
RESEARCH ARTICLE

Tensor decomposition of stimulated

monocyte and macrophage gene expression

profiles identifies neurodegenerative disease-

specific trans-eQTLs

Satesh Ramdhani1,2,3, Elisa Navarro1,2,3, Evan Udine1,2,3, Anastasia G. EfthymiouID
1,2,3,

Brian M. SchilderID
1,2,3, Madison Parks1,2,3, Alison GoateID

1,2,3, Towfique RajID
1,2,3*

1 Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New

York, United States of America, 2 Nash Family Department of Neuroscience and Friedman Brain Institute,

Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 3 Department of

Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United

States of America

* towfique.raj@mssm.edu

Abstract

Recent human genetic studies suggest that cells of the innate immune system have a pri-

mary role in the pathogenesis of neurodegenerative diseases. However, the results from

these studies often do not elucidate how the genetic variants affect the biology of these cells

to modulate disease risk. Here, we applied a tensor decomposition method to uncover dis-

ease associated gene networks linked to distal genetic variation in stimulated human mono-

cyte and macrophage gene expression profiles. We report robust evidence that some

disease associated genetic variants affect the expression of multiple genes in trans. These

include a Parkinson’s disease locus influencing the expression of genes mediated by a pro-

tease that controls lysosomal function, and Alzheimer’s disease loci influencing the expres-

sion of genes involved in type 1 interferon signaling, myeloid phagocytosis, and

complement cascade pathways. Overall, we uncover gene networks in induced innate

immune cells linked to disease associated genetic variants, which may help elucidate the

underlying biology of disease.

Author summary

A steadily growing number of studies have identified and characterized cis expression

quantitative trait loci (eQTLs) in human primary cells and tissues. However, identifying

distal regulation on gene expression (trans-eQTLs) is far more difficult to detect due to

smaller effect sizes and the large number of tests for thousands of transcripts. Here we

applied a novel method to uncover gene networks linked to distal genetic variation (trans-
eQTLs) in gene expression datasets from peripheral monocytes at baseline and stimulated

with interferon (IFN) or lipopolysaccharide (LPS). We report robust evidence that some

neurodegenerative disease-associated variants affect the expression of multiple genes in

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008549 February 3, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ramdhani S, Navarro E, Udine E,

Efthymiou AG, Schilder BM, Parks M, et al. (2020)

Tensor decomposition of stimulated monocyte and

macrophage gene expression profiles identifies

neurodegenerative disease-specific trans-eQTLs.

PLoS Genet 16(2): e1008549. https://doi.org/

10.1371/journal.pgen.1008549

Editor: Gregory S. Barsh, Stanford University

School of Medicine, UNITED STATES

Received: June 11, 2019

Accepted: December 2, 2019

Published: February 3, 2020

Copyright: © 2020 Ramdhani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: T.R. is supported by grants from the NIH

National Institute on Aging (R01AG054005), the

Alzheimer’s Association, and the Michael J Fox

Foundation. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

http://orcid.org/0000-0002-1769-5078
http://orcid.org/0000-0001-5949-2191
http://orcid.org/0000-0002-0576-2472
http://orcid.org/0000-0002-9355-5704
https://doi.org/10.1371/journal.pgen.1008549
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008549&domain=pdf&date_stamp=2020-02-13
https://doi.org/10.1371/journal.pgen.1008549
https://doi.org/10.1371/journal.pgen.1008549
http://creativecommons.org/licenses/by/4.0/


trans. These innate immune networks illuminate potential biological mechanisms under-

lying Alzheimer’s and Parkinson’s disease. These findings provide new insights into

understanding the effect of genetic variants on gene networks contributing to disease, and

may help in elucidating the molecular mechanisms of neurodegenerative diseases.

Introduction

Genome-wide association studies (GWAS) have identified tens of thousands of common

genetic variants associated with complex traits and diseases [1, 2]. The vast majority of these

genetic variants reside in non-coding regions [3] potentially affecting the regulation of gene

expression of local (cis) or distal (trans) genes. An extensive number of studies have character-

ized expression Quantitative Trait Loci (eQTL) across multiple tissues [4–6] and cell types [7–

10] and in response to environmental stimuli [11, 12]. Nevertheless, most eQTL studies in

humans have been limited almost exclusively to cis-effects. The few studies that have investi-

gated trans-eQTLs have identified few significant associations, and there has been little replica-

tion of significant associations across data sets. One limitation is that most of these studies used

complex mixtures of different cell types (e.g., brain tissue, whole blood or peripheral blood

mononuclear cells [PBMCs]) as sources of RNA [13], which may result in failure to properly

capture the activity of genetic variants in disease-relevant cell types. Another limitation is that

these studies report trans-eQTLs by performing millions of Single Nucleotide Polymorphism

(SNP)-by-gene tests, which can result in few significant associations due to the very stringent

significance threshold imposed by multiple testing correction. Such SNP-by-gene trans-eQTL

mapping also ignores the complex structure of gene networks. Recently, Hore et al. [14] devel-

oped a method to decompose a tensor (or multi-dimensional array) of multi-tissue gene

expression data to uncover gene networks and map these networks with genetic variants to

detect trans-eQTLs. This and similar methods [15–17] have been successful in mapping net-

works of genes regulated by genetic variants that would not have been uncovered via marginal

SNP-by-gene trans-eQTL analysis.

Discovering such trans-eQTL networks may improve our understanding of the biological

mechanisms underlying polygenic diseases such as Alzheimer’s disease (AD) and Parkinson’s

disease (PD). Both are neurodegenerative diseases that share pathological hallmarks such as

neuronal loss, proteinopathy, mitochondrial dysfunction and reactive microglia (the innate

immune cells of the brain) [18, 19], although the specific vulnerable cells differ between disor-

ders. GWAS have identified over 30 and 78 loci, respectively, associated with Alzheimer’s dis-

ease [20–22] and Parkinson’s disease [23, 24]. Nevertheless, these studies open new questions as

they identify SNPs rather than genes, most of them localized in non-coding regions that are

thought to modulate disease risk by influencing the expression of nearby or distal genes in a

cell-type specific manner. Therefore, translating the effect of risk alleles on the genes and cell

types involved in disease pathogenesis remains a challenge. Along this line, it should be noted

that cis-eQTL analyses have implicated some of the Alzheimer’s and Parkinson’s disease suscep-

tibility genes in myeloid cell function, whose expression, relative to each risk allele, is altered in

the innate immune cells [7, 25]. Animal models have also pointed to an altered innate immune

system as a potential driver of these diseases [26–28]. While most research has focused on the

contribution of microglia in neurodegeneration, there are reports suggesting a causal role of cel-

lular and humoral components of the peripheral innate immune system in the pathogenesis

and progression of these diseases. For example, parabiosis studies suggest that peripheral blood

components may influence Alzheimer’s disease progression [29]. Whether peripheral blood

Trans-eQTLs in primary monocytes
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monocytes may themselves be drivers of disease or are simply useful proxies for the infiltrating

macrophages and/or resident microglia found at the sites of neuropathology is still unknown.

We hypothesize that Alzheimer’s and Parkinson’s disease risk alleles may modulate disease sus-

ceptibility by regulating the expression of a distal gene or set of genes in monocytes and macro-

phages (major cellular components of the innate immune system).

Here we use gene expression profiles from monocytes and macrophages to identify novel

trans-eQTLs and replicate those previously known associations. We show that about one-third

of trans regulation is significantly mediated by the expression of cis genes. We identified trans-
eQTLs that colocalize with disease-associated susceptibility loci. These include GWAS loci for

coronary artery disease, body mass index, and cholesterol, all traits for which peripheral blood

monocytes and macrophages are functionally relevant. More interestingly, our analysis also

discovered biologically meaningful trans-eQTL networks for neurodegenerative diseases

including genes in interferon and complement signaling, as well as lysosomal function linked

to Alzheimer’s and Parkinson’s disease susceptibility loci, respectively. These results highlight

context-specific trans-eQTL networks in support of a role for myeloid cells of the innate

immune system as key modifiers of neurodegenerative disease risk.

