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Abstract

Sensory neuroscience seeks to understand and predict how sensory neurons respond to sti-

muli. Nonlinear components of neural responses are frequently characterized by the sec-

ond-order Wiener kernel and the closely-related spike-triggered covariance (STC). Recent

advances in data acquisition have made it increasingly common and computationally inten-

sive to compute second-order Wiener kernels/STC matrices. In order to speed up this sort

of analysis, we developed a graphics processing unit (GPU)-accelerated module that com-

putes the second-order Wiener kernel of a system’s response to a stimulus. The generated

kernel can be easily transformed for use in standard STC analyses. Our code speeds up

such analyses by factors of over 100 relative to current methods that utilize central process-

ing units (CPUs). It works on any modern GPU and may be integrated into many data analy-

sis workflows. This module accelerates data analysis so that more time can be spent

exploring parameter space and interpreting data.

Introduction

An important goal in neuroscience is to understand how stimuli influence the activity of neu-

rons. One way to characterize this influence is with linear kernels, which describe how neural

responses depend linearly on past and present stimuli. These kernels do not tell the entire

story, since neural responses are frequently nonlinear. One solution is to combine linear ker-

nels with static nonlinearities to account for neural nonlinearities [1]. An alternative is to

directly determine how the response depends on different correlations in the input, an

approach known as nonlinear systems identification [2]. In this approach, the nonlinear

response can be approximated to low order by the second-order Wiener kernel of the system

[2, 3], which is closely related to spike-triggered covariance (STC) methods [4–9]. The shape

of the Wiener kernel is informative about which correlations elicit responses, and its eigenvec-

tors span the space of potential linear feature detectors that could be combined nonlinearly to

generate the response [5, 10]. These second-order analyses have been used to characterize
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photoreceptors [11, 12], retinal ganglion cells [6, 13–17], visual direction-selective cells in cor-

tex [18–20] and in insects [10, 21, 22], direction-selective behavior in insects [22, 23], somato-

sensory neurons [24–26], olfactory receptor neurons [27] and subsequent olfactory processing

neurons [28], auditory neurons [29, 30], electroretinograms [31, 32], and functional magnetic

resonance imaging [33, 34]. These studies used second-order kernels to gain insights into

timescales and lengthscales of motion computations, relevant spatiotemporal features for reti-

nal and cortical visual neurons, and distinct ON and OFF pathway inputs.

The computational load for analyzing data in neuroscience is growing heavier, largely

because data sets are increasing in size as the number of recorded cells, the sampling rate of

cells, and the duration of recordings all increase. Multi-electrode arrays allow extracellular

recordings of hundreds of cells [35, 36], while one- and two-photon imaging techniques now

also allow hundreds of cells to be recorded [37, 38]. Genetically encoded indicators of activity

are becoming faster [39–43] and imaging techniques are acquiring data with increasingly high

sampling rates [42]. Covering relevant timescales at faster sampling rates increases the load for

analysis.

Calculating second-order filters can require trillions of mathematical operations per filter.

To date, second-order kernels have been extracted using standard libraries on central process-

ing units (CPUs) [44]. Graphics processing units (GPUs) can perform some types of com-

putations far more efficiently than CPUs [45]. In our own research, we were computing and

assessing the significance of second-order Wiener kernels for thousands of 2-photon calcium

imaging traces, each with more than 10,000 samples in time [22]. In order to speed up these

computations, we wrote code to extract response-weighted stimulus covariance matrices (Wie-

ner kernels) using GPUs.

Results

Our code uses the computer’s GPU to compute second-order Wiener kernels (see Methods for

the formula and scaling of the kernel). To test our GPU-accelerated code, we generated a syn-

thetic dataset that creates a response from a second-order Volterra kernel acting on a discrete,

Gaussian, uncorrelated input (Fig 1A). We then computed the second-order Wiener kernel

for this stimulus-response set (Fig 1B). The Wiener kernel is an unbiased estimate of the Vol-

terra kernel when the system has no higher-order responses and when the response is mean-

subtracted. The error in the kernel estimate can be attributed to the finite stimulus presenta-

tion. This simulated kernel has very high rank for illustrative purposes, but a real extracted ker-

nel is likely to be much lower rank [5, 6].

To quantify the advantages of the GPU-based algorithm, we compared its performance to

that of a CPU-based algorithm on synthetic datasets with different properties. We first varied

the duration of the stimulus, expressed in the number of samples. We found that over a wide

range of samples, the GPU-algorithm beat the CPU-algorithm by a factor of over 100 (Fig 1C).

