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Abstract: To improve the performance of amorphous InGaZnOx (a-IGZO) thin film transistors (TFTs),
in this thesis, Cs+ ions adsorbed IGZO (Cs-IGZO) films were prepared through a solution immersion
method at low temperature. Under the modification of surface structure and oxygen vacancies
concentrations of a-IGZO film, with the effective introduction of Cs+ ions into the surface of a-IGZO
films, the transfer properties and stability of a-IGZO TFTs are greatly improved. Different parameters
of Cs+ ion concentrations were investigated in our work. When the Cs+ ions concentration reached
2% mol/L, the optimized performance Cs-IGZO TFT was obtained, showing the carrier mobility of
18.7 cm2 V−1 s−1, the OFF current of 0.8 × 10−10 A, and the threshold voltage of 0.2 V, accompanied by
the threshold voltage shifts of 1.3 V under positive bias stress for 5000 s.
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1. Introduction

In the last decade, amorphous InGaZnOx (a-IGZO) thin film transistors (TFTs) have been
extensively researched due to their outstanding performance, including superior carrier mobility (µFE),
low subthreshold swing (S.S), large switching current radio (ION/IOFF), and high transparency under
visible light [1–3]. It showed great significance in the applications of next-generation electronic devices
such as displays [4,5], sensors [6,7], and memories [8,9], especially in wearable and flexible devices like
foldable displays and e-paper [10–12]. Since the wearable and flexible devices should be prepared
onto a polymeric substrate which cannot afford the high temperature, the a-IGZO TFTs need to be
prepared at a low temperature for use in wearable and flexible applications.

In recent years, solution process and magnetron sputtering have been commonly used to achieve
low temperature prepared a-IGZO TFTs. However, a-IGZO prepared by the solution process shows
disadvantages such as lots of film defects, large roughness, and poor uniformity of large areas—inducing
low carrier mobility of a-IGZO TFTs (generally < 10 cm2 V−1 s−1), which cannot satisfy the requirements
of high-definition flexible display applications [13–16]. The studies also showed that most of the
sputtered a-IGZO TFTs always need an annealing process to guarantee their high performance,
since unannealed a-IGZO fabricated by magnetron sputtering still have many defects inside [17–19].
Although some scholars have fabricated a-IGZO TFTs by magnetron sputtering without annealing, the
low mobility (<10 cm2 V−1 s−1) and stability (threshold voltage shifts > 5 V) of TFTs determined that
they cannot afford the requirement of flexible devices [20–22]. Until now, it is still an open question to
obtain a high-performance a-IGZO TFT at low temperature without an annealing process.
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Herein, a kind of Cs+ ion adsorption was used to modify the surface of a-IGZO film to improve
the performance of a-IGZO TFTs. The excellent electrical properties of a-IGZO TFT were obtained
under low-temperature conditions, without post-annealing, by adjusting the adsorption degree of Cs+

ions. Compared with traditional a-IGZO TFT fabricated by a high-temperature annealing process,
excellent properties were observed in the optimized Cs+ ions adsorbed IGZO (Cs-IGZO) TFT. The high
carrier mobility of 18.7 cm2 V−1 s−1, the low threshold voltage (Vth) of 0.2 V, and the low Vth shifts of
1.3 V under positive bias stress for 5000 s reveal the outstanding performance of the Cs-IGZO TFT.

2. Materials and Methods

The Bottom-gate staggered Cs-IGZO TFTs were fabricated and shown in Figure 1. In Cs-IGZO
TFTs fabrication, heavily doped p-type silicon (P++-Si) was chosen to be the substrate and gate
electrode. A layer of SiNx, with a thickness of 50 nm, was deposited on the Si wafer by plasma
enhanced chemical vapor deposition (PECVD), serving as dielectric layer. Then, a-IGZO film with
a thickness of 50 nm was deposited onto SiNx by magnetron sputtering. The working pressure during
a-IGZO film deposition was maintained at 5 mTorr with a mixture of Ar (24.3 sccm) 97% and O2

(0.7 sccm) 3% gases. The DC power and sputtering time were 80 W and 30 min, respectively. After
IGZO deposition, the wet etching technique was applied to form active islands of TFTs.
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Finally, a 50 nm thick layer of molybdenum (Mo) was deposited through a shadow mask to form 
source (S) and drain (D) electrodes, which also defined the channel length as 500 μm. 

