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ABSTRACT
Changes in soil bacterial communities, which are crucial for the assessment of ecological
restoration in Chinese plantations, have never been studied in the ‘‘Three North
Shelterbelt’’ project in the semi-arid areas. We used high-throughput sequencing of
the 16S rDNA gene to investigate the soil bacterial community diversity, structure, and
functional characteristics in three plantation forests, including Populus × canadensis
Moench (PC), Pinus sylvestris var. mongolica (PS), and Pinus tabuliformis (PT). In
addition, soil environment factors were measured. There were distinct differences in
soil characteristics among different plantation forests. Compared to PS and PT, PC
had a higher soil pH, dissolved organic carbon (DOC), and available P, as well as a
lower C/N ratio. Furthermore, afforestation with different tree species significantly
altered the abundance of Proteobacteria, and Chloroflexi in the soil, and its influence
on the bacterial diversity indices. The bacterial community compositions and functional
groups related to C andN cycling from PS, and PT were grouped tightly, indicating that
the soil bacterial phylogenetic distance of PS and PT were closer than that between PS
plus PT and PC. Our results implied that the soil characteristics, as well as the diversity,
compositions and functions related to C and N cycling of soil bacterial community
obviously differed from the following afforestation, especially between PC and PS plus
PT, which in turn enormously established the correlation between the soil microbial
community characteristics and the afforestation tree species.

Subjects Ecology, Microbiology, Soil Science, Forestry
Keywords Soil bacterial community, Bacterial functional characteristics, Afforestation, The
semi-arid areas

INTRODUCTION
Desertification has always been an important global ecological environmental problem
in the arid and semi-arid regions (Li et al., 2004; Torres et al., 2015; Becerril-Piña et al.,
2015), that is mainly caused by climate change and human activities in arid, semi-arid
and some sub-humid regions (Chasek et al., 2015; Salvati et al., 2015; Wijitkosum, 2016),
impacting 25% of the total terrestrial area (Reynolds et al., 2007; Allington & Valone, 2010).
Desertification has caused a loss of soil nutrients, a decline in land productivity and
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environmental degradation (Li et al., 2018). This leads to a decline or degradation in
sand-stabilization, soil conservation, water resource regulation, carbon sequestration and
other desert ecosystem services, and it endangers both regional and national economic,
social, and environmental security (Martã-Nez-Valderrama et al., 2016; Sutton et al., 2016).
Research sponsored by the United Nations Environment Programme (UNEP) shows that
the global economic losses caused by desertification and drought are as high as $4. 2×1010

USD per year, which is equivalent to all official aid given to Africa in 2009 (United Nations
Convention to Combat Desertification (UNCCD), 2011) (Furtado & Macedo, 2008). With
rapid economic growth, China is also confronted with various environmental problems,
including sandstorms, severe desertification, and land degradation in dry northern regions
(Liu & Diamond, 2005).

Numerous researches in arid and semi-arid areas have suggested that afforestation is one
of the most commonly used techniques and effective sand-fixing methods to reduce the
harm of desertification (Gao et al., 2002; Nunezmir et al., 2015). In addition, afforestation
exhibits a significantly positive feedback to the regional environment (Verón & Paruelo,
2010; Zhang et al., 2014; Peng et al., 2014), successfully combating the desertification and
dust storms (Fan et al., 2014; Tan & Li, 2015). In order to prevent ecosystem degradation,
artificial shrubs and trees have been widely planted in many degraded areas of China (Zhao
et al., 2017). Since the 1950s, large desertification control projects have been implemented
(Zou et al., 2002; Piao et al., 2005; Qadir, Qureshi & Cheraghi, 2010). Since 1978, a series of
ecological restoration programs have been initiated in China to alleviate these increasingly
serious environment problems and to restore degraded land (Zhang et al., 2016), primarily
through afforestation and reforestation (Zhang et al., 2014), of which the ‘Three North
Shelterbelt Development Program (TNSDP)’ is the largest afforestation program in the
world (Li et al., 2012). This special program in China gives us the advantage of studying
the benefits of afforestation in China.

