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A novel broad specificity fucosidase 
capable of core α1-6 fucose release 
from N-glycans labeled with urea-
linked fluorescent dyes
Saulius Vainauskas1, Charlotte H. Kirk1, Laudine Petralia1,2, Ellen P. Guthrie1,  
Elizabeth McLeod1, Alicia Bielik1, Alex Luebbers1, Jeremy M. Foster1, Cornelis H. Hokke   2, 
Pauline M. Rudd3, Xiaofeng Shi1 & Christopher H. Taron1

Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney 
α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an 
important modification of glycoproteins. Recently, several studies have reported that removal of 
core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate 
fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is 
severely impeded. We report here the cloning, expression and biochemical characterization of an 
α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can 
efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate 
that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with 
any of the existing NHS-carbamate activated fluorescent dyes.

Asparagine-linked glycosylation (N-glycosylation) is an abundant and complex form of post-translational mod-
ification of eukaryotic secretory proteins. Common techniques like liquid chromatography (LC) coupled to flu-
orescent detection (FLR) and/or mass spectrometry (MS), or capillary electrophoresis (CE) with laser-induced 
fluorescence (LIF) have been used to structurally characterize N-glycans. Data from these analyses can be com-
pared to validated mass or mobility data in reference databases to permit assignments of N-glycan structures1,2. 
An added measure of glycan structure verification can be gained through the use of exoglycosidases in these 
analytical workflows3,4.

Over the past decade, numerous technical advances have significantly increased the speed, throughput, and 
sensitivity of N-glycan structural analyses5. This progress has been due to improvements in nearly every aspect 
of analytical workflow design. One significant workflow improvement has been the emergence of new fluores-
cent dyes for N-glycan analysis. Traditional amine-functionalized fluorescent dyes (e.g., 2-aminobenzamide 
[2-AB], 2-aminobenzoic acid [2-AA], procainamide [PC], and 8-aminopyrene-1,3,6-trisulfonic acid 
[APTS]) are each coupled to the reducing end GlcNAc of a free N-glycan using Schiff base chemis-
try (Fig. 1b). A new generation of dyes (i.e., RapiFluor-MS™ (RFMS))6, InstantAB™, InstantPC™, and 
6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC)7,8 utilize reactive NHS-carbamate chemistry to form 
a covalent urea linkage between the fluorophore and a glycosylamine moiety that transiently resides on the reduc-
ing end GlcNAc following N-glycan release by PNGase F (Fig. 1a,c). This strategy significantly improves labeling 
speed, and the tertiary amines present on InstantPC and RFMS can also enhance the sensitivity of glycan detec-
tion in mass spectrometry applications6.

While newer labels have advantages for N-glycan analysis, an unexpected challenge has recently surfaced. 
The exoglycosidase bovine kidney fucosidase (BKF) has historically been the preferred enzyme for confirmation 
of the presence of α1-6 fucose side-branched to the N-glycan core. Recent studies reported that removal of core 
α1-6-linked fucose from N-glycans labeled with the aminoquinoline dyes AQC or RFMS by BKF was severely 
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impeded9,10. Molecular modeling of BKF with a core fucosylated RFMS labeled N-glycan suggested that rigidity 
of the aminoquinoline label contributed to steric clashes within the BKF active site9. In the present study, we have 
extended these biochemical observations by showing that BKF is also inefficient at removing core α1-6-linked 
fucose from N-glycans labeled with NHS-carbamate derivatives of aminobenzamide dyes (i.e., InstantAB and 
InstantPC). Thus, BKF is severely limited as a tool for confirming N-glycan core fucose in workflows using any of 
the reactive NHS-carbamate fluorescent labels that are currently available.