Table 1. Name of Cs-IGZO films. 
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Concentration of CsHCO3 Solution (% mol/L) 0.5 1 2 3 

Transfer properties and stability under positive gate bias of Cs-IGZO TFTs were measured by a 
semiconductor parameter analyzer (Keithley 4200SCS, Cleveland, OH, USA) in a dark box at room 
temperature. Hall mobility (μHall), carrier concentration, and resistivity of Cs-IGZO films were 
obtained by Hall Effect. The surface morphologies and the chemical composition of Cs-IGZO films 
were obtained by Atomic Force Microscope (AFM, INNOVA, Billerica, MA, USA), X-Ray Diffraction 
(XRD, D8 ADVANCE A25, Bruker, Karlsruhe, Germany), and X-ray Photoelectron Spectroscopy 
(XPS, Thermo Fisher ESCALAB Xi+, Waltham, MA, USA). 
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Figure 1. Structure of Cs+ ions adsorbed IGZO (Cs-IGZO) thin film transistor (TFT) and IGZO TFT.

The Cs-IGZO film was formed by immersing the prepared substrate into CsHCO3 solution.
To investigate the influence of the Cs+ ions concentration in the performance of Cs-IGZO film and
TFTs, four different concentrations of CsHCO3 were prepared as shown in Table 1. The substrate was
immerged into CsHCO3 solution for 60 min under 75 ◦C to ensure the sufficient adsorption of Cs+ ions
into IGZO film. Then, Cs-IGZO films were cleaned by deionized water and dried in nitrogen. Finally,
a 50 nm thick layer of molybdenum (Mo) was deposited through a shadow mask to form source (S)
and drain (D) electrodes, which also defined the channel length as 500 µm.

Table 1. Name of Cs-IGZO films.

Name of Cs-IGZO Film A1 A2 A3 A4

Concentration of CsHCO3 Solution (% mol/L) 0.5 1 2 3

Transfer properties and stability under positive gate bias of Cs-IGZO TFTs were measured
by a semiconductor parameter analyzer (Keithley 4200SCS, Cleveland, OH, USA) in a dark box at
room temperature. Hall mobility (µHall), carrier concentration, and resistivity of Cs-IGZO films were
obtained by Hall Effect. The surface morphologies and the chemical composition of Cs-IGZO films
were obtained by Atomic Force Microscope (AFM, INNOVA, Billerica, MA, USA), X-Ray Diffraction
(XRD, D8 ADVANCE A25, Bruker, Karlsruhe, Germany), and X-ray Photoelectron Spectroscopy (XPS,
Thermo Fisher ESCALAB Xi+, Waltham, MA, USA).
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3. Results and Discussion

3.1. Electrical Characteristics of Cs-IGZO TFTs

The transfer properties of Cs-IGZO TFTs from sample A1 to A4 were measured and plotted in
Figure 2. In the measurement of Cs-IGZO TFTs transfer properties, the drain–source voltage (VDS)
is 10 V, with sweeping the source–gate voltage (VGS) from −5 to +20 V. Vth, µFE, and S.S of TFTs are
extracted by the transfer properties of the TFTs and represented in Table 2, respectively. As observed
with Figure 2 and Table 2, the Vth of samples A1 to A4 gradually reduce from 7.9 V to −1.7 V, which
indicates that the switching performance of Cs-IGZO TFTs can be adjusted with the changing of Cs+

ions concentration. The µFE of samples A1 to A4 increase from 8.6 cm2 V−1 s−1 to 21.5 cm2 V−1 s−1,
indicating that the transport speed of electrons of a-IGZO film can be significantly improved by
increasing the Cs+ ions concentration. The S.S of samples A1 to A4 decreases from 0.28 V/decade to
0.22 V/decade, which means the defects inside the TFTs can be tapered by increasing the Cs+ ions
concentration. In addition, the OFF current (IOFF) of samples A1 to A4 are calculated to be 5.6 × 10−11 A,
3.5 × 10−10 A, 0.8 × 10−10 A, and 6.7 × 10−8 A, which indicates that the drive characteristics of Cs-IGZO
TFTs can be deteriorated by increasing the concentration of Cs+ ions.
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Figure 2. Transfer performance of sample A1 to A4.

Table 2. Vth and S.S value of samples A1 to A4.

Parameter/Sample Vth (V) µFE (cm2 V−1 s−1) S.S (V/decade)

A1 7.9 8.6 0.28
A2 5.7 13.1 0.25
A3 0.2 18.7 0.23
A4 −1.7 21.5 0.22

In general, the oxygen molecules in air ambient can adsorb onto a-IGZO when a-IGZO is under
positive bias and exposed in the atmosphere. The formation of oxygen adsorption is shown in the
following equation:

O2(gas) + e− ↔ 2O−(solid) (1)

This adsorption of oxygen can change the physicochemical properties of the a-IGZO film, causing
the Vth positive shifts (∆Vth) of the a-IGZO TFT under working conditions, thereby reducing the
stability of the IGZO TFT. Therefore, in order to investigate the effect of Cs+ ions adsorbed degree
on the stability of Cs-IGZO TFTs, the ∆Vth of samples A1 to A4 under positive bias (VGS = 10 V) for
different time are calculated and represented in Figure 3, respectively. As observed with Figure 3,
sample A1 has the largest ∆Vth (3.9 V), represented by the black dash line. The ∆Vth of samples A1 to
A3 are gradually reduced, wherein the ∆Vth of samples A2 (2.8 V) and A3 (1.3 V) are represented by
red and blue lines, respectively. These results indicate the stability of Cs-IGZO TFTs can be optimized
by increasing the Cs+ ions adsorbed degree of IGZO film. In addition, sample A4 has a similar ∆Vth
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to sample A3 of 1.2 V, represented by the purple line, indicating that the stability of Cs-IGZO TFTs
are no longer optimized by increasing the Cs+ ions adsorbed degree of IGZO film when the CsHCO3

concentration reached 2% mol/L.
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As observed with Figure 4, the surfaces of the samples A1 to A4 all have a diffraction peak at
a diffraction angle of 33.1◦, indicating that the samples A1 to A4 all exhibit a single crystal state.
The intensity of the diffraction peaks in samples A1 to A4 gradually increased, indicating that the
surface crystallization strength of the Cs-IGZO film can be promoted by increasing the degree of
adsorption of Cs+ ions, thereby obtaining the more regular surface structure of Cs-IGZO films. Since the
diffraction peak at a diffraction angle of 33.1◦ of Cs-IGZO films corresponds to (101) orientation of
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indium, the XRD results of samples A1 to A4 also indicate that the regular-arranged In atoms are the
primary cause of surface crystallization of Cs-IGZO films [23].

The surface morphology of samples A1 to A4 are measured using AFM and shown in Figure 5a–d,
respectively. As observed with Figure 5, the surface morphology of samples A1 to A4 gradually
changed from random arrangement to linear arrangement, which not only indicates the Cs+ ions
adsorption could obtain a-IGZO films with regular surface structure, but also indicates that the surface
structure of IGZO thin films tend to be more regular by increasing the Cs+ ion adsorbed degree.
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According to the XRD and AFM results, the movement states of carriers in Cs-IGZO films with
different Cs+ ions adsorption are given and represented in Figure 6. Figure 6a represents the electrons
transport path inside the Cs-IGZO film when the Cs+ ions are barely adsorbed, like sample A1. In this
state, most of the metal–oxide molecules in the surface of the Cs-IGZO films are randomly arranged.
Since the electrons move in the oxygen vacancies in Cs-IGZO films, the electrons need to move around
each molecule, therefore the transmission paths represent the irregular way.
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(b) part of Cs+ ions adsorbed IGZO film. (c) large amount of Cs+ ions adsorbed IGZO film.

When the Cs+ ions adsorbed degree is gradually increased, some of the InOx molecules on the
surface of the Cs-IGZO film begin to have the regular arrangement, like samples A2. The schematic
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of the carrier transport path in this kind of situation is represented by Figure 6b. As adsorbed from
Figure 6b, the electrons can be transmitted linearly around the regularly distributed InOx molecules but
are still transmitted in an irregular way around the randomly distributed other metal–oxide molecules,
so their electron transport paths consist of half straight lines and half irregular lines.

