

POSTER PRESENTATION

Whole-heart T₁-mapping with single breath-hold

Sohae Chung^{*}, Pippa Storey, Leon Axel

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

T₁-mapping, directly measuring the underlying longitudinal relaxation times (T₁), and extracellular volume (ECV) quantification, are emerging techniques for myocardial fibrosis quantification. Recent studies have reported significant T₁ differences in fibrotic and normal tissue, but whole-heart T₁-mapping is rarely performed in clinical practice, due to the associated time-consuming data acquisition; this can lead to sampling error when the fibrotic process is not homogenous. Signal acquisition over multiple heart beats can also be problematic, due to the potential for motion artifacts. In this study, we present a rapid whole-heart T₁-mapping in a single breath-hold of, e.g., 6 heartbeats (typically, 5-7 seconds for total 9 T₁ maps).

Methods

To achieve rapid whole-heart T_1 -mapping, we modified a turboFLASH pulse sequence to acquire multiple T_1 weighted (T_1 w) images, with increasing sequential time delays (TD), after a non-selective saturation pulse. Whole-heart T_1 -mapping was performed using a 1.5T MRI scanner (Avanto, Siemens). Within three heart beats, we acquired 9 T_1 w images at different levels, with increasing sequential time delays TD=200 (for slices 1,4,7), 397 (for slices 2,5,8) and 594 ms (for slices 3,6,9) after a non-selective saturation pulse (Fig. 1). Centric k-space acquisition ordering is used to minimize the sensitivity to inflow effects and to reduce the sensitivity to B_1^+ profile after image normalization. In the first three heartbeats, 9 corresponding proton density-weighted (PDw) images are acquired, in order to correct for the B_1^- and the unknown equilibrium magnetization, and normalize the signal. Post-contrast T_1 maps were acquired 37 minutes after contrast injection (0.15mmol/kg of gadolinium-DTPA). Using the Bloch equation, T_1 is obtained from the normalized signal, S^{norm} (= S_{T1w}/S_{PDw}), and TD: $T_1 = -TD/\ln(1-S^{norm})$.

Results

Figure 2 shows the results from a representative patient with hypertrophic obstructive cardiomyopathy (56 years old; male; EF=75%; maximum myocardial thickness=15mm; no focal late gadolinium enhancement (LGE)). Total scan time for this representative patient was 5.4s for 9 slice locations; and pre-contrast myocardial T₁ values of slice 3-8 were 1421±158ms and ECV values (assuming hematocrit of 0.4) were 0.24±0.05. Although there is no focal LGE, this patient shows a higher pre-contrast T₁ than in normal controls (T₁ of ~1s at 1.5T), suggesting a higher degree of diffuse myocardial fibrosis.

Radiology, NYU Langone Medical Center, New York, NY, USA

© 2015 Chung et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Conclusions

While conventional T_1 -mapping methods are very timeconsuming for routine clinical application, this wholeheart T_1 -mapping method can be performed well in patients with cardiac disease-related problems, including arrhythmia or difficulty with breath-holding, due to its short acquisition time of, e.g., 6 heartbeats. Better characterizing whole-heart fibrosis may allow for more accurate and earlier diagnosis. Further studies are warranted.

Funding

None.

Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-P389

Cite this article as: Chung et al.: Whole-heart T₁-mapping with single breath-hold. Journal of Cardiovascular Magnetic Resonance 2015 17(Suppl 1):P389.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit