy
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of patients with cancer of all histological subtypes versus
patients without cancer.145 Recently, Wang et al.146 detected
the differential expression protein in exosomes of distant
metastatic and nonmetastatic NSCLC patients identified by
multidimensional liquid chromatography and mass spec-
trometry analysis and found lipopolysaccharide-binding pro-
teins (LBP) in the exosomes to be well distinguished between
patients with metastatic and patients with nonmetastatic
NSCLC. The area under the curve (AUC) was 0.803 with a
sensitivity of 83.1% and a specificity of 67%, suggesting
exosome LBP might be promising and effective candidates of
metastatic NSCLC. Further research by the same team found
that a combination of AHSG, ECM1, and carcinoembryonic
antigen improved the diagnostic potential of NSCLC with the
diagnostic values AUC of 0.938 for NSCLC and 0.911 for
early stage NSCLC versus healthy individuals, further
suggesting the potential diagnostic value of serum exosome
proteins.147Sandfeld-Paulsen et al. performed proteomic ana-
lyses of 49 exosomal membrane bound proteins from a
cohort of 276 NSCLC patients and identified nine exosomal
membrane bound proteins to be potential prognostic bio-
marker of NSCLC. Specifically, high levels of EGFR,
NYESO-1 and PLAP are indicative of poor prognosis of
NSCLC patients.148Recently, saliva has emerged as a novel
medium for cancer detection as its collection is simple and
noninvasive.149 Exosomes released by cells or organs could
also be detected in saliva.150 In a xenografted mouse model of
human lung cancer, salivary exosome-like microvesicles were
found to carry tumor cell-specific mRNA and protein from
blood to saliva.151 Salivary exosomal proteins were systemati-
cally quantitatively compared by LC-MS/MS between lung
cancer patients and normal subjects, and 150 proteins in sali-
vary exosomes were identified to be dysregulated in lung can-
cer, among which 25 proteins were from remote organs and
five were lung-associated proteins. These studies indicated
that salivary exosomal proteins could also be explored as a
diagnostic biomarker of lung cancer.152Exosome-based detec-
tion of EGFR mutation in plasma from NSCLC patients has
also achieved favorable diagnostic results.153 Detection of the
T790M mutation on exosomal cfDNA achieved 92% sensitiv-
ity and 89% specificity using tumor biopsy results as gold
standard.154 In another study, the sensitivity was 98% for
detection of activating EGFR mutations and 90% for EGFR
T790M based on exosomal cfDNA.155 Recently, an exosome-
focused translational research for afatinib (EXTRA) study has
been carried out to identify a novel predictive biomarker and
a resistance marker for patients who received afatinib
treantment.156 All these studies demonstrate that exosomal
EGFR mutation detection might be used as diagnostic and
predictive biomarker for EGFR-TKI treatment and help to
avoid unnecessary tumor biopsies.

EXOSOMES IN LUNG CANCER THERAPY

The overall patient outcomes of lung cancer therapy remain
unsatisfactory. Improvement of efficacy necessitates the

