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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease. Al-
though genome-wide association studies (GWAS) have successfully identified many variants signifi-
cantly associated with ALS, it is still difficult to characterize the underlying biological mechanisms
inducing ALS. In this study, we performed a transcriptome-wide association study (TWAS) to iden-
tify disease-specific genes in ALS. Using the largest ALS GWAS summary statistic (n = 80,610), we
identified seven novel genes using 19 tissue reference panels. We conducted a conditional analysis to
verify the genes’ independence and to confirm that they are driven by genetically regulated expres-
sions. Furthermore, we performed a TWAS-based enrichment analysis to highlight the association
of important biological pathways, one in each of the four tissue reference panels. Finally, utilizing
a connectivity map, a database of human cell expression profiles cultured with bioactive small
molecules, we discovered functional associations between genes and drugs to identify 15 bioactive
small molecules as potential drug candidates for ALS. We believe that, by integrating the largest ALS
GWAS summary statistic with gene expression to identify new risk loci and causal genes, our study
provides strong candidates for molecular basis experiments in ALS.

Keywords: amyotrophic lateral sclerosis; transcriptome-wide association study; drug repositioning;
enrichment analysis; causal gene

1. Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, affects
nerve cells in the brain and spinal cord, causing motor neurons to mutate and disappear
selectively and progressively. The disorder causes muscle weakness, such as myocardial
lateral sclerosis and severe myocardial dysfunction, for which the causes are unclear and
no definitive diagnostic tests exist so far [1]. The annual incidence of ALS is about 2 per
100,000 persons and the incidence rises considerably in people above mid-age [2].

Many studies have been conducted to identify the genetic mutations causing ALS,
not only to understand the disease mechanisms but also to facilitate the design of disease
modeling and treatment [3,4]. Although genome-wide association studies (GWAS) have
successfully identified many variants significantly associated with ALS, it is often difficult
to characterize the underlying biological mechanisms inducing ALS. Furthermore, the
actual effects of loci may not completely be described because of complex factors such
as linkage disequilibrium (LD) between the variants and differences in the amount of
gene expression (GE) of particular genes in various tissues [5–7]. In order to understand
the underlying biology, researchers have used expression quantitative trait loci (eQTL)
studies, in which correlations between single nucleotide polymorphisms (SNPs) and GE
have been studied to discover disease mechanisms at the gene level [8]. Unfortunately, not

Int. J. Mol. Sci. 2021, 22, 3216. https://doi.org/10.3390/ijms22063216 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3637-8833
https://orcid.org/0000-0001-8331-3448
https://orcid.org/0000-0003-2247-3194
https://doi.org/10.3390/ijms22063216
https://doi.org/10.3390/ijms22063216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22063216
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22063216?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 3216 2 of 15

many expression-trait associations have been identified, given the sparsity of specimen
availability and the prohibitive cost, especially for genes with small effect sizes.

In recent times, transcriptome-wide association study (TWAS) has emerged as a new
technology to identify functionally relevant genes whose expression levels are associated
with a trait of interest. Instead of measuring GE levels directly from samples, TWAS utilizes
reference panels to learn a predictive model on an eQTL dataset and impute GE levels into
a larger GWAS [9]. Using large-scale GWAS statistics, several TWAS successfully identified
genes, even those with small effect sizes, that are significantly associated with complex
traits, by increasing the statistical power in the analysis [10,11]. Several TWAS tools
have been proposed, including FUSION, which is one of the representative tools [12–14].
To increase the power of analysis, FUSION provides reference panels to impute gene
expression, which are used to calculate the causal relationship between SNPs and GE
within specific tissues. In addition, in order to more accurately prioritize causal genes
taking into account cis-genetic expression factors in GWAS summary statistics, FUSION
analyzes by adding an LD matrix containing LD information between SNPs [15].

In this study, we used FUSION to perform TWAS on ALS and analyzed the largest
ALS cohort ever to identify the candidate genes associated with ALS. The cohort consists
of 20,806 ALS cases and 59,804 controls from Europe. Brain and blood-related panels from
Genotype-Tissue Expression project v7 (GTEx v7) have been used as reference panels. From
the analysis, we identified 27 significantly associated genes (20 genes are reported else-
where and seven novel genes), showing that they are indirectly involved in the biological
mechanisms of ALS [5,16,17]. Utilizing the LD information, we narrowed the 27 genes to
25 genes.

A conditional analysis is used to determine whether the significant TWAS gene has
shown up owing to an independent association or a number of correlated single associa-
tions [18]. Through FUSION conditional analyses, which determine the independences of
resulting genes, we demonstrate that several of the genome-wide significant signals from
the ALS GWAS are driven by genetically regulated expression. Based on the TWAS-based
gene set enrichment analysis (TWAS-GSEA), we confirmed the functional enrichment
pathway of ALS. In addition, we performed drug repositioning analysis using significant
TWAS genes using the connectivity map (CMap) software [19]. Finding effective treatment
for ALS remains one of the biggest issues to solve. ALS is one of the most rapid neurode-
generative diseases, but so far, other than Riluzole, no drugs that slow disease progression
have been reported, and numerous drugs have shown poor results in randomized con-
trolled trials [20]. By means of the drug repositioning analysis using CMap, we detected
15 bioactive small molecules as potential drug candidates for ALS. This study is aimed at
the comprehensive and in-depth characterization of the associations between cis-genetic
components and ALS through comprehensive analysis in a multitude of relevant tissues
using TWAS.

2. Results
2.1. Workflow of this Study

To study the genetic mechanisms of ALS, a TWAS was performed using FUSION
software. Figure 1 shows the workflow of our TWAS analysis, where ALS GWAS summary
statistics, reference brain and blood tissue panels, and an LD matrix have been used as
the input for FUSION software (http://gusevlab.org/projects/fusion/; accessed on 15
August 2020). The FUSION returns TWAS-identified transcriptome-wide significant genes
responsible for ALS risk. After the analysis, conditional analyses were conducted on the
significant TWAS genes to determine whether they were actually detected as independently
significant associations. TWAS-GSEA was performed using significant TWAS genes to
investigate the biological effects derived from the TWAS results and to explore biological
pathways involved in the pathogenesis of ALS. Drug repositioning analysis was conducted
in CMap using significant TWAS genes to discover drug candidates for ALS.

http://gusevlab.org/projects/fusion/
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Figure 1. Analytical workflow.

2.2. Identification of Significant TWAS Genes Associated with ALS Risk

To identify risk genes contributing to the pathogenesis of ALS, we performed a
TWAS using FUSION, with GWAS summary statistics of 20,806 ALS cases and 59,804
controls from Europe, 19 SNP-GE weight brain and blood panels from the GTEx con-
sortium, and an LD matrix estimated from the 1000 Genomes Project. As ALS affects
nerve cells mainly in the brain and other related organs, the 19 SNP-GE weight panels
associated with brain tissue were selected for this study. All of the TWAS genes are
listed in Supplementary Table S1. Applying a threshold of FDR < 0.05, 55 genes have
been identified from 19 panels, of which 27 genes were uniquely identified (Figure 2
shows a Manhattan plot of TWAS associations between gene expression and ALS. Sup-
plementary Table S2 lists 55 significant genes and their information including p-value
and FDRs). Among the 55 TWAS genes, 35 were estimated to be up-regulated in ALS
(Z-score > 0), whereas 20 to be down-regulated (Z-score < 0) (Supplementary Table S2).
Twenty out of the 27 uniquely identified genes have been reported as ALS-associated
genes in previous studies [5,21–24]. In particular, the top three of those 27 genes, i.e.,
C9orf72-SMCR8 complex subunit (C9orf72) (p-value = 1.65 × 10−28 and FDR = 4.03 × 10−23),
sec1 family domain containing 1 (SCFD1) (p-value = 6.65 × 10−8 and FDR = 5.07 × 10−4),
and ataxin 3 (ATXN3) (p-value = 3.14 × 10−6 and FDR = 6.73 × 10−3), are well-known ALS-
associated genes [5,16,17]. Table 1 lists the remaining 7 TWAS genes, which are, to the
best of our knowledge, novel risk genes. The most significant among them is radial spoke
head 10 homolog B (RSPH10B) (Z-score = −4.68, p = 2.90 × 10−6 and FDR = 6.43 × 10−3)
from the pituitary gland. Among the brain tissues panels, the most significant novel
gene found was NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2) (Z-score = −4.24,
p-value = 2.18 × 10−5, and FDR = 3.04 × 10−2). Among the blood tissue panels, hepatoma-
derived growth factor, related protein 3 (HDGFRP3) (Z-score = −4.23, p-value = 2.39 × 10−5,
and FDR = 3.24 × 10−2) was the most significant novel gene found.
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threshold (FDR < 0.05). The names of statistically significant genes (FDR < 0.05) are labeled on the corresponding dots. Red 
and blue dots indicate novel risk genes and previously reported genes for ALS, respectively. 
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Figure 2. Manhattan plot of TWAS associations between gene expression and ALS. Each dot represents a TWAS signal. The
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Table 1. Significant TWAS novel risk genes for ALS (FDR < 0.05). GTEx, Genotype-Tissue Expression project v7; YFS, Young
Finns Study; NTR, Netherlands Twin Registry.