The speedup increases as the number of samples increases because the GPU module’s initiali-

zation time, while shorter in absolute terms than the CPU implementation’s initialization

time, makes up a larger proportion of the total runtime. As the number of samples increases,

this initialization time becomes a smaller fraction of the total time.

The number of operations needed to compute the second-order kernel scales with the

square of the number lags in the filter. As the number of lags increases, the GPU-algorithm

speeds up relative to the CPU-algorithm (Fig 1D). The optimal filter size for the GPU-algo-

rithm on the tested GPU is 64 lags, due to how cores are grouped in this particular GPU (dif-

ferent GPUs may have different optimal lags). Above 64 lags, the GPU-algorithm’s relative

speed up remains roughly constant. When the user requests fewer than 64 lags, fewer GPU
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cores are allocated to the task, so that the code slows somewhat (in terms of calculations per

second) when fewer than 64 lags are requested.

As the number of dimensions of the stimulus increases, the number of elements in the sec-

ond-order kernel increases quadratically. The GPU-algorithm remains about 100 times faster

than the CPU-algorithm as the number of dimensions increases (Fig 1E), but the gains are

greater at lower numbers of dimensions. The CPU implementation becomes relatively more

efficient as the number of spatial dimensions increases, but does not catch up to the GPU

implementation.

New methods of data acquisition can simultaneously acquire many neural responses to a

single stimulus. In the GPU-algorithm implementation, the speed up relative to the CPU

increases as the number of responses increases (Fig 1F). This is because computing the Wiener

kernels of fewer than 64 responses typically does not contain enough work to keep all the cores

of a GPU busy.

Perhaps the most common application of the kernels we compute is in spike triggered covari-

ance (STC) analysis, when these kernels are used to determine the space of linear filters that

contribute to a cell’s activity. In order to demonstrate how our algorithm can be used for this

purpose, we simulated a spiking neuron whose firing rate is the sum of two linear-nonlinear

models (Fig 2A), reminiscent of ON and OFF inputs to cells that have been similarly analyzed

[46]. We presented the model cell with Gaussian random inputs, and simulated the resulting

spike train as a Poisson spiking process. The spike-triggered average (STA) does not accurately

represent either one of the input filters, and instead mixes the two input filters together (Fig 2B).

In order to reconstitute the input filters, we first extracted the response-weighted stimulus

covariance using the algorithm presented here. (This is proportional to the Wiener kernel; see

Methods.) We then performed computationally trivial matrix operations to convert the resulting

kernel into the most commonly used forms of the spike triggered covariance matrix (Fig 2C,

see Methods for derivation and conversion instructions). We first computed the raw response-

weighted covariance matrix (Fig 2C, left). We computed two other manipulations of this matrix

popular for STC analysis, in which the STA is either subtracted (Fig 2C, middle, [6]) or projected

out of the matrix (Fig 2C, right, [18]). The Methods section describes these operations in detail.

In each of the three cases, we calculated the eigenspectrum of the STC matrix and selected

the eigenvectors with significant eigenvalues (Fig 2D and 2E). When the STA is projected out

of the STC matrix, only one significant eigenvector remains; the STA itself is used as an addi-

tional vector for further analysis. The eigenvectors of these matrices span the space of possible

linear filters in the model cell. The actual input vectors used in the model cell can be reconsti-

tuted from linear combinations of the significant eigenvectors (Fig 2F).

Fig 1. Verified algorithm and degree of speed up. (A) The second order component of a cell’s response is

modeled as a linear weighting of pairwise products in the stimulus. The linear weighting matrix is the Volterra

kernel, G(2). (B) The GPU code correctly extracts the Wiener kernel from the stimulus-response pair. We

simulated a model cell that used a Volterra kernel G(2) to respond to a Gaussian input with unit variance. We

then used the GPU code to estimate the Weiner kernel K(2). Differences between the actual and estimated

kernel go to 0 as the number of stimulus-response samples increases. In this case, the Wiener kernel equals

the Volterra kernel because the response does not depend on higher order functions of the stimulus. (C-F)

Performance of the GPU-enabled module versus the reference CPU implementation. Unless otherwise stated

for each simulation parameter sweep, the dataset included 64 responses of 219 samples, with inputs of 8

spatial dimensions each. The code extracted filters with 64 temporal offsets. All calculation times are given in

seconds; code was run on hardware as described in Methods. Numbers above the GPU datapoints indicate

the factor speedup of the GPU module relative to the CPU module. (C) Calculation time comparison for a

sweep of the number of samples of each response. (D) Calculation time comparison for a sweep of the

number of temporal offsets. (E) Calculation time comparison for a sweep of the number of spatial dimensions.