As shown in Figure 6c, with the further increase of Cs+ ions adsorbed degree, most of the InOx

molecules in the surface of the Cs-IGZO film are completely regular-arranged, like sample A3 and
A4. At this time, the electrons do not need to move to bypass any molecules, so their transmission
paths show a straight line. In this situation, the electrons’ transmission path will be greatly shortened,
thereby improving the electrons’ transport speed efficiency, which can effectively increase the carrier
mobility of the IGZO film.

3.3. Chemical Studies on Cs-IGZO Films

In order to determine the adsorbed degree of Cs+ ions in Cs-IGZO films, the Cs3d spectrum of
high-resolution XPS spectra for samples A1 to A4 are measured and represented in Figure 7a. The Cs3d

spectra of samples A1 to A4 are indicated by the green line, blue line, orange line, and purple line,
respectively. As observed in Figure 7a, Cs3d spectrum of all the four samples exhibit two distinct peaks
at binding energies 724.8 eV and 738.6 eV, which represent the chemical state of Cs3d

2/3 and Cs3d
5/2,

respectively, ensuring the presence of Cs+ ions. At the same time, their peak intensities increase with
the increasing of CsHCO3 concentration, indicating that the Cs+ ion content in samples A1 to A4 is
gradually increased. Combined with XPS analysis software, the content of Cs+ ions of Cs-IGZO films
can be calculated. The Cs+ content in samples A1 to A4 is 0.49%, 0.78%, 1.21%, and 1.46%, indicating
the content of Cs+ ions in Cs-IGZO films increases with the CsHCO3 concentration rising.
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spectra of O1s for sample A1 to A4.

The O 1s spectra of samples A1 to A4 are analyzed by XPS to investigate the effect of Cs+ ions
concentration on the characteristics of Cs-IGZO films. Generally, the O 1s spectrum of IGZO film
consists of lattice oxygen (OI), which represents the oxygen in oxide lattices; and vacancy oxygen (OII),
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which exists in oxygen deficient. The OI spectrum locates at lower binding energy with a peak of
around 529.6 eV; and the OII spectrum locates at higher binding energy with a peak of around 531.3 eV.
According to the positions of OI and OII spectra, the O1s spectra of samples A1 to A4 are divided into
two spectra, respectively. Figure 7b shows the O1s spectra and fitting curves of OI and OII of samples
A1 to A4.

As observed in Figure 7b, the peak intensities in OII spectra of samples A1 to A4 gradually
increase, indicating that the oxygen vacancy concentrations of IGZO film can be significantly improved
by increasing the Cs+ ions adsorbed degree. The area percentage under the peak of OII spectrum in
O1s spectra (OII/(OI+OII)) of samples A1 to A4 are calculated to be 48.1%, 51.9%, 52.7%, and 72.3%,
respectively, ascertaining that the high adsorption degree of Cs+ ions can generate more oxygen
vacancies inside the a-IGZO film. Since the oxygen vacancy work as the donor impurities of IGZO films,
this increased oxygen vacancy of Cs-IGZO films is attributed to the improvement of electrical properties
of TFTs, including the negative shift of Vth and the increase of µFE and the carrier concentration.

According to the physical and chemical analysis above, the reasons for the performance
improvement of Cs-IGZO TFTs are discussed. The negative shift of Vth of samples A1 to A4
are attributed to the low work function of cesium and the increased oxygen vacancies of IGZO films.
When Cs+ ions gradually adsorb in IGZO film, the low work function of cesium (2.17 eV) can gradually
eliminate the Schottky barrier which exists in the interface between the source/drain electrodes and
the active layer, resulting in the negative shift of Vth of samples A1 to A4. When concentration of
oxygen vacancy increased, the conduction band inside IGZO films gradually moved down, reducing
the distance between the Fermi level and the conduction band, resulting in the negative shift of Vth.

The highly improved µFE is attributed to the increased oxygen vacancy and the regular-arranged
surface structure of IGZO films. Since each oxygen vacancy generated within IGZO can provide
two free electrons for the conduction band, the increased oxygen vacancies inside IGZO are usually
accompanied by an improvement in the carrier concentration and carrier mobility of IGZO TFTs.
The regular-arranged surface structure of IGZO films lead the carriers and can be transmitted in
a straight line in the surface of IGZO film, effectively improving the carrier mobility of IGZO TFTs.