Gene Tissue Panel Chr Best GWAS rsID TWAS Z-Score TWAS p-Value FDR

RSPH10B GTEx—Pituitary 7 rs709930 −4.68 2.90 × 10−6 6.43 × 10−3

NDUFC2 GTEx—Brain Cortex 11 rs665278 −4.25 2.18 × 10−5 3.04 × 10−2

HDGFRP3 YFS—Blood 15 rs13329195 −4.26 2.39 × 10−5 3.24 × 10−2

USP37 NTR—Blood 2 rs933994 4.20 2.74 × 10−5 3.54 × 10−2

NDST2 YFS—Blood 10 rs12256103 4.13 3.57 × 10−5 4.22 × 10−2

LCE1C
GTEx—Brain

Cerebellar
Hemisphere

1 rs3126091 −4.11 3.93 × 10−5 4.50 × 10−2

TRBC2 NTR—Blood 7 rs1964986 −4.09 4.28 × 10−5 4.83 × 10−2

Next, we examined gene-tissue association from the 27 significant TWAS genes to
assess the expression pattern of each gene in 19 SNP-GE weight panels (Figure 3 shows a
heatmap representing the predicted expression patterns of TWAS significant associations).
Of the 27 TWAS genes, 10 genes were associated with multiple tissue panels, while the
other genes were detected from only one panel. Among the 10 genes, C9orf72 was detected
in 12 panels, the largest number of tissue panels among all genes. The expression levels
of C9orf72 were consistently estimated to be up-regulated in ALS patients in 12 panels.
While most genes had consistent expression patterns across tissue panels, only SCFD1
was predicted to be up-regulated by five SNP-GE panels associated with brain tissues
and to be down-regulated by four SNP-GE panels associated with blood tissues in ALS
patients. Consistent with our results, a previous study for ALS showed that the regression
slope of cis-eQTLs of SCFD1 was positive in brain tissues and negative in whole-blood
tissues [23]. In terms of tissue panels, the SNP-GE weight panel associated with the largest
number of genes, i.e., 11 TWAS associations, was the blood panel of YFS. Even though
there can be interference in the tissue enrichment of TWAS associations because of different
SNP-GE weight panels having different numbers of genetic features, we could suggest
that this result is consistent with previous studies given that various metabolic biomarkers
implicated in ALS pathogenesis have been detected in the blood [25,26]. To summarize, we
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identified 27 TWAS genes, including seven novel genes, as susceptibility genes contributing
to the etiology of ALS and reported reliable gene-tissue associations in ALS.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 15 

 

 

we identified 27 TWAS genes, including seven novel genes, as susceptibility genes con-
tributing to the etiology of ALS and reported reliable gene-tissue associations in ALS.  

 
Figure 3. Heatmap showing the predicted expression patterns of TWAS significant associations. The x-axis represents the 
27 significant TWAS genes and the y-axis indicates 19 SNP-GE weights. The Z-score values are labeled on the plot and are 
represented by a color bar on the right. 

2.3. Conditional Analysis Supports the TWAS Genes of ALS 
TWAS reports genes with significant causal relationships based on GWAS summary 

statistics. A conditional analysis using LD was performed to detect independent loci. The 
27 TWAS genes were grouped into 22 different discrete loci by their physical position with 
a +/− 500 kb window (Supplementary Table S3 and S4). The result demonstrates that 25 of 
27 significant TWAS genes were identified as independent TWAS signals at 22 loci, con-
ditional on their predicted expression (conditional p < 0.05). Myosin XIX (MYO19) and 
gametogenetin-binding protein 2 (GGNBP2) among the 27 TWAS genes, located at the same 
loci, were tested for the independence of significance. When conditioning on the predicted 
expression of MYO19 in the blood panel, the GWAS signals significantly (lead SNP PGWAS 

= 6.21 × 10−6 conditioned on MYO19 lead SNP PGWAS = 0.00369; Figure 4a) dropped. This 
result indicated that the expression of MYO19 may explain most GWAS signals at the 
locus, implying that MYO19 is a jointly significant gene (conditional p-value in blood of 
YFS = 8.6 × 10−6) but GGNBP2 is not (conditional p-value in blood of YFS = 0.42). NDUFC2, 
one of the novel risk genes from brain tissue, was also identified as an independently sig-
nificant gene, not being dependent on effects from GWAS SNPs, because the majority of 
GWAS signals were substantially altered after conditioning on the expression of NDUFC2 
in the brain cortex lead SNP PGWAS = 7.85 × 10−6, conditioned on NDUFC2 lead SNP PGWAS 

= 1.61 × 10−5; Figure 4b).  
Furthermore, we compared 22 discrete loci containing 25 independent TWAS associ-

ations with GWAS loci reported by the GWAS catalog. Eight of the 22 loci were mapped 
within +/− 500 kb of the GWAS significant loci implicated in ALS Table 2. As expected, the 
abovementioned C9orf73, SCFD1, and ATXN3 genes were simultaneously identified to be 
implicated in ALS at TWAS and GWAS significant loci. The majority of TWAS genes over-
lap the reported genes located at the mapped GWAS loci, implying that our TWAS results 
are reliable. Nevertheless, there are several TWAS genes that do not correspond to GWAS-
reported genes at the overlapped loci, such as ubiquitin-specific peptidase 37 (USP37), serine 
protease 3 (PRSS3), β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1), and MYO19. 
One of the TWAS novel genes, USP37, was detected at significant GWAS loci and the 
other novel genes were not detected within +/− 500 kb of the GWAS loci. These results 
indicate that TWAS responsibly discovered risk genes for ALS that could not be detected 

Figure 3. Heatmap showing the predicted expression patterns of TWAS significant associations. The x-axis represents the
27 significant TWAS genes and the y-axis indicates 19 SNP-GE weights. The Z-score values are labeled on the plot and are
represented by a color bar on the right.

2.3. Conditional Analysis Supports the TWAS Genes of ALS

TWAS reports genes with significant causal relationships based on GWAS summary
statistics. A conditional analysis using LD was performed to detect independent loci. The
27 TWAS genes were grouped into 22 different discrete loci by their physical position with
a +/− 500 kb window (Supplementary Table S3 and S4). The result demonstrates that
25 of 27 significant TWAS genes were identified as independent TWAS signals at 22 loci,
conditional on their predicted expression (conditional p < 0.05). Myosin XIX (MYO19)
and gametogenetin-binding protein 2 (GGNBP2) among the 27 TWAS genes, located at the
same loci, were tested for the independence of significance. When conditioning on the
predicted expression of MYO19 in the blood panel, the GWAS signals significantly (lead
SNP PGWAS = 6.21 × 10−6 conditioned on MYO19 lead SNP PGWAS = 0.00369; Figure 4A)
dropped. This result indicated that the expression of MYO19 may explain most GWAS
signals at the locus, implying that MYO19 is a jointly significant gene (conditional p-
value in blood of YFS = 8.6 × 10−6) but GGNBP2 is not (conditional p-value in blood of
YFS = 0.42). NDUFC2, one of the novel risk genes from brain tissue, was also identified
as an independently significant gene, not being dependent on effects from GWAS SNPs,
because the majority of GWAS signals were substantially altered after conditioning on the
expression of NDUFC2 in the brain cortex lead SNP PGWAS = 7.85 × 10−6, conditioned on
NDUFC2 lead SNP PGWAS = 1.61 × 10−5; Figure 4B).
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Figure 4. Regional association plots showing the jointly significant TWAS genes. (A) A regional association plot at
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the bottom shows a Manhattan plot of the GWAS data before (gray) and after (blue) conditioning on the independently
significant genes.

Furthermore, we compared 22 discrete loci containing 25 independent TWAS associa-
tions with GWAS loci reported by the GWAS catalog. Eight of the 22 loci were mapped
within +/− 500 kb of the GWAS significant loci implicated in ALS Table 2. As expected,
the abovementioned C9orf73, SCFD1, and ATXN3 genes were simultaneously identified to
be implicated in ALS at TWAS and GWAS significant loci. The majority of TWAS genes
overlap the reported genes located at the mapped GWAS loci, implying that our TWAS
results are reliable. Nevertheless, there are several TWAS genes that do not correspond to
GWAS-reported genes at the overlapped loci, such as ubiquitin-specific peptidase 37 (USP37),
serine protease 3 (PRSS3), β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1), and MYO19.
One of the TWAS novel genes, USP37, was detected at significant GWAS loci and the
other novel genes were not detected within +/− 500 kb of the GWAS loci. These results
indicate that TWAS responsibly discovered risk genes for ALS that could not be detected by
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GWAS. Collectively, we identified that the majority of our TWAS genes were independently
significant risk genes for ALS.

Table 2. Independent TWAS genes mapped to GWAS loci reported by GWAS catalog.

Gene(s). Chr Gene
Start Position

Gene
Stop Position GWAS Reported Gene Index SNP GWAS Loci

Position

USP37 2 219,000,000 219,000,000 STK36, TTLL4, ZNF142 rs2303565 218,680,586
GPX3, TNIP1 5 150,000,000 150,000,000 TNIP1 rs10463311 15,103,274

C9orf72 9 27,500,000 27,600,000 IFNK, MOBKL2B, C9orf72 rs3849943,
rs3849942 27,543,384

PRSS3 9 33,800,000 33,800,000 Intergenic rs4879628 32,888,522
B4GALNT1 12 58,000,000 58,000,000 KIF5A rs113247976 57,581,917