We sought to identify a novel α1-6-fucosidase with the ability to remove core fucose from N-glycans labeled 
with reactive NHS-carbamate fluorescent dyes. We report here the cloning, expression and biochemical charac-
terization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O 
has a strong preference for hydrolysis of α1-6-linked core fucose over α1-2-, α1-4-linked fucose in several glycans 
that we tested. The enzyme also can remove α1-3-linked core fucose that can occur on N-glycans of plants, worms 
and other non-mammalian eukaryotes. Finally, we demonstrate that fucosidase O is able to efficiently hydrolyze 
core α1-6-linked fucose on N-glycans labeled with NHS-carbamate activated fluorescent labels. Our study pro-
vides an alternative enzymatic solution for confirmation of N-glycan core α1-6 fucose.

Results and Discussion
Expression and purification of Omnitrophica α-L-fucosidase.  A candidate α-L-fucosidase from 
Omnitrophica bacterium OLB16 (herein termed fucosidase O) was identified via computational interrogation 
of sequence repositories. Fucosidase O is a member of CAZy glycoside hydrolase family GH29. Its deduced 
protein sequence (KXK31601) shows 48% and 45% amino acid sequence identity to those of the bovine tissue 
(NP_001039500) and plasma (NP_001192747) α-L-fucosidases, respectively. Additionally, the enzyme has a 20 
amino acid signal peptide as predicted by the SignalP 4.0 algorithm11. To generate recombinant protein for bio-
chemical characterization, fucosidase O lacking its signal peptide was intracellularly expressed in E. coli. The 

Figure 1.  NHS-carbamate activated dyes and their attachment to the reducing end of N-glycans. (a,b) A 
comparison of the chemical linkage of two versions of 2-aminobenzamide (2-AB) to the reducing end GlcNAc 
of the chitobiose core of an N-glycan is shown (the blue highlighted R denotes the remaining portion of the 
N-glycan). (a) Standard 2-AB is added via reductive amination chemistry and creates an acyclic form of 
GlcNAc, whereas, (b) InstantAB is added via reactive NHS-carbamate chemistry and creates a urea linkage to a 
cyclic form of GlcNAc. In both panels, attachment of core fucose to the C6 position of GlcNAc is shown in pink 
highlight to illustrate its proximity to the label. (c) Structural features of the various NHS-carbamate activated 
dyes that are currently available for glycan analysis.
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recombinant protein was purified as described in Materials and Methods (see Supplementary Fig. S1). Finally, 
to ensure the accuracy of our specificity studies, purified fucosidase O was tested to assure the absence of any 
contaminating exoglycosidase activities using different fluorescent-labeled oligosaccharides (see Supplementary 
Fig. S2).

Biochemical properties of fucosidase O.  To define the optimal reaction conditions for fucosidase O, 
various biochemical properties of the enzyme were examined. Enzymatic activity was assessed from pH 3.0–
8.0 using a trimannosyl N-glycan substituted with α1-6-linked core fucose as a substrate (see Supplementary 
Table S1). Fucosidase O was highly active from pH 4.0–6.0 with optimal activity at pH 5.5 (Fig. 2a). Fucosidase 
O was not affected by buffer containing Mn2+, Mg2+, Ca2+, or Ni2+ ions but showed significantly reduced activity 
in buffer containing Fe2+, Zn2+ or Cu2+ ions, with Cu2+ reducing activity by 95% under the reaction conditions 
used (Fig. 2b). The chelating agent EDTA had no effect on fucosidase activity, indicating that metal ions were not 
required for catalysis (Fig. 2b). The effect of temperature on enzyme activity and stability was also tested. The 
enzyme exhibited optimal activity at 50 °C (Fig. 2c).