(F) Calculation time comparison for a sweep of the number of responses (e.g. recorded cells in an imaging

dataset).

doi:10.1371/journal.pone.0169842.g001
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Fig 2. Demonstration of input filter extraction from a model spiking cell. (A) A model spiking neuron. Two

linear filters act on the input, are rectified, and then summed. This determines the probability of firing, which is

modeled as a Poisson process. Gaussian random inputs were fed into the model and resulting spikes computed
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Discussion

This code speeds up second-order Wiener kernel computations and STC analyses. The speed-

up occurs over a wide range of data parameters (Fig 1), and is especially useful for large data-

sets that are sampled frequently in time and for experiments in which many neurons are

simultaneously measured. The computational speed is increased by using the GPU to quickly

perform low-level computations; this contributes to a trend of using GPU-processing to speed

up computation-intensive tasks like machine learning and image analysis [47–49].

The second-order Wiener kernel is closely related to spike triggered covariance analysis

(STC) [4]. The Wiener kernel allows for continuous and negative inputs, such as voltage, cur-

rent, and light intensity. To use this code with spikes in computing an STC matrix, the response

can simply code the number of spikes in each bin. In some implementations of STC, the spike

triggered average (STA) is subtracted from the stimulus before computing covariance [6].

Other implementations of STC have subtracted off the component of the stimulus in the direc-

tion of the STA before computing the kernel [18]. To compute the STC in both these cases, this

code can be used and its output can be transformed appropriately using the STA (see Methods).

Fig 2 shows how the different methods might be applied to a simple example case, in each case

first computing a response-weighted stimulus covariance matrix with the GPU code, then trans-

forming it into the more familiar STC matrices that appear in the literature [6, 18].

It can be difficult to assess the statistical significance of Wiener kernels/STC matrices, since

noise in the filter tends to be correlated across many elements. One method for significance esti-

mation is to decorrelate the stimulus and response, time shifting them relative to one another,

to obtain a filter estimate that would occur if the stimulus and response were unrelated [8]. This

preserves the correlations in both the response and stimulus, so it has an appropriate noise dis-

tribution for a null hypothesis. To compare a measured filter to the decorrelated null set of fil-

ters, one needs to compute thousands or tens of thousands of decorrelated filters. If each filter

set takes 100 seconds to compute, as it can with CPU code, this can be prohibitively difficult,

taking approximately 10 days to compute a full null set of 10,000 filters. With the GPU accelera-

tion, this can be narrowed to a few hours of computation. Thus, this code makes this method of

significance testing far easier for Wiener kernels and STC analysis.

Overall, the increased analysis speed of this tool allows researchers to spend more time

devising analyses and interpreting results and less time waiting for computations to finish. The

time-savings encourages broader exploration of large neural datasets.

Methods

We wrote code to compute the response-weighted stimulus covariance, C, from a paired stim-

ulus and response:

Cij ¼
1

T � t

XT

t¼tþ1

rtst� ist� j

with a mean rate of 0.0045 per time bin. (B) We extracted a spike triggered average from the responses (top).

The extracted filter is a mix of the two input filters, and does not accurately represent the underlying linear

processing. The outer product of the spike triggered average (bottom) will be used to compute forms of the STC

matrix. (C) Three forms of the spike triggered covariance (STC) matrix: raw (C0), STA subtracted (C1), and with

the STA projected out (C2). See Methods for details. (D) The eigenspectrum of each STC matrix, with significant

eigenvalues highlighted. (E) Eigenvectors of each STC matrix that correspond to significant eigenvalues. In the

case of C2, the STA serves as the second filter. (F) Comparison of the actual input filters (purple and green) with

linear combinations of the extracted filters (grey); the eigenvectors span the space of linear input filters.

doi:10.1371/journal.pone.0169842.g002
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where rt is the response at time t, st, is the stimulus at time t’, T is the total length of the stimu-

lus-response sampling, and i and j represent lags in the filter ranging from 0 to τ. When the

stimulus is multidimensional and can be divided into separate time series, for instance repre-

senting multiple pixels on a screen, C is organized block-wise for each stimulus pairing, as

described in the code documentation. This weighted average of the stimulus covariance is pro-

portional to the second-order Wiener kernel when hrti = 0. The second-order Wiener kernel,

K(2), is

Kð2Þ ¼
1

2s4Dt2
C

where σ is the standard deviation of the input stimulus and Δt is the sampling interval [2].