ATXN3, TRIP11,
RP11-529H20.6 14 92,500,000 92,500,000 ATXN3 rs10143310 92,074,037

SCFD1 14 31,100,000 31,200,000 SCFD1 rs10139154 30,678,292
MYO19 17 34,851,477 34,900,737 TMEM132E rs730547 34,785,087

2.4. Functional Annotation of TWAS Signals

In order to explore the biological effects arising from the TWAS-identified genes of
ALS, we conducted a TWAS-GSEA using TWAS signals and reference gene sets. TWAS-
GSEA can analyze functional clusters of TWAS signals, minimizing the loss of signals
from intermediating genes. TWAS signals were grouped by 19 different tissues and their
functional categories were tested using reference gene sets, such as Hallmark and gene
ontology (GO) gene sets. Four biological gene sets were significantly associated with TWAS
signals in four tissue panels, i.e., hippocampus, hypothalamus, nucleus accumbens/basal
ganglia, and whole-blood (FDR < 0.05) Table 3. Three gene sets, i.e., negative regulation of
binding, perikaryon, and Golgi vesicle-mediated transport, were from GO, and a single
gene set, KRAS signaling up, was from Hallmark. Four significantly enriched pathways
contained a single TWAS significant gene (Supplementary Table S5).

Table 3. Biological processes significantly enriched with TWAS signals of ALS (FDR < 0.05). N mem avail denotes the
number of TWAS signals involved in the reference gene set used in this analysis; N mem denotes the total number of genes
in the reference gene set.

Panel GeneSet N Mem Avail N Mem FDR

Brain Hippocampus GO: Negative regulation of binding 14 164 3.15 × 10−2

Brain Hypothalamus Hallmark: KRAS signaling up 13 200 1.30 × 10−2

Brain Nucleus accumbens/basal
ganglia

Hallmark: KRAS signaling up 14 200 2.40 × 10−2

GO: Perikaryon 11 127 3.60 × 10−2

Whole-Blood GO: Post Golgi vesicle-mediated transport 11 104 3.05 × 10−2

Negative regulation of binding was enriched in hippocampus tissue, which is consis-
tent with previous reports of the correlation between ALS and cytoplasmic aggregation
of RNA-binding protein [27]. Golgi vesicle-mediated transport was significantly enriched
with TWAS genes in whole-blood tissue, which may indicate that the Golgi apparatus
plays a crucial role in the pathogenesis of ALS [28–30]. SCFD1, one of the significant TWAS
genes, is also involved in the endoplasmic reticulum (ER)-to-Golgi transport and was
reportedly mutated in a small proportion of ALS patients [31]. Notably, up-regulation of
the KRAS signaling pathway was enriched in two tissues, specifically, the hypothalamus
and nucleus accumbens/basal ganglia, owing to the TWAS signal. In accordance with
the importance of the KRAS pathway in several neuropathies, our result showed that
dysregulation of the KRAS pathway might be also involved in the pathogenesis of ALS
based on genetic features [32]. In addition, we identified that TWAS signals from the nu-
cleus accumbens/basal ganglia were enriched in the perikaryon pathway. Neurofilament
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accumulation in the perikaryon was previously reported as one of the most common and
characteristic pathological features of ALS [33,34]. We suggest that these four biological
processes together might have a genetic contribution to the pathogenesis of ALS.

2.5. Identification of Drug Candidates for ALS

To discover drug candidates that can target the 27 TWAS genes, we conducted a drug
repurposing analysis upon the TWAS results using the CMap software (Supplementary
Table S6). CMap performs connectivity analysis of gene expression activation between
bioactive small molecules by comparing the order of gene expression with the reference
database (build 02). Table 4 lists 15 bioactive small molecules that were detected as potential
drug candidates for ALS (p < 0.01). The bioactive molecule with the highest enrichment
score is MK-886 (enrichment score = 0.966 and p-value = 2.01 × 10−3), which is known
as an inhibitor of 5-lipoxygenase (5-LOX) and could thus reduce the development of
atherosclerosis [35]. Klegeris et al. reported that 5-LOX inhibitors including MK-886 were
identified as effective neuroprotective agents by suppressing toxic actions derived from
reactive microglia that are associated with age-related degenerative diseases including
ALS [35]. Trichostatin A (enrichment score = 0.386 and p-value = 0.00), the most statistically
significant drug candidate, has shown protective effects in cell types involved in ALS
through increased histone acetylation [36,37]. Yoo et al. suggested that trichostatin A
may have a potential therapeutic effect to slow disease progression and to enhance motor
performance in ALS patients [36].

Table 4. Bioactive molecules discovered by CMap as potential drug candidates for ALS (p < 0.01).

CMap Name PubChem Name PubChem CID Enrichment Score p-Value

MK-886 MK 886 365137 0.966 2.01 × 10−3

STOCK1N-35696 - - 0.965 2.07 × 10−3

PF-00539758-00 - - 0.949 1.20 × 10−4

16,16-Dimethylprostaglandin E2 16,16-Dimethyl-Pge2 5283066 0.893 2.38 × 10−3

Bufexamac Bufexamac 2466 0.827 1.35 × 10−3

Androsterone Androsterone 5879 0.813 2.37 × 10−3

Picrotoxinin Picrotoxinin 442292 0.801 3 × 10−3

Sulfinpyrazone Sulfinpyrazone 5342 0.795 3.46 × 10−3

Deptropine Deptropine 203911 0.77 5.43 × 10−3

Folic acid Folic acid 135398658 0.757 6.60 × 10−3

Mebendazole Mebendazole 4030 0.741 2.68 × 10−3

Adenosine phosphate Adenosine 5’-Monophosphate 6083 0.734 9.83 × 10−3

Tetracycline Tetracycline 54675776 0.673 9.75 × 10−3

Phentolamine Phentolamine 5775 0.611 4.59 × 10−3

Trichostatin A Trichostatin A 444732 0.386 0.00

The majority of other potential drug candidates that are identified in our analysis
were reported to be either directly or indirectly associated with ALS elsewhere. STOCK1N-
35696 (enrichment score = 0.965 and p-value = 2.07 × 10−3) was previously suggested
as a potential therapeutic agent for Alzheimer’s disease [38]. Androsterone (enrichment
score = 0.813 and p-value = 2.37 × 10−3) is a neurosteroid that could have effects on brain
function, acting as a positive allosteric modulator of the γ-aminobutyric acid type A
(GABAA) receptor [39,40]. Picrotoxinin (enrichment score = 0.801 and p-value = 3 × 10−3)
is a component of picrotoxin that has been used as a stimulant of the central nervous
system [41]. Deptropine is known as a classical histamine H1 receptor antagonist and
histamine targets motor neurons, glial cells, and skeletal muscles, which all express his-
tamine receptors, in ALS [42,43]. Volonté et al. reported that histaminergic modulation
might be effective in ALS because histamine-related genes were dysregulated in the cortex
and spinal cord in sporadic ALS patients [43]. Folic acid (enrichment score = 0.757 and
p-value = 6.60 × 10−3) with vitamin B12 was reported to delay disease onset and prolong
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lifespans in the ALS mouse model [44]. Adenosine phosphate (enrichment score = 0.734
and p-value = 9.83 × 10−3) is involved in adenosine homeostasis that may reportedly
play important roles in ALS progression [45]. Tetracycline (enrichment score = 0.673 and
p-value = 9.75 × 10−3) is reportedly one of the antibiotics that could act as neuroprotec-
tive molecules in neurological diseases such as Huntington’s disease, Parkinson’s disease,
stroke, and multiple sclerosis [46]. A previous study mentioned that phentolamine (en-
richment score = 0.611 and p-value = 4.59 × 10−3) was effective to reduce blood pressure
in a patient with ALS [47]. Collectively, we successfully detected 15 potential drug candi-
dates associated with 27 TWAS genes, which may contribute to the development of new
therapeutic options for ALS.

3. Discussion

ALS is a disease that has been studied from various angles by several researchers.
However, its exact biological mechanism remains unclear; consequently, there have been
few definitive treatments for the disease. Although many genes, SNPs, and loci associated
with ALS have been reported by GWAS studies, few studies have reported the functional
significance of genetic components from a transcriptomic perspective. To overcome the
limitation of GWAS studies, we performed a TWAS integrating the GWAS summary
statistics of more than 80,000 ALS cohorts, 19 SNP-GE weights from brain and blood
tissues, and the LD matrix. Since blood biomarkers have been steadily identified to explain
various pathological mechanisms of ALS, we used SNP-GE weights of not only brain
tissue but also blood tissue in order to provide new insights into the pathogenesis of
ALS, compared with the previous ALS TWAS study [21]. Using the TWAS results, we
conducted a functional enrichment analysis of TWAS signals and a drug repositioning
analysis targeting significant TWAS genes.

Twenty-seven significant TWAS genes were identified as susceptibility genes for ALS
in 19 different SNP-GE weight panels related to the brain. Of the 27 significant TWAS genes,
seven were novel risk genes identified by this study. Several novel genes can be biologically
interpreted to be associated with ALS. RSPH10B, the most statistically significant TWAS
gene, was reported to play a crucial role in ciliary and flagellar axonemes and to be
associated with Kartagener syndrome [48]. Several genes responsible for Kartagener
syndrome highlighted the importance of dynein motors to ciliary motility in a previous
study [49]. Defects in cytoplasmic dynein-mediated retrograde axonal transport were
reportedly implicated in the etiology of ALS [49]. Based on this information, we believe
that RSPH10B may actually affect the pathogenesis of ALS and have a shared genetic
contribution to Kartagener syndrome.

NDUFC2, the most significant novel gene from brain tissue, encodes a subunit of the
mitochondrial membrane respiratory chain NADH dehydrogenase that is associated with
mitochondrial diseases including Parkinson’s disease [50]. A previous study reported that
the expression level of NDUFC2 may contribute to the occurrence of ischemic stroke [51].
Another study on the aggregation of neurodegenerative disease proteins in cerebral is-
chemia revealed a previously unrecognized molecular overlap between neurodegenerative
diseases such as ALS and ischemic stroke [51,52]. USP37 encodes an enzyme that breaks
down ubiquitin-specific processing proteins in the body [53]. Inhibition of USP37 was
reported to facilitate the proteasomal clearance of neurotoxic proteins [54]. Acting in a
similar biological mechanism to USP37, USP7 was suggested to be involved in the etiology
of ALS associated with proteotoxicity [55]. In light of these facts, we suggest that our TWAS
successfully identified biologically interpretable novel genes implicated in the pathogenesis
of ALS.

Based on the conditional analysis, 25 out of 27 TWAS significant genes were identified
as independent genes. We confirmed that the seven novel TWAS genes were located at
different loci and were independently significant genes. Then, 25 genes were grouped into
22 discrete loci in which previously reported GWAS genes were implicated. Eight of the 22
loci were detected to simultaneously have TWAS- and GWAS-significant signals. NDUFC2,
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a novel risk gene not located at the eight loci, may not be detected by GWAS because of the
small gene size and other large protein-coding genes nearby. However, TWAS identified
NDUFC2 as an independently significant gene, showing the power of TWAS to amplify
weak signals associated with the disease.

To investigate the biological effects derived from the ALS TWAS genes at the tran-
scriptome level, we carried out a functional enrichment analysis using TWAS-GSEA based
on the TWAS results. The TWAS signals were significantly enriched in 4 gene sets that
were substantially consistent with those found in previous studies. Although the TWAS
novel genes were not enriched in the four biological pathways, junction plakoglobin (JUP),
C9orf72, and SCFD1, which were previously reported as ALS-related genes, were included
in the pathways (Supplementary Table S5).

We also performed an in silico drug repurposing analysis using CMap to discover
perturbations that can reverse the expression profiles of significant TWAS genes. CMap
is a valuable approach to identify new indications for existing drug products and to
potentially provide opportunities to develop new therapeutic options [56–58]. Fifteen
bioactive molecules were detected as potential drug candidates for ALS using CMap, of
which most molecules were directly or indirectly associated with ALS. Trichostatin A,
the most statistically significant bioactive molecule associated with ALS, was reported to
inhibit histone deacetylase 6 of which overexpression disrupted the localization of p58
mediating binding of Golgi elements to microtubules [59]. It may be consistent with the
TWAS-GSEA results in terms of Golgi-related etiology for ALS. Even though the potential
drug candidates were substantially implicated in ALS, functional studies may be necessary
to validate their actual effects under physiological conditions because the results were
derived from only in silico analyses.

While the overall results from TWAS can be invaluable sources to understand the
pathogenesis of ALS, there are several limitations to overcome. TWAS is a powerful
approach to find risk loci affecting GE and to detect trait-associated genes; however,
identifying the associations between genes and the trait does not explain the causality of
disease. Thus, the genetic effects from dysregulation of significant TWAS genes need to be
validated using further in vitro or in vivo studies. As the SNP-GE weight panels were used
to predict the association of each eQTL and the disease in TWAS, the results of TWAS may
depend on the number of features in the SNP-GE panels. Brain substantia nigra (n = 1604)
and brain amygdala (n = 1837) panels have fewer features compared to the other tissue
panels, which have more than 2000 features. In fact, no significant TWAS signals were
identified in the brain amygdala tissue among 19 SNP-GE weight panels. Despite these
limitations, we believe that our TWAS successfully identified biologically interpretable risk
genes for ALS by contemplating the GE from the brain-related tissue panels. Our study
can provide new biological insights into the pathogenesis of ALS and may contribute to
the advancement of therapeutic options for ALS.

4. Materials and Methods
4.1. GWAS Summary Statistics of ALS

ALS GWAS summary statistics data was retrieved from the GWAS catalog (www.ebi.
ac.uk, accessed on 15 August 2020; accession number: GCST005647). Details on participant
ascertainment and quality control were described by Aude et al. [6]. The ALS GWAS
used in this work includes only the European population (n = 20,806 cases and 59,804
controls). To use the GWAS summary statistics for TWAS analysis, the LD score (LDSC,
v1.0.1) software was used to generate a sumstat-formatted file estimating SNP heritability
and genetic covariance [15]. The generated file can correct the inflation values caused by
GWAS, so the values predicted will be more accurate than in the original format.