Results

Identification of gene networks in stimulated monocytes and macrophages

We used Sparse Decomposition of Arrays (SDA) [14] to construct gene networks by decom-

posing a multi-array set of gene expression measurements into latent components (see Meth-

ods). Each of these components consists of scores that indicate the relative contribution of

each individual, gene, and cell or stimulation activity scores to gene networks (Fig 1). The indi-

vidual scores are the magnitude of the effect for each component across individuals. We use

the individual scores as phenotypes in genome-wide trans-eQTL analysis to identify common

genetic variants that drive each component. The gene scores (or gene loadings) allow inference

of the genes involved in each component. SDA is developed in a Bayesian framework and uses

‘spike and slab’ prior [14] to allow gene scores of each component to have a unique level of

sparsity. Finally, the cell or stimulation specificity scores indicate the activity of the component

for each inflammatory stimuli or cell type.

We used gene expression profiles from two previously published studies: (1) Fairfax et al.
[12] (FF), in which CD14+ human monocytes were profiled with two inflammatory stimuli:

naïve (CD14), and in response to either interferon-γ (IFN), or lipopolysaccharide at 2 hours

(LPS2), and 24 hours (LPS24); and (2) primary human monocytes and macrophages from the

Cardiogenics Consortium (CG) [30], which includes subjects from a Cardiovascular disease

cohort (Fig 1). The IFN-γ and LPS stimuli were used to elicit an immune reactive phenotype

in these cells that may help detect gene networks not identified in the naïve state and better

approximate the state of these cells in the context of a degenerating brain. Furthermore, the

monocyte and macrophage comparison may help uncover different pathogenic effects of these

two cell types. We computed a maximum of 500 components in each dataset, of which the

majority were non-sparse (most genes with low or zero gene scores). These non-sparse compo-

nents capture technical or biological confounders in the expression data (Fig 2A and S1 Fig).

Using a ranked-based sparsity statistic (see Methods), we identified 56 and 111 components

in FF and CG, respectively, that are sparse, or components with distinguishable non-zero and

high scoring genes (S1 and S2 Tables). In the FF dataset, we identified 12 sparse components

active in naïve, 5–9 active in response to IFN-γ, LPS 2hrs, or LPS 24hrs, and the remaining 25

shared across all conditions (Fig 2B). In CG, 42 sparse components were specific to monocytes

and 45 specific to macrophages and 24 were shared between the two cell types (S1 Fig). Using a

Trans-eQTLs in primary monocytes
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two-way reverse correlation approach, we found 7 of the 56 sparse components in FF are con-

served between FF and CG (S3 Table). An example of a shared component is shown in Fig 2C.

To assess the functional significance of the components, we tested the genes within each

component for enrichment in Gene Ontology (GO) biological processes. We found significant

enrichment for GO biological processes for 30 out of 56 sparse components, suggesting that the

genes in each sparse component are part of coherent biological processes (S4 Table). To assess

the enrichment of disease risk loci in these components, GWAS summary statistics for 18 traits

and gene-sets from the sparse components were used as input for MAGMA [31]. We found

three components significantly enriched for genes in GWAS loci at a Bonferroni-corrected sig-

nificance threshold and four additional components enriched at a nominal P-value< 0.05 for

ten traits (S5 Table). This includes a component with genes in the interferon-signaling path-

way, which is enriched for genes in Alzheimer’s disease susceptibility loci. Overall, these results

suggest that the sparse components from stimulated monocyte gene expression data have func-

tional significance and, in some cases, may underlie disease-relevant biological processes.

We next reasoned that the monocyte components might contain genes in disease-associated

loci that disproportionately contribute to the heritability of complex diseases. We used LD score

Fig 1. Overview of the study design and method. (A) The gene expression datasets used in this study. Stimulated monocyte gene expression profiles

from Fairfax et al. [12] in four conditions: response to lipopolysaccharide at 24 hours (LPS24) and at 2 hours (LPS2), interferon-γ (IFN-γ), and naive

(left panel). Peripheral blood monocytes (MP) and macrophages (MC) from the Cardiogenics Consortium (right panel). (B) Overview of the SDA

approach. An illustration of decomposition of gene expression datasets to yield component vectors for relative contribution of each individual, gene

and condition. The individual scores matrices are then used as phenotypes with SNP genotypes in order to identify genetic variation correlated with the

components (top). The stimulation or cell-activity scores matrix is used to identify the contribution of each condition for the components (middle). The

gene scores matrix is used to identify the contribution of each gene within the components (bottom).

https://doi.org/10.1371/journal.pgen.1008549.g001
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regression (LDSC) [32] to partition GWAS heritability into the contribution of SNPs located

within genes from each component. We found that 36 out of 56 sparse components in FF

showed significant enrichment (FDR-corrected P< 0.05) for 18 different traits. This includes a

component in FF data (component 61) significantly enriched for SNP-based heritability for seven

traits including Alzheimer’s (7.6-fold, P< 0.03), Parkinson’s (13-fold, P< 0.01) as well as a

number of inflammatory and metabolic diseases (Fig 2D; S6 Table). Component 392 is enriched

for three traits including Multiple sclerosis (16.5-fold, P< 0.002), Type 2 diabetes (10.2-fold,

P< 0.02) and Primary biliary cirrhosis (7.6-fold, P< 0.03). Another component (22) is signifi-

cantly enriched for SNP-based heritability for Alzheimer’s disease (16.4-fold, P< 0.04), autism

(5.1-fold, P< 0.03), and lupus (5.7-fold P< 0.03), accounting for 6%, 2% and 2% of SNP-based

heritability, respectively. Component 22 is highly enriched for a number of genes in the Type 1

interferon-signaling, defense response to virus, and complement activation pathways (Fig 2E). A

number of studies have linked genes from these functional categories to Alzheimer’s disease [33–

35], autism [36, 37] and lupus [13]. Interestingly, we discovered that this component is also a

trans-eQTL for Alzheimer’s disease susceptibility loci (see below). Taken together, these results

illustrate that several components identified in this study can explain a substantial amount of

SNP-based genetic heritability for many common diseases and begin to implicate specific innate

immune function for common variants across neurodegenerative and inflammatory diseases.

Detection of context-specific trans-eQTLs

To detect trans-eQTLs, the individual scores from each component are tested for association

with genotype dosages (autosomal SNPs, Minor Allele Frequency [MAF] > 0.01, imputed

with the Haplotype Reference Consortium reference panel) across the genome. A stringent

Fig 2. Discovery and reproducibility of sparse components enriched for disease heritability. (A) Heat map of known covariates

and correlation with individual scores from each of the 500 components (left) and 56 sparse components (right) in FF data. (B) Heat

map of condition specificity scores for the sparse components in FF data. Each row is a stimulation (naïve, LPS, or IFN) and each

column is a sparse component. (C) Component replication between component 282 (CG) and component 337 (FF LPS24) for the

most highly scored genes. The gene scores from the two components (in CG and FF) are highly correlated. (D) Proportion of

heritability for 18 selected complex traits that can be attributed to each sparse component from the FF data. Shown here are

enrichment statistics (with standard error) comparing the proportion of SNP heritability within the components divided by the

proportion of total SNPs represented at FDR-corrected P< 0.05. (E) Gene Ontology (GO) enrichment for genes in component 61

and 22. AD: Alzheimer’s disease; PD: Parkinson’s disease; AUT: Autism; MS: Multiple Sclerosis; SCZ: Schizophrenia; T2D: Type 2

Diabetes; LUP: Lupus; PBC; Primary Biliary Cirrhosis; RA: Rheumatoid Arthritis; IBD: Inflammatory Bowel Disease; CRN: Crohn’s