Substrate specificity of recombinant fucosidase O.  Substrate specificity of fucosidase O was tested 
using various fucosylated N-glycans and other oligosaccharides as substrates (see Supplementary Table S1). The 
substrates were fluorescently labeled with either 2-aminobenzamide (2-AB) or 7-amino-4-methylcoumarin 
(AMC). Each oligosaccharide substrate was mixed with the enzyme and incubated for 0–48 hours. Reaction 
mixtures were analyzed at different incubation time points by UPLC-HILIC-FLR. For each sample, the area of 
individual peaks corresponding to undigested and digested substrate was obtained via integration. This permit-
ted calculation of the percent of released fucose from each substrate (see Materials and Methods). Complete 
digestion of α1–6-linked core fucose was observed with NA2F (an asialo-, galactosylated biantennary com-
plex N-glycan with core fucose) (Fig. 3a). Terminal α1–2-linked fucose was also completely removed from 
2-fucosyllactose (Fig. 3b). However, even after an extended 48 hour incubation, only 7% of α1-4-linked fucose 
was released from lacto-N-fucopentaose II (Fig. 3c), and no hydrolysis of α1-3-linked fucose was observed using 
lacto-N-fucopentaose III as a substrate (Fig. 3d).

The linkage preference of recombinant fucosidase O was compared to that of native BKF using fucosylated 
oligosaccharide substrates containing α1-2-linked fucose (2′-fucosyllactose) and α1-6-linked fucose (NA2F). 
After a 1 hour incubation, fucosidase O released α1-6 and α1-2-linked fucose with 95% and 27% efficiency, 
respectively; while BKF released 33% of α1-6-linked fucose and 100% of α1-2-linked fucose (Fig. 3a,b, dotted 
lines). After 18 hour incubation, both α1-6, α1-2-linked fucose substrates were completely hydrolyzed by both 
enzymes (Fig. 3a,b). Therefore, fucosidase O showed a marked preference for α1-6-linked core fucose (α1-6 
>α1-2), whereas BKF preferred α1-2-linked fucose (α1-2 >α1-6).

Fucosidase O was also tested using fucosylated plant-derived N-glycans as substrates (see Supplementary 
Table S1). Glycans isolated from wild-type and genetically modified Nicotiana benthamiana plants12 were labelled 
with anthranilic acid (2-AA), and were incubated with fucosidase O. The reaction products were analyzed by 
MALDI-TOF-MS. No hydrolysis of the α1-3 fucosyl Lewis X motif attached to the N-glycan outer arm was 
detected (see Supplementary Fig. S4). However, both α1-3-linked core fucose and terminal α1-3 fucose attached 
to otherwise unsubstituted GlcNAc on the N-glycan outer arm were efficiently removed (see Supplementary 
Figs S3–S5). Thus, hydrolysis of α1-3-linked fucose by fucosidase O may vary greatly depending on the structural 

Figure 2.  Biochemical properties of fucosidase O. The pH dependence (a), metal ion effect (b) and fucosidase 
activity at different temperatures (c) were determined. The 2-AB labeled core-fucosylated N-glycans M3N2F 
and NA2F were used as substrates to define the properties of fucosidase O. All experiments were performed in 
triplicate.
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context and the substitution pattern of the GlcNAc residue to which the fucose is linked. Moreover, fucosidase 
O efficiently releases both α1-3- and α1-6-linked core fucose from a GlcNAc at the reducing end of N-glycans.

Core α1-6 fucose removal from serum IgG N-glycans labeled with RapiFluor-MS 
(RFMS).  Fucosidase O was next tested for its ability to liberate core fucose from RFMS-labeled N-glycans 
in a complex sample. Human IgG harbors a mixture of many complex N-glycan structures, the vast majority 
of which are α1-6 core fucosylated8,13. In this experiment, an RFMS-labeled human IgG N-glycan mixture was 
used as a substrate (Fig. 4a). Only partial digestion of the core fucose on RFMS-labeled N-glycans was observed 
when treatment conditions were the same as those used for 2AB-labeled N-glycans (1.5 U/mL fucosidase O and 
0.085 U/mL BKF). Thus, 23-fold higher concentration of fucosidase O (35 U/mL) and extended incubation time 
(16 hours) at 37 °C were required to achieve complete digestion of RFMS-labeled glycans (Fig. 4a). For compari-
son, a 16-hour reaction using a proportionally higher concentration of BKF (2 U/mL) showed only partial diges-
tion and resulted in an increase in the sample’s complexity (Fig. 4a). Furthermore, increasing the amount of BKF 
in the reaction mixture to 5 U/mL and the length of digestion to 24 hours did not result in complete digestion (see 
Supplementary Fig. S6). This is consistent with the previously reported observation that RFMS hinders removal 
of core fucose by BKF9.

Core α1-6 fucose removal from N-glycans containing urea-linked dyes.  The efficiency of hydrol-
ysis of α1-6-linked core fucose from an RFMS-labeled N-glycan (NGA2F) by BKF and fucosidase O was evalu-
ated. Complete defucosylation of RFMS-labeled NGA2F was observed after treatment with fucosidase O (35 U/
mL) for 16 hours at 37 °C (Fig. 4b). In comparison, digestion with BKF (2 U/mL) resulted in release of only ~61% 
core fucose from RFMS-labeled N-glycan (Fig. 4b). To expand on this observation, we also tested the ability 
of fucosidase O and BKF to remove core fucose from the N-glycan NA2F labeled with the urea-linked amin-
obenzamide dyes (InstantAB and InstantPC). This experiment was performed by incubating NA2F-InstantAB or 
NA2F-InstantPC with fucosidase O (35 U/mL) or BKF (2 U/mL) for 16 hours at 37 °C. BKF was able to remove 
90% of core fucose from NA2F-InstantAB and only 49% from NA2F-InstantPC, whereas ≥99% of core fucose 
was released from both substrates by fucosidase O (Fig. 4b). These data illustrate that in addition to urea-linked 
aminoquinoline dyes, BKF can also be inhibited by urea-linked aminobenzamide dyes. In contrast, fucosidase O 
appears to efficiently remove core fucose in the presence of any of the existing urea-linked dyes.

Figure 3.  Substrate specificity and glycosidic bond preference of recombinant fucosidase O. Each 
oligosaccharide substrate (14 pmol) was mixed with fucosidase O or BKF (1.5 U/mL and 0.085 U/mL final 
concentration, respectively), and the reaction mixes were incubated at 37 °C. Aliquots were taken at each time 
point and glycans were analyzed by UPLC-HILIC-FLR. The chromatograms were integrated to measure the 
peak areas of the resulting glycans, and the percentage of fucose removal was calculated. Open squares indicate 
the glycans treated with fucosidase O; black diamonds indicate the glycans treated with BKF.



www.nature.com/scientificreports/

5Scientific ReporTs |  (2018) 8:9504  | DOI:10.1038/s41598-018-27797-0

Summary and Conclusions
In this study, we identified a new fucosidase from Omnitrophica bacterium with the ability to efficiently remove 
core α1-6 fucose from N-glycans labeled with any of the newer reactive NHS-carbamate fluorescent dyes. In 
addition, due to its preference for α1-6 fucose, fucosidase O more efficiently removes core fucose from N-glycans 
labeled with traditional amide-linked labels compared to BFK. Furthermore, fucosidase O is also able to remove 
core α1-3 fucose from plant N-glycans but does not hydrolyze outer arm α1-3 fucose in the context of Lewis X, 
making this enzyme potentially important for discrimination of α1-3 fucose localization on N-glycans (Fig. 5). 
The novel specificity of fucosidase O improves upon the existing glycobiology toolbox and provides new options 
for enzymatic N-glycan structure confirmation.

Methods and Materials
Materials.  All chemical reagents and solvents were purchased from Sigma-Aldrich. Labeled N-glycan sub-
strates used for specificity tests and activity assays were obtained from Prozyme (Hayward, CA). A standard of 
human IgG N-glycans labeled with RapiFluor-MS was obtained from Waters (Milford, MA). Native bovine kid-
ney fucosidase (GLYKO α(1-2,3,4,6) fucosidase) was from Prozyme. 2-chloro-4-nitrophenyl α-L-fucopyranoside 
(CNP-Fuc) was obtained from CarboSynth US (San Diego, CA).