4.2. Transcriptome-Wide Association Study

A TWAS was performed using FUSION software to conduct tissue-specific gene
expression imputation based on the ALS GWAS summary statistics (http://gusevlab.org/

www.ebi.ac.uk
www.ebi.ac.uk
http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
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projects/fusion/; accessed on 15 August 2020). TWAS incorporates ALS GWAS summary
statistics into cis-eQTL information representing the relationship between SNPs and GE in
specific tissues and accounts for LD to identify candidate genes associated with traits. The
SNP-GE weights containing cis-eQTL information, which indicates the correlation between
GE and SNP, were retrieved from the TWAS FUSION website. Four SNP-GE weights of
blood tissue were obtained from four cohort datasets: Netherlands Twins Register (NTR),
Young Finns Study (YFS), metabolic syndrome in men study (METSIM), and Genotype-
Tissue Expression project v7 (GTEx v7, whole blood) [60–63]. Fifteen SNP-GE weights
related to brain tissue were obtained from the Genotype-Tissue Expression project v7 (GTEx
v7) and Common Mind Consortium (CMC). All SNP-GE weights are composed of genes
being cis-regulated by SNPs within +/− 500kb of the transcription start site and having
significant heritability measured using GCTA/REML with a p-value less than 0.01. An
LD reference data for European populations from the 1000 Genomes project was used to
contemplate the LD region [64]. FUSION calculates gene expression using a linear mixed
model such as polygenic risk scores, LASSO, elastic net, and Bayesian sparse linear mixed
model (BSLMM) [14,65]. It performs 5-fold cross-validation on all models to determine
the best model and displays the optimized results. An FDR-corrected p-value < 0.05 was
considered as a threshold for significant TWAS associations.

4.3. Conditional Analysis Using TWAS Results

To confirm whether the multiple association features are independent signals, a
conditional analysis was conducted on the genomic regions where the identified significant
TWAS genes are located, using FUSION software with the LD matrix [15]. The joint
association p-value for each significant TWAS gene was calculated after conditioning on
the expression of the gene. This analysis can be used to investigate whether the loci have
truly independent associations when significant TWAS genes were identified at the loci
using SNP-GE weights. Conditional analysis can also identify how much GWAS signal
remains after the effects from the TWAS independent signal are removed.

4.4. Functional Enrichment Analysis

TWAS-GSEA was performed using TWAS results and SNP-GE weights to identify
the enrichment of specific biological pathways in ALS [10]. All genes obtained from each
tissue panel in TWAS were ranked using Z-scores and were used as pre-ranked gene sets,
in order to account for even the smallest potential that may be missed by focusing only
on significant genes. Gene sets of Hallmark and GO from molecular signatures database
(MsigDB v7.1, http://software.broadinstitute.org/gsea/msigdb; accessed on 15 August
2020) were used as reference biological gene sets [66]. TWAS-GSEA utilizes a linear mixed
model from the lme4qtl R package to test for an association between Z-scores and gene
set membership while adjusting for non-biological effects and accounting for correlation
between genes [67].

4.5. Drug Repositioning Analysis Using CMap

To discover drug candidates for ALS, drug repositioning analysis was conducted
using CMap upon the TWAS genes statistically significantly associated with ALS. The
formats of the TWAS genes were converted into the probe identifiers of Affymetrix Human
genome U133a using the hgu133a.db Bioconductor annotation R package (“hgu133a2.db”).
The TWAS genes were grouped as up- or down-regulated genes based on their Z-scores and
the corresponding probe IDs of up- and down-regulated genes were respectively provided
as down- and up-regulated genes to the CMap software. CMap (build 02) provides data
on expression profiles of more than 7000 drug signatures representing 1309 bioactive
compounds. The enrichment scores between CMap bioactive molecules and the genes
provided as input were calculated based on the Kolmogorov–Smirnov statistical method.
The range of enrichment score was represented between +1 and −1, indicating positive or
negative enrichment between the bioactive molecules and the input genes. As the TWAS

http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
http://software.broadinstitute.org/gsea/msigdb
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genes with opposite signs of their Z-scores were provided as the input of CMap, small
molecules with a p-value < 0.01 and a positive enrichment score were selected as drug
candidates for ALS.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/6/3216/s1, Table S1: TWAS summary statistics, Table S2: TWAS significant genes (FDR < 0.05),
Table S3: Divide the loci of TWAS novel genes based on +/−500 kb, Table S4: Conditional analysis of
multi-gene loci, Table S5: TWAS-GSEA result (FDR < 0.05) and enrichment gene set, Table S6: CMap
permuted result.
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