Disease; CEL: Celiac Disease; UC: Ulcerative Colitis; HDL: High-density lipoprotein Cholesterol; LDL: Low-density lipoprotein

Cholesterol; BMI: Body Mass Index; CAD: Coronary Artery Disease; HGT: Height.

https://doi.org/10.1371/journal.pgen.1008549.g002
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quality control (QC) procedure was used to filter out multi-mapped gene probes and non-cod-

ing genes prior to trans-eQTL analysis (Methods). For clarification, hereinafter, we define the

following: a trans-eQTL to be an SNP that maps to a component, the relevant SNP itself to be

the trans-eSNP and any genes within the component to be trans-eGene(s). In FF, we identified

a total of 15,856 trans-eQTLs (FDR< 0.05) representing 15,298 unique SNPs (833 indepen-

dent SNPs; obtained by pruning SNPs in LD with r2 < 0.2) and 55 unique sparse components

(S7 Table). Of the significant trans-eQTLs, approximately 55% are stimuli-specific, detected

only in response to either IFN-γ or LPS challenge. For CG, we identified a total of 3,945 trans-
eQTLs (FDR < 0.05) representing 3,217 unique SNPs (70 independent SNPs; obtained by

pruning SNPs in LD with r2 < 0.2) and 57 unique sparse components (S8 Table). In each data-

set, the components contain anywhere between 5–62 genes with distinguishable non-zero

gene scores based on distributional cut-offs (Methods). Our analysis confirmed previously

published trans-eQTL: a cis-eQTL at rs2275888 for IFNB1 is associated with the expression

of 17 genes in trans after 24-hour LPS stimulation, many of which are interferon (IFN-β)

response genes (S2 Fig).

Trans-eQTLs in stimulated monocytes as putative drivers of disease

associations

To identify disease risk alleles influencing the expression of the distal gene(s), we investigated

whether the trans-eSNPs were previously associated with complex traits or diseases. We incor-

porated 20,094 SNPs from the NHGRI GWAS Catalog pertaining to 1,374 disease or complex

traits that were significant at a Bonferroni-corrected significance threshold of P< 5 × 10−8.

We identified 227 trans-eQTLs mapping to 29 sparse components that overlap with disease or

trait-associated loci (FDR < 0.15; S9 Table). We used a more liberal FDR significance level

(0.15) to identify trait-associated trans-eQTLs since this class of SNPs has already passed sig-

nificance thresholds for a different study.

In addition, our FDR correction is applied to testing for genome-wide SNPs rather than

just correcting for only the trait-associated SNPs as has been previously done [13]. Neverthe-

less, to ensure the robustness of the trans-eQTLs, we carried out a permutation scheme and

found 89 trans-eQTLs mapping to 18 components that were significant at permutation thresh-

old P< 1×10−3. Fig 3A provides a subset of the trans-eQTLs that are in disease or trait-associ-

ated loci. In CG, we found 56 trans-eQTLs mapping to 14 sparse components overlapping loci

associated with a disease or a complex trait at FDR< 0.15 (S10 Table). Examples of colocalized

trans-eQTLs with Parkinson’s and Alzheimer’s disease associated susceptibility loci are shown

in Fig 3B. We found components that mapped to multiple independent loci and components

that mapped to a single locus with multiple disease-associated variants. For example, disease-

associated susceptibility alleles in the MHC class II are significantly associated with individual

scores of component 363 in FF, which is active in response to all stimuli (S3 Fig). The compo-

nent contains several MHC class II genes but also 21 non-MHC genes (e.g., DEF8 and AOAH)

with distinguishable non-zero scores. Some of the trans-associations to MHC class II alleles

have been previously identified in the SNP-by-gene analysis [12], but our analysis identified a

network of 21 genes pointing to a critical biological pathway underlying disease susceptibility.

We identified several other examples of trans-eQTLs in disease-associated loci (S4–S6 Figs).

Overall, we were able to not only reproduce previously identified trans-eQTLs and individual

target genes in monocytes and macrophages but also identify biologically informative gene

networks linked to distal genetic variants.

Of the disease-associated trans-eSNPs (223 in FF and 43 in CG), 85 and 27 in FF and CG,

respectively, were also cis-eSNPs for nearby genes. We applied a Mendelian randomization

Trans-eQTLs in primary monocytes
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method [38] to quantify support for a direct relationship between each SNP that has a cis-
eQTL to their trans-eGene(s). We applied Mendelian randomization to test if the trans-eSNP

mediated the effect on the trans-eGene(s) through their respective cis-gene using two different

approaches. First, we used the individual scores from SDA for the 56 sparse components in the

mediation analysis. At a nominal P< 0.05, we found 35 and 15 in FF and CG, respectively,

where the cis-gene is a significant mediator of the component individual scores. In the second

analysis, we directly tested for mediation using the expression level of each trans-eGene within

each respective component. From this directed approach, we found a significant mediation

effect for at least one trans-eGene for 79 and 21 in FF and CG trans-eSNPs, respectively. Of the

significant trans mediators, we found that only 11 genes were transcription factors (TF), sug-

gesting that TFs are not primary regulators of the trans network. However, we observed regu-

latory motifs for the same TF enriched among the all trans-eGenes within each network

Fig 3. Trans-eQTLs colocalized in disease or trait-associated GWAS loci. (A) Significant trans-eQTLs in FF data (FDR< 0.15) in

20 selected disease or trait-associated GWAS loci (left panel). Shown are diseases-associated trans-eSNP on Y-axis and trans-eQTL

components on X-axis. The red colored boxes reflect the effect size for the trans-eQTLs while the horizontal colored header reflects

the condition activity scores. Trans-eQTLs that are in Alzheimer’s or Parkinson’s disease-associated loci (right panel). Alzheimer’s

disease includes GWAS susceptibility loci from Alzheimer’s related traits including the age of onset, age-related cognitive decline,

and APOE ε4 carriers. (B) Colocalization of trans-eQTLs at Parkinson’s disease susceptibility locus CTSB (left panel) and

Alzheimer’s disease-associated loci MS4A4A (middle panel) and CLU (right panel). The x-axis in each panel shows the physical

position on the chromosome (Mb). The y-axis shows the -log10(P) association p-values for Parkinson’s disease [23–24] (left panel)

and Alzheimer’s disease GWAS [20–22] (middle and right panels). Listed on top are ‘coloc’ posterior probability for hypothesis 3

(PP.H3) and 4 (PP.H4). PP.H3: Association with eQTL and GWAS, two independent causal SNPs. PP.H4: Association with eQTL

and GWAS, one shared SNP. (C) Transcription factors whose binding sites occurrence is enriched in the target set of genes within

each sparse component compared to the expected occurrence estimated from a background set.

https://doi.org/10.1371/journal.pgen.1008549.g003
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(Fig 3C). These include many myeloid lineage-specific factors (e.g., PU.1, C/EBPα and β, and

MEF2A) and interferon-related (e.g., IRF1, IRF2, and STAT1) factors (Fig 3C). In summary,

our results are consistent with other findings that TFs are not the primary driver of trans-
eQTL networks but are enriched for specific TF binding motifs, suggesting that the trans-
eGenes are under the same regulatory control.