Cloning, expression and purification of fucosidase O.  A DNA fragment (GenBank: LMZT01000142.1, 
Region: 29928-31277) encoding fucosidase O from Omnitrophica bacterium OLB16 (GenBank: KXK31601.1) was 
identified in the Omnitrophica genome database14. A codon optimized DNA sequence encoding fucosidase O lack-
ing its signal peptide (23-449 amino acids) with terminal vector-specific overlapping sequences was synthesized by 
Integrated DNA Technologies (Coralville, IA). Bacterial expression vector pJS11915 was amplified using the primers 
5′ ATGTTAACCTCCTAAGCTTAATTC 3′and 5′ GAATTCAGCTTGGCTGTTTTG 3′ and purified by gel extrac-
tion. The DNA fragment was cloned into pJS119 using the NEBuilder™ HiFi DNA Assembly Cloning Kit (New 
England Biolabs, Ipswich, MA). The resulting pJS119k-FucO plasmid and its sequence is available upon request.

Figure 4.  Core fucose removal from glycans labeled with different NHS-carbamate labels. (a) Complex 
N-glycans of human IgG labeled with RapiFluor-MS (8 pmol) were incubated with fucosidase O (35 U/mL) or 
BKF (2 U/mL) at 37 °C for 16 hours. After treatment, the glycans were analyzed by UPLC-HILIC-FLR. (b) Each 
N-glycan standard (2 pmol of NA2F-InstantAB, NA2F-InstantPC and NGA2F-RapiFluor-MS) was incubated 
with fucosidase O (35 U/mL) or BKF (2 U/mL) at 37 °C for 16 hours. The glycans were analyzed by UPLC-
HILIC-FLR. The chromatograms were integrated to measure the peak areas of the resulting glycans, and the 
percentage of fucose removal was calculated. The experiments were performed in triplicate.
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For protein expression, the assembled plasmid pJS119k-FucO was introduced into E. coli NEB Express cells 
(New England Biolabs, Ipswich, MA). An overnight culture of transformed cells was diluted 1:100 in 2 L of LB 
medium supplemented with 50 μg/mL kanamycin and grown to 0.6 OD600 units at 37 °C. The expression of 
recombinant fucosidase O was induced by addition of isopropyl-β-thiogalactopyranoside (IPTG) to a final con-
centration of 0.4 mM with shaking for 4 h at 30 °C. The cells were harvested by centrifugation and resuspended in 
50 mL of 20 mM Tris-HCl, pH 7.5. The cells were lysed by sonication with six 15 s bursts. Cell debris was removed 
by centrifugation at 19,000 × g for 60 min at 4 °C. The cleared cell lysate was applied to a 5 mL (bed volume) DEAE 
column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) equilibrated with 20 mM Tris-HCl, pH 7.5 at a flow 
rate of 2 mL/min. Bound proteins were eluted with a 0-300 mM NaCl gradient in 20 mM Tris-HCl, pH 7.5 and 
collected in 5 mL fractions. The fractions containing fucosidase O were pooled, ammonium sulfate was added 
to 1.5 M final concentration at 4 °C, and the protein sample was directly applied to a 5 mL (bed volume) Phenyl 
Sepharose FF (Low Sub) column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) at a flow rate of 3 mL/min. 
Bound protein was eluted using a reverse gradient of 1.5-0 M ammonium sulfate in 20 mM Tris-HCl, pH 7.5 
(5 mL fraction size). Pooled fractions containing pure protein were dialyzed against 20 mM Tris-HCl, pH 7.5 con-
taining 50 mM NaCl, 1 mM EDTA and concentrated using Vivaspin 20 concentrators (Sartorius Stedim Biotech, 
Göttingen, Germany). The yield of purified enzyme corresponded to 0.8 mg per liter of starting cell culture.

The colorimetric substrate 2-chloro-4-nitrophenyl α-L-fucopyranoside (CNP-Fuc) was used to assay enzy-
matic activity during purification. Typically, 1 µL α-fucosidase fraction was added to 100 µL of 2 mM CNP-Fuc in 
20 mM sodium acetate buffer, pH 5.5, and incubated 1 hour at 37 °C. Light absorbance was read at 405 nm.

Fucosidase O purity.  Purified fucosidase O was tested for the presence of contaminating exoglycosi-
dase activities using fluorescent-labeled oligosaccharides. Typically, fluorescent-labeled substrate (1 nmol) was 
incubated at 37 °C for 16 h with 3 μg of fucosidase O in 10 μL of reaction buffer (50 mM sodium acetate, pH 
5.5). The reaction mix was spotted onto a silica-60 thin layer chromatography (TLC) plate (EMD Millipore, 
Gibbstown, NJ) and separated using a mobile phase of isopropanol-ethanol-water (110:50:25; v/v/v). Reaction 
products were visualized by UV light at 302 nm. Purified fucosidase O was tested for the following activities: 
β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase, β-galactosidase, α-galactosidase, α-neuraminidase, 
α-mannosidase, α-glucosidase, β-xylosidase and β-mannosidase (see Supplementary Fig. S2).

Fucosidase O unit definition and assay.  One unit of fucosidase O was defined as the amount of enzyme 
required to cleave >95% of fucose from 1 nmol of the human IgG N-glycan G0F labeled with 2-aminoacridone 
(GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc(Fucα1-6)-AMAC), in 1 hour at 
37 °C in a total reaction volume of 10 µL. To assay fucosidase O, two-fold dilutions of enzyme were incubated 
with 1 nmol AMAC-labeled G0F substrate in 50 mM sodium acetate (pH 5.5) containing 5 mM CaCl2 in a 10 µL 
reaction. The reaction mix was incubated at 37 °C for 1 hour. Separation of reaction products were visualized via 
thin layer chromatography as described above.

Fluorescent labeling of oligosaccharide substrates.  To label N-glycan substrates with 
2-aminobenzamide (2AB), 10 μL of a fluorescent labeling mix (350 mM 2AB, 1 M sodium cyanoborohydride 
in acetic acid/dimethyl sulfoxide [30:70]) was added to each tube containing a dried N-glycan sample. The reac-
tion was incubated at 65 °C with agitation at 700 rpm for 120 min. For labeling with 7-amino-4-methylcoumarin 
(AMC), 10 μL of a labeling mix (430 mM AMC, 1 M sodium cyanoborohydride in acetic acid/methanol [4:30]) 
was added per 3 nmol of dried N-glycans. The reaction was incubated at 80 °C for 45 min. Excess label was 
removed by passage over HILIC SPE MacroSpin columns (Nest Group, Inc., Southborough, MA). Briefly, labe-
ling samples (10 μL) were diluted to 300 μL with 90% acetonitrile/10% 50 mM ammonium formate, pH 4.4 (90% 

Figure 5.  A schematic summary representation of recombinant fucosidase O specificity observed in this study. 
Observed cleavage of fucose from different positions of various N-glycans (left), 2′fucosyllactose (upper right) 
and lacto-N-fucopentaose (lower right) substrates is shown with black arrows. Outer arm α1-3 fucose was 
blocked when terminal galactose was present (arrow with X).
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ACN/NH4F), loaded on columns equilibrated with the same buffer, and washed with 5 × 350 μL 90% ACN/NH4F. 
Samples were eluted in 100 μL 50 mM NH4F, pH 4.4.

Determining biochemical properties of fucosidase O.  To determine the optimum pH of fucosidase O, 
2 pmol of 2AB-labeled trimannosyl N-glycan substituted with α1-6-linked core fucose (M3N2F) were incubated 
with 10 mU fucosidase O in parallel reactions containing 50 mM citrate buffer (pH 3.0), 50 mM sodium acetate 
buffer (pH 4.0-5.5), 50 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0-6.5) or sodium phosphate buffer 
(pH 7.5–8.0). Each reaction had a final volume of 10 μL. After incubation for 30 min at 37 °C, 5 μL of each sample 
were analyzed by UPLC-HILIC-FLR.