exploration of novel therapeutic approaches for lung can-
cer. Immunotherapy by targeting PD-1 and PD-L1, which
negatively regulate T cell activation, represents a novel
treatment approach for broad range of cancers, including
lung cancer. Exosomes are involved in the regulation of
inflammatory signals in the tumor microenvironment and
therefore affect the immunotherapeutic efficacy in lung
cancer.70 As a result, inhibition of TEX release or of
integrin-mediated TEX uptake by blocking integrins may
restrain the development of an amicable tumor microenvi-
ronment, which leads to the repression of tumor progres-
sion.157,158In addition, the exosome represents a potential
delivery tool of biological molecules and drugs (Figure 2).
In comparison to other drug delivery tools developed,
including nanoparticles and liposomes,159 exosomes display
numerous advantages, such as less toxicity, low immunoge-
nicity, targeting specific recipient cells mediated by ligands
and peptides on the exosomal membrane, and the ability to
transport across the blood brain barrier.160 Natural com-
pounds can be loaded into exosomes during exosomal bio-
genesis process or through in vitro incubation, transfection
or electroporation of purified exosomes.161 Docetaxel
(DTX), the first-line of the antitumor agent used to treat
NSCLC, was selected payload into exosome by electropora-
tion, compared to the free DTX, exosomes significantly
increased the cellular uptake in vitro evaluation and showed
better targeting to tumor tissue in the mice.162 In another
research, engineered targeting tLyp-1 exosomes had high
transfection efficiency into lung cancer and cancer stem
cells and were able to knockdown the target gene of cancer
cells and to reduce the stemness of cancer stem cells.163 All
these researches suggest that exosomes might offer a prom-
ising gene delivery platform for future cancer therapy.
Exosomes have been explored as anticancer vaccine based
on the consideration that they contain tumor-specific anti-
gens164 (Figure 2). Yaddanapudi et al.165 recently reported
that vaccination with GM-CSF positive but not GM-CSF
negative exosomes from murine embryonic stem cells
(ESCs) delayed or prevented tumorigenesis in mice by boo-
sting tumor-specific responses and Th1 cytokine reactions
of the tumor-infiltrating lymphocytes, suggesting potential
roles of GM-CSF positive human ESCs in cancer-
preventing vaccination of susceptible individuals. In a clini-
cal study, MAGE peptides loaded exosomes derived from
autologous dendritic cells (DEXs) of NSCLC patients were
evaluated for their safety and efficacy as tumor vaccine.166

Enhanced immune responses with NK activities and T cell
response against MAGE peptides were observed and long
term disease stability were achieved in some patients. In
another clinical study, clinical benefits of cancer antigens-
loaded IFN-g-DEXs were evaluated in NSCLC patients
without disease progression after chemotherapy.167 Aug-
mented antitumor function of NK cells induced by DEXs
has been established in advanced NSCLC patients with
defective NKp30 expression. These studies reveal potential
applications of dendritic cell-derived exosomes as antican-
cer vaccine.
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DISCUSSION

Crosstalk between cancer cells and the tumor microenviron-
ment mediated by tumor derived exosomes has been
established to play an important role in tumor progression
and metastasis. However, little is known about how TEXs
interact with tissues in distance. Further investigation is nec-
essary to understand the function of TEXs in tumor progres-
sion and metastasis, which will facilitate the development of
novel cancer therapeutic approaches.Exosomes appear to be
desirable biomarkers for prognosis, diagnosis and treatment
prediction of lung cancer on account of exosomal cargos
mirroring tissue expression patterns, the noninvasiveness of
liquid biopsy which makes consecutive surveillance possible,
and the stability of genetic materials safeguarded by the exo-
somal membrane. There has been extensive research on exo-
somal miRNAs and proteins as potential diagnostic
biomarker for lung cancer. These studies suggest that miRNA
and protein panels, instead of single miRNAs and proteins,
present more clinical values. The outcomes from different
studies, despite being inconsistent, do partially overlap. In
consideration of the variations in study subjects, exosome ori-
gins and exosome isolation approaches, production of com-
parable outcomes necessitates larger-scale investigation with
unified patient classification and exosome isolation methods.
Moreover, possible therapeutic applications of exosomes
could open up new avenues in lung cancer treatment. The
potential of exosomes to serve as drug delivery vehicles have
been proposed. Exosomes derived from dendritic cells serving
as cancer vaccine have been proven to be promising in lung
cancer therapy. While vaccination of DEXs has been illus-
trated to enhance NK cell activity in some lung cancer
patients, little is known about the application of exosomes in
adjuvant therapy of lung cancer or as drug delivery tool. Fur-
ther clinical studies are warranted to confirm the capacity of
exosomes in lung cancer management.In conclusion,
exosomes are a new exciting field of research which have
opened a new window to the diagnosis, prognosis and treat-
ment of lung cancer. Although a great number of inspiring
findings and potential applications for exosomes have been
published, methods for exosome isolation remain to be stan-
dardized. Future investigations should be conducted on
approaches to manage the biogenesis, cargo loading, release,
and interaction of lung cancer exosomes so as to better
understand their molecular mechanisms and develop novel
therapeutics with maximal on-target efficiency.
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