Macrophage-specific trans-eQTL at Parkinson’s disease susceptibility loci

Considering that GWAS have identified loci with genes related to the innate immune system

both in Alzheimer’s disease and Parkinson’s disease, we hypothesize that analysis of monocytes

and macrophages could reveal new gene-sets associated with disease susceptibility. In support

of this hypothesis, we observed in CG macrophages that the rs1296028, one of 41 PD-associated

loci interrogated in this analysis [23], affects the expression of the lysosomal protease Cathepsin

B (CTSB) (P = 1.46 x 10−22; FDR = 1.31x10-18) in cis [39] (S7 Fig) and the expression of 16 genes

in trans (P = 8.29 x 10−35; FDR = 9.48x10-28) (Fig 4A and 4B). The lead trans-eSNP rs1296028

(MAF = 0.11) at the CTSB locus is associated with Parkinson’s disease susceptibility (in LD with

GWAS lead SNP rs2740594; r2 = 0.68) [23]. Both the trans-eQTL and the disease association

signal were consistent with a model for shared causal variants (as indicated by coloc [40] poste-

rior probability PP3+PP4 = 0.99, PP4/PP3 = 24) (Fig 3B). Although we did not find significant

enrichment of any specific biological pathways with the Ingenuity Pathway Analysis (IPA) tool,

we found enrichment for biological processes such as ‘lysosomal pathway’ (P = 5.2x10-3) and

‘cholesterol degradation’ (P = 6.22x10-4) when we lowered the posterior inclusion probability

(PIP) from 0.5 (default) to 0.2 for gene scores. The directions of effect for all the genes in this

network were consistent: the minor allele (rs1296028-G) is associated with decreased expression

of all 16 genes (Fig 4A; S8 and S9 Figs). Using a small independent macrophage eQTL dataset

Fig 4. Macrophage-specific trans-eQTL colocalized in Parkinson’s disease associated CTSB locus. (A) The genotype for

Parkinson’s disease susceptibility allele rs1296028 is significantly associated with the individual scores of CG component 46. The

rs1296028 affects the expression of 16 genes in component 46 in macrophage (CG) (left panel). Tissue specificity scores suggest CG

component 46 is active in macrophage (Right). P-value: ���:<1e-50 | ��:<1e-10 | �:<1e-5. (B) Gene scores for component 46 across

the genome. Only the trans-eGenes with PIP> 0.5 and 2.5% distributional cut-off (green dotted line) are shown. Trans-eQTL

associations that replicated (FDR< 0.20) in an independent STARNET macrophage dataset are shown in bold (C) Parkinson’s

disease SNP rs1296028 mediates trans-effects to 11 genes through cis-mediator cathepsin B (CTSB). The beta coefficients from

Mendelian randomization analysis are shown for the significant trans-eGenes. (D) Experimental validation using THP-1 derived

macrophages. CTSB was knocked-down using siRNA during 48 h and the levels of the top-scoring genes in the component were

measured by qPCR. Data was normalized against scramble siRNA (SCR). P-value: �:<0.05 | ���:<0.001.

https://doi.org/10.1371/journal.pgen.1008549.g004
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(STARNET[5]; n = 82), we were able to replicate 4 of the 16 trans-eQTL associations

(FDR< 0.20; S10 Fig). The direction of effect is consistent across the two datasets: rs1296028-G

is associated with increased expression of the target genes as well as decreased risk for PD.

Using Mendelian randomization, we found a mediation effect for rs1296028 through CTSB
for 11 of the genes in this network, of which the most significant mediation effects were for

ANTXR1, PCDHGB4, SPAG11A and P2RY6 (Fig 4C). To examine if the regulation of the trans
target genes depended on CTSB, we performed siRNA-mediated knockdown of CTSB and

measured the effect on the four previously mentioned genes that have βM > 1 using human

THP-1 derived macrophages. We observed a concomitant reduction in ANTXR1 and

PCDHGB4 mRNA levels (P< 0.05) as measured by qRT-PCR (Fig 4D). A non-significant

effect was observed in P2RY6, whereas SPAG11A is not expressed in the THP-1 cell line. The

knockdown experiment provides an independent validation for some of the genes in the CTSB
trans-eQTL network. However, additional experimental validation is necessary to fully eluci-

date the role of CTSB lysosomal network in the etiology of Parkinson’s disease.

Alzheimer’s disease loci affect the expression of genes in Type 1 interferon

signaling pathway

Following the same rationale, we attempted to find altered monocyte and macrophage gene

networks associated with Alzheimer’s disease susceptibility alleles. We found eight trans-eQTL

signals that colocalize with Alzheimer’s disease (or Alzheimer’s disease-related phenotypes)

susceptibility loci (Fig 3A), and we highlight two examples (Figs 5 and 6). First, we observed

that rs983392 on chromosome 11q12, reported to be associated with Alzheimer’s disease

(MAF = 0.41, PGWAS = 6x10-16), is a trans-eQTL to a component with 54 genes of distinguish-

able non-zero loading scores (P = 1.5x10-4; FDR < 0.15) (Fig 5A and 5B).

Fig 5. Trans-eQTL colocalized in Alzheimer’s disease associated MS4A locus. (A) The genotypes for Alzheimer’s disease

susceptibility allele rs983392 are significantly associated with the individual scores of component 26. rs983392 is trans-eQTL to FF

component 26 with 54 genes (left panel). The component 26 is active only at baseline (right panel). (B) Circular plot demonstrating

the chromosomal position of trans-eSNP (rs983392) and the 54 trans target genes. The minor and AD-protective allele rs983392-G is

associated with decreased (blue lines) and increased (red lines) expression of trans-eGenes. The colored dots are trans-eQTL that

replicates in ImmVar baseline monocytes (red and yellow color dots denote trans-eQTL association at FDR< 0.05 and 0.20,

respectively). Only the trans-eGenes with PIP> 0.5 and 2.5% distributional cut-off are shown. (C) Alzheimer’s disease SNP rs983392

mediates trans-effects to two trans-eGenes through cis-mediator MS4A4A. (D) Experimental validation using THP-1 derived

macrophages. MS4A4A was knock-down using siRNA for 48 h, IFNg 20 ng/ml was added during the last 24 h. The levels of the top-

scoring genes in the component were measured by qPCR. Data was normalized against scramble siRNA (SCR). P-value: �:<0.05 |
��:<0.01 | ���:<0.001 vs SCR. ##:<0.01 vs siMS4A4A. (N = 5 independent experiments).

https://doi.org/10.1371/journal.pgen.1008549.g005
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The component is active in the naïve condition, and stimulation with IFN-γ or LPS ablates

the trans-eQTL signal. A significant cis-eQTL effect for rs983392 to both MS4A4A (FDR =

2x10-3, β = -4.4) and MS4A6A (FDR = 5x10-4, β = -4.7) is observed only in the naïve condition

(S11 Fig). Both trans-eQTL and disease association signals were consistent with a model for

shared causal variants (as indicated by coloc [40] posterior probability PP3+PP4 = 0.93, PP4/

PP3 = 4.8) (Fig 3B). The top-scoring genes in this component encode for Interferon-Inducible

Guanylate Binding Proteins (GBP1, GBP2, GBP4, and GBP5), followed by STAT1 and IRF1,

which are key TFs for IFN-γ activation and type 1 interferon signaling (Fig 5B and S12–S14

Figs). The genes in this component are enriched for IPA biological processes such as ‘interferon
signaling’ (P = 5.77x10-16) and the ‘antigen presentation’ pathway (P = 6.62x10-9). IPA also iden-

tified enrichment for several annotated biological functions including ‘antiviral response’ (P =

1.26x10-33). To determine if the observed trans-eQTL associations are mediated by expression

of either MS4A4A or MS4A6A in cis, we performed Mendelian randomization-based media-

tion using both component individual scores and gene expression levels. We observed trans-
regulatory effects of rs983392 on STAT1 and SYTL3 mediated through MS4A4A but not

through MS4A6A (Fig 5C). To examine if the regulation of the trans target genes STAT1 and

SYTL3 depended on MS4A4A we performed siRNA-mediated knockdown of MS4A4A using

human THP-1 derived macrophages. We observed an increase in STAT1 mRNA levels with

slightly higher fold change after IFN stimulation (P< 0.01) compared to baseline (P< 0.05)

(Fig 5D). A non-significant effect was observed in SYTL3 in the THP-1 cell line.

Another Alzheimer’s disease-associated variant rs9331896-C (MAF = 0.41, PGWAS = 3x10-25)

located on chromosome 8p21 within intron 2 of the CLU gene is associated with the individual

scores of a component consisting of 38 genes with non-zero scores (P = 1.32x10-4; FDR< 0.15)

(Fig 6A and 6B). This component is active in IFN-γ stimulated monocytes (Fig 6B). Both

Fig 6. Trans-eQTL colocalized in Alzheimer’s disease associated CLU locus. (A) The genotypes for Alzheimer’s disease

susceptibility allele rs9331896 are significantly associated with the individual scores of component 22 (left panel). The component is

active in monocytes (FF) in response to interferon-γ (right panel). (B). Circular plot demonstrating the chromosomal position of

trans-eSNP (rs9331896) and the 38 trans target genes. The minor and AD-protective allele rs9331896-C is associated with decreased

(blue lines) and increased (red lines) expression of trans-eGenes. The colored dots are trans-eQTL that replicates in ImmVar IFN

stimulated monocytes (red and yellow color dots denote trans-eQTL association at FDR< 0.05 and 0.20, respectively). Only the

trans-eGenes with PIP> 0.5 and 2.5% distributional cut-off are shown. (C) IPA pathway analysis of the trans-eGenes in this

component. The IPA canonical pathway enrichment P-values are shown in the lower right. The pathway network is grouped by IPA

biological functions. The functional groups are defined by different colors and symbols (top right).

https://doi.org/10.1371/journal.pgen.1008549.g006
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trans-eQTL and disease association signal were consistent with a model for shared causal vari-

ants (as indicated by coloc [40] posterior probability PP3+PP4 = 0.96, PP4/PP3 = 47) (Fig 3B).

The SNP rs9331896-C had no cis-eQTL effect on CLU in monocytes (or in CG macrophage)

but we have reported previously a splicing QTL for CLU in DLPFC [41]. Given these results,

it is likely that the cis effect that we observed could mediate the trans-effect through the expres-

sion of specific isoform. The top-scoring genes in the network include the members of Inter-

feron Induced Transmembrane Proteins (IFITM1 and IFITM3) followed by MT1E, MT1X, and

MT1G and OASL, all essential proteins involved in the innate immune response to viral infec-

tion (Fig 6B; S15–S17 Figs). Using IPA we found significant enrichment for ‘interferon signaling’
(P< 1.48x10-8) and ‘complement cascade’ pathways (P< 2.57x10-5) (Fig 6C). This component

also contained genes in the complement components C1q family of genes (C1QA, C1QB, and

C1QC). Interestingly, protein products of CLU (previously known as CLI for complement lysis

inhibitor) and complement component genes physically interact and are part of a protein-pro-

tein interaction (PPI) network (S18 Fig), providing an independent validation of our trans-
eQTL effects. Finally, we observed several genes in this component enriched for IPA biological

processes such as ‘Activation of Phagocytes’ including AXL and TREM1 (Fig 6C).

To assess the robustness of the trans-eQTLs that colocalize with Alzheimer’s disease risk

alleles, we attempted to replicate the association signals using an independent dataset from the

ImmVar study [7]. Of the 54 trans-eGenes in the MS4A4A/6A component, the expression of 10

trans-eGenes in naïve monocytes were significantly associated with rs983392 (FDR < 0.20; S19

Fig). Many of the trans-eQTLs were highly significant in the ImmVar data including GBP2,

CUL1, and SYTL3 (Fig 5B). Of the 38 trans-eGenes in the CLU component, expression levels of

five genes were significantly associated with rs9331896 at FDR< 0.20 in the IFN stimulated

monocytes (S20 Fig). Despite the small size and differences in stimuli in the replication dataset,

we were able to detect suggestive association signals for a small number of trans effects.

Discussion

Here, we used tensor decomposition methodology [14] to detect trans-eQTL in naïve and

stimulated human monocytes and macrophages. We detected hundreds of trans-acting regula-

tory effects on a number of genes in sparse components. These components explain a substan-

tial amount of SNP-based genetic heritability for many common diseases. After examining the

genes in each component, we observed that the target genes were involved with coherent bio-

logical processes and had regulatory motifs that are enriched for the same transcription factor.

The majority of the trans-eQTLs were hotspot loci, each of which altered the expression of

many genes within our sparse components. We detected significantly more trans-eQTLs in

stimulated monocytes compared to naïve monocytes or macrophages despite twice the sample

size for CG. Among the significant trans-eQTLs, we found 55% were stimuli-specific, suggest-

ing that a larger number of trans-eQTLs are detectable only in the presence of specific stimuli.

These observations are consistent with findings from other species such as Caenorhabditis ele-
gans [42] and Saccharomyces cerevisiae [43] showing that environmental perturbation yields a

higher number of trans-eQTLs compared to cis-eQTLs. Together, these results underscore the

need to perturb primary cells with environmental stimuli to discover genotype-phenotype

relationships in trans.
The target trans-eGenes reveal biological processes and downstream effects for a number

of disease-associated susceptibility alleles. This includes Parkinson’s disease-associated trans-
eQTLs with 16 target genes mediated by the lysosomal protease Cathepsin B (CTSB). We corrob-

orate a previously reported cis-eQTL effect on CTSB driven by a Parkinson’s disease-associated

genetic variant [39]. However, the main contribution of this study is our ability to detect
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reproducible Parkinson’s disease-associated trans-eQTLs and experimentally validate several of

the target genes. Nevertheless, we are still unable to fully understand this gene network in the

context of the disease due to our incomplete understanding of the functions of many genes

within the network. The only gene in this network known to have any functional interaction

with CTSB to date is ANTXR2 (same family of ANTXR1, found in the network), where CTSB
-mediated autophagy flux facilitates the delivery of toxins into the cytoplasm [44]. Further func-

tional studies will be necessary to validate not only the trans targets but also to understand mech-

anisms underlying Parkinson’s disease susceptibility at the CTSB locus. While alterations in

autophagy and lysosomal pathways have been widely reported in neurons from Parkinson’s

disease [45], our results open future mechanistic studies focusing on macrophage function and

gene networks in Parkinson’s disease.

We have previously reported that a number of Alzheimer’s disease-associated susceptibility

alleles colocalize with cis-eQTLs in peripheral monocytes [7,46–48]. Here we hypothesized

that Alzheimer’s disease risk and protective alleles may modulate myeloid cell function within

specific biological pathways. In support of this hypothesis, our analysis showed that the Alzhei-

mer’s disease susceptibility alleles at the MS4A4A/6A and CLU loci are associated with the

individual scores of two sparse components. The component containing type 1 interferon

genes explains substantial proportion (6%) of SNP-based genetic heritability for Alzheimer’s

disease. These trans target genes for both loci intersect with interferon-related functional

genes that are responders of IFN-γ, key regulators of the IFN response (IRF1 and STAT1), and

type I interferon and antiviral effectors (OAS, IFIT, and GBP families). These findings confirm

previous results in the p25/Cdk5 model of neurodegeneration where a reactive microglia phe-

notype with activated IFN pathway was found [34]. More recently, Salih et al. [33] identified a

number of interferon signaling genes to be in co-expression network that is expressed in amy-

loid-responsive mouse microglia, including Oas and Ifit family members, and transcription

factors such as Irf7 and Stat. The authors further found that Alzheimer’s disease loci colocalize

with cis-eQTLs targeting OAS1 in interferon-γ stimulated iPSC-derived macrophages. These

studies, together with our results, suggest that dysregulation of the IFN pathway in microglia

might have a role in AD pathogenesis.

The Alzheimer’s disease-associated trans-eQTL in the clusterin (CLU/APOJ) locus is also

associated with the expression of genes of the complement cascade. The role of the comple-

ment system in Alzheimer’s disease has been suggested mostly by mouse studies in which

microglia are thought to be the cellular effector of complement-mediated synaptic loss in Alz-

heimer’s disease [49]. Indeed, C1q and oligomeric forms of amyloid-β operate in a common

pathway to activate the complement cascade and drive synapse elimination by microglia [49].