To determine the optimum temperature fucosidase O, 2 pmol 2AB-labeled NA2F were mixed with 10 mU 
fucosidase O in 50 mM sodium acetate buffer, pH 5.5 containing 5 mM CaCl2 in a final reaction volume of 10 μL. 
Parallel identical reactions were incubated for 30 min at different temperatures (30-65 °C), after which 5 μL of 
each sample were analyzed by UPLC-HILIC-FLR.

To examine the effect of cations on fucosidase O activity, 2 pmol 2AB-labeled M3N2F were mixed with 10 mU 
fucosidase O in 50 mM sodium acetate buffer, pH 5.5 containing appropriate metal salts at the final concentration 
of 2 mM in a final reaction volume of 10 μL. After incubation for 60 min at 37 °C, 5 μL of each sample were ana-
lyzed by UPLC-HILIC-FLR.

Substrate specificity of fucosidase O.  Substrate specificity and the glycosidic bond preference of purified 
fucosidase O and BKF were compared using N-glycan or oligosaccharide substrates containing α1-6-, α1-2-, 
α1-3- or α1-4-fucose. A list of substrates used in this study is shown in Supplementary Table 1. Reactions con-
sisted of 14 pmol of labeled glycan in 50 mM sodium acetate, pH 5.5 containing 5 mM CaCl2, and 105 mU of 
fucosidase O or 6 mU GLYKO α(1-2,3,4,6) fucosidase [BKF] in a total reaction volume of 70 µL (1.5 U/mL and 
0.085 U/mL final concentration, respectively). Reactions were incubated at 37 °C and a 10 µL aliquot was har-
vested at regular time points. To each sample, 100 µL of 20% acetonitrile was added to stop the reaction. Each 
reaction mixture was transferred to the Nanosep 10 K Omega (Pall Life Sciences, Port Washington, NY) cen-
trifugal device and centrifuged for 5 min at 12,000 × g. The samples were dried using a SpeedVac concentrator 
and were each dissolved in 10 μL of deionized water. For UPLC-HILIC-FLR analysis, 5 μL of each sample was 
mixed with 11.7 μL acetonitrile (final ratio 30:70 water/acetonitrile). An 10 μL aliquot of this mix was injected for 
UPLC-HILIC-FLR separation (next section).

Note that the activity units of each enzyme are defined using different substrates (N-glycan containing 
α1-6-linked fucose substrate used for fucosidase O, and a synthetic substrate 4-nitrophenyl α-L-fucopyranoside for 
BKF). Since the enzymes exhibit different activity on each of these two substrates, we used equimolar concentrations 
of each protein (0.15 μg) rather than equal number of units for comparison studies (see Supplementary Fig. S1).

Glycan analysis by UPLC-HILIC-FLR.  N-Glycans labeled with 2-AB or InstantAB were separated by 
UPLC using a Waters Acquity BEH glycan amide column (2.1 × 150 mm, 1.7 μm) on a Waters H-Class ACQUITY 
instrument (Waters Corporation, Milford, MA) equipped with a quaternary solvent manager and a fluorescence 
detector. Solvent A was 50 mM ammonium formate buffer pH 4.4 and solvent B was acetonitrile. The gradient was 
0-1.47 min, 30% solvent A; 1.47-24.81 min, 30–47% solvent A; 25.5-26.25 min, 70% solvent A; 26.55-32 min, 30% 
solvent A. The flow rate was 0.56 mL/min. The injection volume was 10 μL and the sample was prepared in 70% 
(v/v) acetonitrile. Samples were kept at 5 °C prior to injection and the separation temperature was 40 °C. The flu-
orescence detection wavelengths were: λex = 330 nm and λem = 420 nm for 2-AB; λex = 278 nm and λem = 344 nm 
for InstantAB. The data collection rate was 20 Hz.