The increase of IOFF is mainly attributed to the surface single crystallization of the Cs-IGZO film
by adsorbing the Cs+ ions. The surface single crystallization can produce the grain boundaries in the
surface of Cs-IGZO. Under this circumstance, parts of electrons will flow along the grain boundary
when electrons flow on the surface of Cs-IGZO, causing the growth of IOFF in Cs-IGZO TFT. As the
degree of crystallization of Cs-IGZO surface increases, more electrons can flow between the grain
boundaries, resulting in the improvement of IOFF in Cs-IGZO TFTs.

The reason for the optimized stability of Cs-IGZO TFTs is analyzed and shown in Figure 8.
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Figure 8a is the schematic which shows the adsorbed state of oxygen molecules and water
molecules in air on the bare Cs+ ions adsorbed IGZO film. In this situation, oxygen molecules and
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water molecules can be adsorbed in the surface of the IGZO film without any barrier, resulting in the
positive shift of Vth of IGZO TFTs. When Cs+ ions are gradually adsorbed into IGZO, the Cs+ ions
can block the contact of IGZO with molecules in the air, greatly reducing the adsorption of oxygen
molecules and water molecules on the surface of IGZO, thereby effectively improving the stability of
IGZO TFT, as shown in Figure 8b. However, since Cs+ ions have a large ionic radius, oxygen molecules
and water molecules can pass through the interspace between the Cs+ ions to adsorb in the IGZO film,
therefore small amount of Cs+ ion adsorption cannot completely isolate the contact between IGZO
and molecules in air. As observed in Figure 8c, the oxygen molecules and water molecules cannot
pass through the Cs+ ions barrier to adsorb in the surface of IGZO film when a large number of Cs+

ions are adsorbed in IGZO film. In this state, the IGZO TFT has superior stability, and its stability
cannot be improved as the Cs+ ions concentration increases. Combined with the electrical properties
of samples A1 to A4, it can be concluded that sample A3 is the optimized Cs-IGZO TFT which has the
optimized performance.

3.4. Comparison between Cs-IGZO TFT and Annealed IGZO TFT

The performance of the optimized Cs-IGZO TFT (sample A3) and a-IGZO TFT which was annealed
at 400 ◦C for 30 min in N2 atmosphere is compared. The transfer properties of sample A3 and annealed
a-IGZO TFT are represented in Figure 9, and the Vth, µFE, and S.S are calculated and represented in
Table 3. As observed in Figure 9 and Table 3, sample A3 has a similar Vth to that of annealed a-IGZO
TFT which is 0.2 V, and its µFE and S.S are superior to that of a-IGZO TFT, indicating the transfer
properties of optimized Cs-IGZO TFT are superior to that of annealed IGZO TFT.
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Table 3. Electrical properties of optimized Cs-IGZO TFT and a-IGZO TFT.

Samples/Parameter Vth (V) µFE (cm2 V−1 s−1) S.S (V/decade)

Cs-IGZO TFT 0.2 18.7 0.23
a-IGZO TFT 0.2 12.6 0.24

The Vth shifts under gate bias of sample A3 and annealed a-IGZO TFT are calculated and shown
in Figure 10.

As observed in Figure 10, it is obvious that the ∆Vth of sample A3 (1.3 V) is smaller than
that of annealed a-IGZO TFT (1.4 V). These results indicate that the Cs-IGZO TFT fabricated at
a low temperature has the potential to replace the annealed a-IGZO TFTs, and is suitable for use in
flexible substrates.
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concentration of 2% in water solution had the optimized electrical properties, including high µFE
of 18.7 cm2 V−1 s−1, small threshold voltage shifts of 1.3 V, and low OFF current of 0.8 × 10−10 A.
These superior performances of optimized Cs-IGZO TFT were attributed to the change of surface
structure and oxygen vacancy concentrations of IGZO film, by appropriate Cs+ ions adsorbed into
IGZO film. Compared with the traditional a-IGZO TFTs fabricated through annealing process, the
optimized Cs-IGZO TFT had superior mobility and comparable device stability, which might be
applicable to future flexible electronics.
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