In addition, a post-mortem study of Alzheimer’s disease brains showed increased expression

levels for complement components in Alzheimer’s disease brains [50]. Other genes in this

component include marker genes (AXL and ITGAX) for damage-associated microglia, or

DAM, a recently identified subset of microglia found around amyloid plaques [26]. Both AXL
and ITGAX are key genes involved in the Trem2-dependent DAM program, which involves

the upregulation of phagocytic and lipid metabolism genes [26]. The genes in this network

may have a role in debris clearance such as the removal of apoptotic neurons or Aβ aggregates

by microglia. Along this line, network analysis of transcriptomic data from post-mortem brain

tissues from Alzheimer’s patients has identified immune and microglia-specific modules dom-

inated by genes involved in pathogen phagocytosis [51]. Further work is necessary to fully

understand the role of complement and interferon signaling genes in the development and

progression of AD pathology.

With this study, we demonstrate that gene expression from purified immune cells are

a valuable source to study gene networks associated with different diseases, including
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neurodegenerative diseases. Nevertheless, this study has several limitations. First, while we

were able to detect robust gene networks linked to distal genetic variants, we are still under-

powered to detect trans target genes with smaller effect sizes. Our results suggest that many

more genes have non-zero gene scores and are likely to contribute to the trans-eQTL networks

but we are unable to detect them with the current sample size. We estimate that thousands of

individuals would be needed to reliably detect effect sizes that explain a small proportion of

the trans-QTL variance. Secondly, the reproducibility of the trans-eQTLs is still challenging

without a stimulated dataset of comparable sample size. Thus, as larger datasets become avail-

able it will be important to validate our catalog of trans-eQTLs. Third, it is not clear if the

trans-eQTLs networks identified in peripheral monocytes will be conserved in microglia dur-

ing the transition to a reactive state under conditions of brain-tissue damage encountered dur-

ing aging or neurodegeneration. These networks in monocytes may play a direct role in the

pathogenesis of Alzheimer’s or Parkinson’s disease or, given the shared ontogeny of these two

cell lineages, may serve as a proxy for microglial activities within the healthy, aged or diseased

brain. While many genes are expressed in both peripheral monocytes and macrophages and

CNS microglia, some of the genes are markers for microglia in the healthy brain, or are active

during the transition from the homeostasis-associated state to a brain damage-response state.

Future studies incorporating transcriptome profiles from primary human microglia from

autopsied samples, or Induced Pluripotent Stem Cells (iPSC)-derived microglia challenged

with disease-relevant stimuli will be an important resource in uncovering trans-eQTL net-

works underlying neurodegenerative diseases.

In summary, we identified robust trans-eQTL networks in peripheral myeloid cells that

reveal downstream biological processes of several disease-associated loci. Although further

mechanistic work is necessary to validate these gene networks our findings provide compelling

human genetic evidence for a lysosomal pathway contributing to Parkinson’s disease, and for

myeloid phagocytosis, complement cascade and type I interferon-mediated signaling pathways

contributing to Alzheimer’s disease.

Methods

Overview of sparse tensor decomposition

We applied a sparse tensor decomposition model [14] to deconstruct multi-way gene expres-

sion data into latent components or objects of smaller dimension for simultaneous analysis.

The model itself is Ynlt ¼
PC

c¼1
Anc

N
Btc

N
Xcl þ εnlt, where C is the number of components

and A is an N × C matrix of individual scores, B is a T × C matrix of tissue scores and X is a C
× L matrix of gene loadings. The error term is modeled as εnlt � ð0; l

� 1

lt Þ, where λlt is the preci-

sion of the error term at the lth gene in the tth tissue. An indicator variable Int that equals 1

when gene expression has been measured in tissue t for sample n and 0 otherwise. The likeli-

hood is then given by PðYjyÞ
‘

n;l;t PðYnltjyÞ
Int , where θ is the vector of model parameters. This

model is fit in a Bayesian framework, and place priors on the entries of the matrices A, B, X
and also the precisions λlt. A key prior is the one placed on the elements of the gene loadings

matrix X. A hierarchical ‘spike and slab’ prior is used to encourage sparsity in the rows of

matrix X. The ‘spike and slab’ prior allows to shrink gene loadings to zero to infer more clearly

which genes are involved in each component. See Hore et al. [14] for further details of the

model.

We used the Sparse Decomposition of Arrays (SDA) software package (see URLs) to decon-

struct multi-way gene expression data into latent components. The SDA model allows for non-

sparse components (genes with close to ‘0’ loading scores) that might arise as a result of
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confounding effects, such as batch effects or technical artifacts. To exclude the non-sparse com-

ponents from our trans-eQTL analysis, we implemented a sparsity ranking statistic alongside

the posterior inclusion probability (PIP)> 0.5 inclusion component probability and 2.5% distri-

butional cut-off for gene scores. The statistic is Ri wi; Nið Þ ¼ Ri ¼ 1Ni�T
�

f ðwiÞ

gðNiÞ
for i ¼ 1; . . . ; n;

where wi is a weight function, Ni are the number of (non-zero) genes. A cutoff value is derived

by simply finding a lower bound through a limiting case instead of using distributional assump-

tions. See S1 Note for further details.

Gene expression data

Fairfax. We obtained processed microarray gene expression data from Fairfax et al. [12]

from ArrayExpress (E-MTAB-2232). In the Fairfax dataset, the gene expression of primary

human monocytes was profiled in four conditions: naïve, in response to interferon-γ, and to

lipopolysaccharide at 2 hours, and at 24 hours. Of the 432 total, gene expression profiles were

available for 414, 367, 261 and 322 for baseline, IFN-γ, LPS2hr and LPS 24hr, respectively.

The gene expression data was generated using Illumina HumanHT-12 v4 BeadChip gene

expression array platform with 47,231 probes. Of these, 28,688 probes correspond to coding

transcripts with well-established annotations and map unequivocally to one single genomic

position were kept. We obtained the GRCh37 start and end coordinates for those genes from

Ensembl for eQTL analysis. We kept the maximum of median probe expression (across indi-

viduals) for multiple probes (mapping to the same gene). This resulted in 17,509 genes used as

an input analysis for SDA. See Fairfax, Humburg (12) for further details on microarray data

quality control.

Cardiogenics. Cardiogenics is a European collaborative project that started in January

2007 and was funded by the European Commission through its Sixth Framework Program

(reference LSHM -CT-2006-037593). As part of the Cardiogenics project, RNA from mono-

cytes and macrophages of patients with coronary artery disease and healthy individuals was

prepared and genome-wide expression was assessed in both cell types using the Illumina

HumanRef 8 v3 Beadchip containing 24,516 probes corresponding to 18,311 distinct genes

and 21,793 Ref Seq annotated transcripts. The DNA of all these individuals was genotyped

using the Human 610 Quad custom arrays. We obtained processed microarray gene expres-

sion data from the European Genome-phenome Archive (Study: EGAS00001000411; Dataset

ID: EGAD00010000446, EGAD00010000448 and EGAD00010000450). The details of the Car-

diogenics datasets can be found in Rotival et al. [16] and Garnier et al [30].

ImmVar. The Immune Variation (ImmVar) project consists of 162 African American

subjects of European and African ancestry, 155 East Asian subjects of Chinese, Japanese or

Korean ancestry, and 377 Caucasian subjects of European ancestry. Genome-wide genotyping

was done using Illumina Infinium Human OmniExpress Exome BeadChip and subsequently

imputed using the Michigan Imputation Service with Human Reference Consortium v1.1 ref-

erence panel. The mRNAs were profiled by Affymetrix GeneChip Human Gene ST 1.0 micro-

arrays and raw data CEL files were processed using the Robust Multichip Average algorithm in

Affymetrix PowerTools. For further details see Raj, Rothamel (7). In addition to array data, the

stimulated and baseline monocytes from the ImmVar cohort were subsequently sequenced

[52]. The RNA-seq counts of baseline and interferon-stimulated ImmVar data were down-

loaded from accession GSE92904. The raw fastq and genotype data is available from dbGAP

under accession phs000815.v1.p1.

STARNET. The Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task

(STARNET) [5] macrophage gene expression data and genotype data is available from dbGAP

under accession phs001203.v1.p1.
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Genotype quality control and imputation

The raw genotype data were downloaded from the EGA (EGAS00000000109 and

EGAD00010000450) for Fairfax and Cardiogenics, respectively, and from dbGAP (accession

phs001203.v1.p1) for STARNET. The raw data was subsequently imputed using the Michigan

Imputation Service with Human Reference Consortium v1.1 reference panel of European

ancestry. We used 5,386,706 variants with minor allele frequency >= 0.01, INFO score >= 0.3

and Hardy-Weinberg equilibrium chi-square P> 1x10-6 for downstream eQTL analysis.

Gene expression quality control

The gene expression array data sets were processed using the same pipeline. We performed an

additional level of probe set filtering: (i) all array probes with a single nucleotide polymor-

phism (SNP) at minor allele frequency (MAF) greater than 0.1 in any of the 1000 Genomes

populations were removed. (ii) probes that do not map to the human genome were removed.

(iii) potential cross-hybridization probes, as provided by Affymetrix or Illumina, were flagged

and removed prior to the trans-eQTL association analysis. (iv) only uniquely mapping probes

and those mapping to GENCODE v19 were included. (v) probes mapping to the X and Y chro-

mosome were excluded. The gene expression data from each study were first internally nor-

malized by dividing the expression values for each gene in individuals of that cohort by the

mean expression value across the study, with the assumption that inter-batch differences on

normalized data are much lower than those on raw expression values. These normalized values

for the three cohorts were assembled and log2-transformed.

GWAS SNPs

The list of SNPs associated with various human complex diseases and traits was downloaded

from the GWAS Catalog (see URLs; accessed October 2017). We included the SNPs with

genome-wide significant association (P< 5×10−8) in our analyses. The list of SNPs was pruned

to eliminate SNPs with high LD (pairwise r2 < 0.4).

eQTL mapping

Prior to testing for trans-eQTLs association, we discarded the components that were correlated

with known biological or technical covariates (see Fig 1). Only SNPs with a minor allele fre-

quency (MAF) > 0.05 and a Hardy-Weinberg equilibrium P> 0.001 were included in the

analyses. We performed association tests of SNP genotype or imputed allele dosage with indi-

vidual scores using linear regression as implemented in the Matrix-eQTL16 software package.

For genome-wide trans analyses, we used an FDR of 0.05 to report the significant associations.

We used a more liberal FDR threshold of 0.15 for trans-eQTLs that colocalize with disease-

associated loci. For trans-eQTLs that colocalized in disease-associated loci, we permuted indi-

vidual scores (from SDA) 10,000 times to generate a null-distribution. We then compared the

nominal eQTL P-values to the empirical distribution created from the permuted datasets [8].

The cis and trans eQTL (SNP-by-gene) was carried using linear regression to perform associ-

ations between the imputed SNPs and the normalized gene expression. Cis-eQTL analysis was

limited to SNPs located within 1MB either side of the transcription start or end site. We used

PEER [53] to account for confounding factors in the gene expression data. We fit the PEER

model to gene expression data with 15 factors. The residuals from PEER-corrected gene expres-

sion data and imputed SNP dosages were used to perform linear regression using the Matrix-

eQTL [54] software package. FDR for the cis- and trans-eQTL analysis was calculated following

Benjamini and Hochberg [55] procedure as implemented in the Matrix-eQTL package.
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Enrichment analysis

We used oPOSSUM-3 [56] to identify over-represented transcription factor binding sites

(TFBS) among genes in each component. The Z-score uses the normal approximation to the

binomial distribution to compare the rate of occurrence of a TFBS in the target set of genes

(in each component) to the expected rate estimated from the pre-computed background set.

TopGO package [57] was used to perform enrichment analysis for Gene Ontology (GO)

terms. We ran enrichment for significant (PIP > 0.5 and distributional cut-off 2.5%) genes

amongst all component networks. We also applied Ingenuity Canonical Pathway (IPA) analy-

sis to perform pathway enrichment for genes within each component. We used MAGMA [31]

to test for enrichment of components among GWAS traits.

LD score regression

We used stratified LD score regression [32,58] to partition SNP-based disease heritability

within categories defined by the sparse components. Using GWAS summary statistics from 18

traits or complex diseases (Alzheimer’s disease, Parkinson’s disease, Autism, Multiple Sclero-

sis, Schizophrenia, Type 2 Diabetes, Lupus, Primary Biliary Cirrhosis, Rheumatoid Arthritis,

Irritable Bowel Disease, Crohn’s disease, Celiac Disease, Ulcerative Colitis, High-density lipo-

protein Cholesterol, Low-density lipoprotein Cholesterol, Body Mass Index, Coronary Artery

Disease, and Height) and LD modeled from 1000 genomes reference panel of European ances-

try, we calculated the proportion of genome-wide SNP-based heritability that be attributed to

SNPs within each component. Categories for each component were defined by taking all the

SNPs (within each gene plus 10 kb +/- from transcript start and stop sites) for all genes within

the component. To improve model accuracy, the categories defined by components categories

were added to the ‘full baseline model’ which included 53 functional categories capturing a

broad set of functional and regulatory elements. Enrichment is defined as the proportion of

SNP-heritability accounted for by each component divided by the proportion of total SNPs

within the module. Components with FDR-corrected enrichment P-values of less than 0.05

were considered significant heritability contributors.

Mendelian randomization

Mendelian Randomization is a form of instrumental variable regression used to formulate a

mediating path between a variant (SNP) to a trans-network (trans-eGenes or component indi-

vidual scores) through a causal gene (cis-gene). We exploit a possible instrument or variant/

SNP that changes this causal gene but not the trans-gene(s) or component individual scores

(aside from through the causal gene). Hence, this yields a mediating path through the causal

gene where all the noise is removed except that from the variant. We implement the McDow-

ell, Pai (38) formulation of Mendelian randomization.

Experimental validation

Human monocytic cell line, THP-1, was differentiated into macrophages upon treatment with

20 nM phorbol 12-myristate 13-acetate (PMA) for 3 days. Cells were then transfected with

human SCR-siRNA, CTSB-siRNA or MS4A4A-siRNA (Dharmacon) using Jetprime transfec-

tion reagent during 8 h. Cells were collected after 48 h and gene expression levels were assessed

by qPCR using Taqman primers. For the MS4A4A experiment, macrophages were exposed to

20 ng/ml of IFNγ (R&D Systems) for the last 24 h hours.

Trans-eQTLs in primary monocytes
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Data access

We have made a browser available for all significant trans-eQTLs at https://rajlab.shinyapps.

io/Tensor_myeloid/. This browser also provides the list of all sparse components, activity

scores, and gene scores.

URLs

LD Score Regression, https://github.com/bulik/ldsc.

Sparse Decomposition of Arrays (SDA), https://jmarchini.org/sda/.

GWAS Catalog, http://www.ebi.ac.uk/gwas.

Myeloid Tensor Shiny Application, https://rajlab.shinyapps.io/Tensor_myeloid/.

Supporting information

S1 Fig. Association of component individual scores with biological and technical covariates

in Cardiogenics (CG). A: Shown in the heat map are −log10 transformed P-value of associa-

tion between CG component individual scores and known covariates. Left: All 500 Compo-

nents, Right: Sparse Components. B: For these sparse components, the component tissue

scores were grouped based on activity in monocytes (MC) or macrophages (MP).