RapiFluor-MS-labeled human IgG N-glycans were separated by UPLC using a Waters Acquity BEH glycan 
amide column (2.1 × 150 mm, 1.7 μm) on a Waters H-Class ACQUITY instrument. Solvent A was 50 mM ammo-
nium formate buffer pH 4.4 and solvent B was acetonitrile. The gradient used was 0-35 min, 25–46% solvent A; 
36.5-39.5 min, 100% solvent A; 43.1-55 min, 25% solvent A. The flow rate was 0.4 mL/min. The injection volume 
was 5 μL and the sample was prepared in 75% (v/v) acetonitrile. Samples were kept at 5 °C prior to injection and the 
separation temperature was 60 °C. The fluorescence detection wavelengths were λex = 265 nm and λem = 425 nm 
with a data collection rate of 20 Hz. Waters Empower 3 chromatography workstation software was used for data 
processing including traditional integration algorithm, no smoothing of the spectra and manual peak picking.

Fucosidase O testing on plant N-glycans.  Various N-glycans were isolated from recombinant glyco-
proteins produced in the wild-type and genetically modified Nicotiana benthamiana plants12. Isolation, labeling 
with anthranilic acid (2-AA) and characterization of these N-glycans were performed as described previously12.

The 2AA-labeled N-glycans were incubated overnight at 37 °C with 2 U of fucosidase O in 50 mM sodium acetate, 
pH 5.5 containing 5 mM CaCl2. After incubation, N-glycan products were loaded onto C18 Zip-Tip® (ZTC18M096, 
Merck Millipore, Amsterdam, The Netherlands) conditioned with 50% ACN + 0.1% TFA and then 0.1% TFA. The 
C18 resin was washed with 0.1% TFA and digestion products were eluted in 50% ACN + 0.1% TFA mixed with 
2,5-dihydroxybenzoic acid (DHB) matrix (10 mg/ml, 8201346, Bruker Daltonics, Bremen, Germany) so that sam-
ples were directly spotted on a 384 well steel polished plate for MALDI analysis and dried at room temperature

2AA-labeled undigested and digested glycan samples were analyzed by Matrix Assisted Laser Desorption/
Ionisation – Time of flight mass spectrometry (MALDI-TOF-MS) using an UltrafleXtrem® mass spectrome-
ter (Bruker Daltonics) equipped with a 1 kHz Smartbeam II laser technology and controlled by the software 
FlexControl 3.4 Build 119 (Bruker daltonics). All spectra were recorded in the negative-ion reflectron mode using 
DHB as matrix. Bruker® peptide calibration mix (ref # 8206195) was used for external calibration. Spectra were 
obtained over a mass window of m/z 700 –3500 with ion suppression below m/z 700 for a minimum of 20,000 
shots (2000 Hz) obtained by manual selection of “sweet spots”. The software FlexAnalysis 3.4 Build 76 was used 
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for data processing including smoothing of the spectra (Savitzky Golay algorithm, peak width: m/z 0.06, 1 cycle), 
baseline subtraction (Tophat algorithm) and manual peak picking. For our purpose of highlighting fucosidase 
O specificity, only the major peaks in each spectrum were selected and peaks with a signal to noise ratio inferior 
to 3 were excluded as well as peak to which no glycan composition could be assigned. Deprotonated masses of 
the selected peaks were assigned using GlycoPeakfinder® tool of the software GlycoWorkbench 2 (www.glycow-
orkbench.org). The 2AA label was taken into account as a fixed reducing-end modification and possible glycan 
composition was set up based on the characterization work previously conducted by Wilbers et al.12 (i.e. 0-10 
residues of deoxyhexose, hexose and N-acetylhexosamine and 0-1 pentose). A deviation of 150 ppm maximum 
was allowed for assignment of compositions.
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