To see how the matrix C, computed by this algorithm, relates to different spike-triggered

methods, we must define a few more quantities (for a more detailed analysis, see also [4]).

First, in keeping with convention of the spike-triggered literature, we set rt to be the integer

number of spikes in the time window around time t, and we do not set the mean response to 0.

Then, the spike triggered average (STA), a, is

a ¼
1

nr

X

t

rtst

where st is a column vector of the stimulus preceding time t, and nr ¼
X

t

rt is the total num-

ber of spikes. Because the response is non-zero in this case, we must also compute the stimulus

covariance. That stimulus covariance may be computed by the GPU algorithm by setting all

responses to 1, so that Sij ¼
1

T� t

XT

t¼tþ1

st� ist� j, or S ¼ 1

T� t

XT

t¼tþ1

sts
T
t . Then the raw spike triggered

covariance (STC) matrix, C0, is just

C0 ¼
1

nr

X

t

rtsts
T
t � S ¼

T � t

nr
C � S

which is the response-weighted covariance we found above, C, scaled by the mean firing rate,

with the basal stimulus covariance subtracted off [10]. Here and throughout, we assume that

the number of samples for estimating the covariance is much larger than 1, so that the denomi-

nator may be written as nr rather than nr−1 without appreciable error.

In some versions of STC, the STA is subtracted before computing the covariance [6]. In

such a version, C1 is computed as

C1 ¼
1

nr

X

t

rtðst � aÞðst � aÞT � S

This version reduces to C1 = C0−A, where A = aaT is the outer product of the STA [4]. This

means that the matrix computed by this algorithm, C, can be transformed into the form of C1

by simple matrix operations.

An alternative method computes the STC matrix by first removing the component of each

stimulus vector in the direction of the STA [18]. This means subtracting a term bt = a(aTst)/
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(aTa) = A’st from each stimulus vector, and results in an STC matrix C2 defined as:

C2 ¼
1

nr

X

t

rtðst � btÞðst � btÞ
T
�

1

T � t

X

t

ðst � btÞðst � btÞ
T

C2 ¼
1

nr

X

t

rtðI � A0Þsts
T
t ðI � A0ÞT �

1

T � t

X

t

ðI � A0Þsts
T
t ðI � A0ÞT

where I is the identity matrix and A0 ¼ aaT

aT a is the outer product of the normalized STA. In the

equations above, the stimulus has the projection subtracted before computing covariance, in

the case of both the response-weighted covariance (first term) and the unweighted covariance

(second term). This equation simplifies to C2 = (I−A’)C0(I−A’)T. Thus, in this case, too, the ker-

nel C0 can be computed and transformed into the desired form with matrix multiplications.

GPUs achieve very high computational throughput by incorporating thousands of relatively

slow “cores” in contrast to CPUs which contain a small number of relatively fast cores. GPUs

can attain higher performance than CPUs when each core can perform an independent com-

putation. Because each element Cij can be computed independently, the Wiener kernel compu-

tation maps well to this architecture. Our module has also been tuned to remove bottlenecks

in GPU computation (especially in the domain of memory accesses). Overall, we are able to

achieve speeds which are very close to the considerable peak throughput of modern GPUs.

This code is available as a repository on Github:

https://github.com/ClarkLabCode/GPUFilterExtraction and is available for use under a

GPL license. The code is written in C++ and OpenCL and will work for most modern GPUs

(they must be compatible with OpenCL). We provide code that integrates it into Matlab, and it

can be substituted into STC-packages like iSTAC [44]. Integration with R or Python is possible

through each language’s C bindings. We have also included the code used to generate Figs 1

and 2.

We tested the GPU-accelerated code against standard existing code for second-order Wie-

ner kernel computation (iSTAC [44]), which takes advantage of optimized linear algebra

libraries to accelerate computations (Fig 1C–1F). For comparisons, the CPU and GPU code

was run on the same machine with an Intel Core i7 6700K (4.0 Ghz) processor, an AMD Fury

X GPU, and 32 GB of DDR4 RAM. The factors of speed up will be different using different

CPUs and GPUs, but these are each reasonable high-end pieces of hardware for comparison.
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