(PDF)

S2 Fig. Replication of previously identified trans-eQTLs in Fairfax et. al (2014). The SNP

rs2275888 maps to FF component 337 enriched with type 1 interferon-related genes with a p-

value = 1.7x10−9 and FDR = 1x10−3 and gene network similar to Fairfax et. al (2014) study. A

cis-eQTL at rs2275888 for IFNB1 is associated with the expression of 17 genes in trans after

24-hour LPS stimulation, many of which are interferon response genes.

(PDF)

S3 Fig. Trans-eQTL mapping to a component with MHC and non-MHC genes. A: The gene

expression profiles of component (363) with MHC and non-MHC genes in FF are shared

among all stimuli (Top panel). Shown are the gene scores for the genes with Posterior Inclu-

sion Probability (PIP) > 0.5 (bottom panel). Trans-eQTL for the MHC component co-localize

with B) cholesterol associated risk variant rs9378212, C) Type 2 Diabetes risk variant

rs9268645, and D) Coronary Artery Disease risk variant rs9268402.

(PDF)

S4 Fig. Mendelian randomization analysis for trans-eQTLs mediated by a cis-gene in the

MHC. A: Cholesterol variant rs9378212 mediates the trans-effects through HLA-DQA1, B:

Type 2 Diabetes variant rs9268645 mediates the trans-effects through HLADQA1, and C: Cor-

onary Artery Disease variant rs9268402 mediates the trans-effects through HLA-DRB1.

(PDF)

S5 Fig. Replication of trans-eQTLs that co-localize with disease-associated susceptibility

allele. A: Top: Component 391 active in FFLPS24 (left) maps to Crohn’s disease associated vari-

ant rs503734 (Middle). The component contains genes from the members of the Zinc finger

family (right). Bottom: The trans-eQTL is replicated in CG. B: (Top:) FF Component 105 active

in FFLPS2 (left) maps to Coronary Artery Disease variant rs589448 (middle) and component

gene scores (right). Bottom: The trans-eQTL is replicated in CG (Component 417 in CGMP).

(PDF)

S6 Fig. Mendelian randomization analysis for disease-associated trans-eQTLs in FF and

CG. (A) Crohn’s variant rs503734 mediate trans-effects through cis-gene SENP7 and (B)
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Coronary Artery Disease variant rs589448 mediate trans-effects through cis-gene LYZ and

YEATS4.

(PDF)

S7 Fig. Cis-eQTL (rs1296028-CTSB) co-localizes with Parkinson’s disease associated vari-

ant rs1296028.

(PDF)

S8 Fig. SNP by gene trans-eQTL association for CG component 46. Shown are box plots for

Parkinson’s disease associated variant rs1296028 (near CTSB) mapping to AARSD1, DDHD2,

DGCR5, and DOK7.

(PDF)

S9 Fig. SNP by gene trans-eQTL association for CG component 46. Shown are box plots for

Parkinson’s disease associated variant rs1296028 (near CTSB) mapping to: MTHFSD, NAT14,

PCDHGB4, and RIOK1.

(PDF)

S10 Fig. Independent replication of trans-eGenes in the CTSB component. SNP by Gene

association analysis was performed in an independent macrophage data from the STARNET

cohort. Shown here are the trans-eQTL for rs1296028 and selected trans genes in the CTSB
component at FDR< 0.20.

(PDF)

S11 Fig. Significant cis-eQTL effect for rs983392 to both MS4A4A and MS4A6A in baseline

monocytes.

(PDF)

S12 Fig. Trans-eQTLs for component FF 26 (SNP by gene analysis). FF Component 26

trans-eGenes: CD38, CUL1, CYP4F3, FAM129B, and FBXO6; trans-eSNP rs983392.

(PDF)

S13 Fig. Trans-eQTLs for component FF 26 (SNP by gene analysis). FF Component 26

trans-eGenes: GBP1, HMGCR, LGALS3BP, PADI4 and PSME2; trans-eSNP rs983392.

(PDF)

S14 Fig. Trans-eQTLs for component FF 26 (SNP by gene analysis). FF Component 26

trans-eGenes: QPCT, SERPING1, STAT1, STOM, SYTL3, and TAP1; trans-eSNP rs983392.

(PDF)

S15 Fig. Trans-eQTLs for component FF 26 (SNP by gene analysis). FF Component 22

trans-eGenes: ADM, CA11, FBP1, IFITM1, and ISG15; trans-eSNP rs9331896.

(PDF)

S16 Fig. Trans-eQTLs for Component FF 26 (SNP by Gene analysis). FF Component 22

trans-eGenes: ISG20, ITGAX, MT1E, MT1F, and OASL; trans-eSNP rs9331896.

(PDF)

S17 Fig. Trans-eQTLs for Component FF 26 (SNP by Gene analysis). FF Component 22

trans-eGenes: RSAD2, SLC2A5, TOP2B, and VASH1; trans-eSNP rs9331896.

(PDF)

S18 Fig. Protein-protein interaction (PPI) network of protein products of CLU, C1QA,

C1QB and C1QC. The PPI suggests that the products of CLU physically interact with
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complement proteins. The PPI was generated with GeNets Meta network v1.0 database.

(PDF)

S19 Fig. Independent replication of trans-eGenes in the MS4A4A/6A component. SNP by

Gene association analysis was performed in an independent baseline monocytes from the

ImmVar cohort. Shown here are the trans-eQTL for rs983392 and selected trans genes in the

MS4A4A/6A component (FDR< 0.20).

(PDF)

S20 Fig. Independent replication of trans-eGenes in the CLU component. SNP by Gene

association analysis was performed in an independent stimulated monocyte data from the

ImmVar cohort. Shown here are the trans-eQTL for rs9331896 and selected trans genes in the

CLU component (FDR< 0.20).

(PDF)

S1 Table. List of sparse components with corresponding gene scores and stimuli (IFN and

LPS) activity scores identified in the FF dataset.

(XLSX)

S2 Table. List of sparse components with corresponding gene scores and tissue (monocytes

and macrophages) activity scores identified in the CG dataset.

(XLSX)

S3 Table. Components that replicate across the three datasets: Fairfax(FF), Cardiogenics

(CG) and ImmVar(IMM). Two-way reverse correlation with the gene scores was conducted

on the common intersected genes from the respective components.

(XLSX)

S4 Table. Enrichment of Gene Ontology (GO) categories among the genes in the sparse

components.

(XLSX)

S5 Table. Sparse components that are enriched for genes within disease-associated loci.

The component number, P-value, and corresponding GWAS disease or traits are listed.

(XLSX)

S6 Table. SNP-based heritability enrichment for each component. Proportion of heritability

and enrichment statistics for 18 selected complex traits that can be attributed to each sparse

component from the FF data.

(XLSX)

S7 Table. Trans-eQTLs detected in Fairfax data (FF; FDR < 0.05). The matrix-eQTL output

with SNP, component number, beta, t-stat, P-value and FDR are listed here. Note: The trans-
eSNPs are not LD-pruned.

(XLSX)

S8 Table. Trans-eQTLs detected in Cardiogenics data (CG; FDR < 0.05). The matrix-eQTL

output with SNP, component number, beta, t-stat, P-value and FDR are listed here. Note: The

trans-eSNPs are not LD-pruned.

(XLSX)

S9 Table. Trans-eSNPs detected in the FF dataset (FDR < 0.15) that co-localize with trait-

associated GWAS SNPs. The table lists SNP, P-value, trait, component number, cis-gene (if

any), tissue or stimuli specificity scores, genes and gene loading scores for each component
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and FDR.

(XLSX)

S10 Table. Trans-eSNPs detected in the CG dataset (FDR < 0.15) that co-localize with

trait-associated GWAS SNPs. The table lists SNP, P-value, trait, component number, cis-gene

(if any), tissue or stimuli specificity scores, genes and gene loading scores for each component,

and FDR.

(XLSX)

S1 Note. Assumptions and sparsity ranking statistic formulation for gene scores for each

component.

(PDF)
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