Currently, planted forests in China account for about 31.8% of the forested area, which
is the most of any country in the world (State Forest Administration, 2010). By 2008,
afforestation of 1,511,700 hm2 of land had been completed in the TNSDP of Liaoning.
In this area, 212,200 hm2 of degraded forest was covered, accounting for 13.97% of the
preserved area. Great achievement has been made in the afforestation of the Horqin
Sandy Land in northern China (Zuo et al., 2012; Zhao et al., 2014; Ge et al., 2015), and
the ecological environment has been considerably improved. Furthermore, afforestation
has increased soil organic carbon sequestration in soil (Deng et al., 2006; Zhou et al., 2014).
During vegetation recovery, soil characteristics have also been identified as the main factors
driving plant growth, plant production, and dune ecosystem function (Zuo et al., 2008;
Zuo et al., 2009; Qiu et al., 2018). A variety of researchers have focused on the influences of
vegetation on the soil water content (Yang et al., 2018) and soil characteristics (Deng et al.,
2017).

Compared with the physical and chemical properties of soil, soil microorganisms are
more efficient and dynamic indicators of soil quality (Van der Heijen, Bardgett & Straalen,
2010; Bridge & Spooner, 2001). Soil microorganisms play a vital role in soil processes,
which can profoundly impact the main biogeochemical cycles of C and N, as well as
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provide protection to larger organisms through the formation of biofilms (Chatterjee et al.,
2008; Ritz et al., 2009; Burton et al., 2010). Previous research suggests that the soil microbial
distribution is regulated by the different revegetation types (Deng et al., 2019). In addition,
soil characteristics play important roles in shaping the soil bacterial community diversity
and structure in the terrestrial ecosystems (Liu et al., 2018). Extensive studies have indicated
that tree species and soil characteristics influence the microbial community structure and
compositions (Ding et al., 2017). Within the fragile local ecological environment, there is
also a close correlation between the soil biological properties and vegetation types. Thus,
it is of great significance to study the characteristics of soil microorganisms in different
plantation forests used for sand fixation forest (Wang et al., 2016). This information will
allow for a better understanding of how soil improvement effects sand fixation forests and
prevents land desertification. Previous findings have reported that grassland afforestation
changes the chemical properties and composition of the soil, as well as the ecological
functions of the soil bacterial communities. And these effects of afforestation on the
microorganisms have been modulated by changes in soil chemical characteristics (Wu et
al., 2019). Moreover, the forest soil habitat is an efficient means to restore local vegetation
and studying this area can shed new light on the distribution of local soil eukaryotic
microorganisms in semi-arid areas (Zhao et al., 2018).

Northwest Liaoning has an arid climate, frequent gales, water shortage and low vegetation
cover. It is also the key governance area of the TNSDP. In recent decades, Populus ×
canadensis Moench (PC), Pinus sylvestris var. mongolica (PS), and Pinus tabuliformis (PT)
have become the main afforestation tree species and widely used for afforestation in the
‘‘ThreeNorth Shelterbelt’’ due to their strong stress resistance, ability to accelerate ecological
rehabilitation and improve ecological stability. Previously, numerous studies in shelterbelt
have focused primarily on the aboveground ecosystem, and the soil physicochemical
characteristics (Wang et al., 2014;Zhou et al., 2016).However, variations in the soil bacterial
communities, which are crucial for the assessment of ecological restoration in plantations
in this area, have never been studied. Therefore, we selected a typical artificial shelterbelt in
the semi-arid area of northwestern Liaoning as the study area. The soil bacterial community
diversity, compositions and functional characteristics were analyzed for different plantation
forests composed ofPopulus× canadensisMoench,Pinus sylvestris var.mongolica, andPinus
tabuliformis. We propose the following hypotheses: (1) the three different plantation forests
harbor different soil bacterial diversity and community structures; (2) the functional groups
related to C and N cycling differ between PC and PS plus PT; and (3) consistent differences
occur in the soil bacterial community and functional characteristics following afforestation.
This research provides a reference for vegetation restoration and sustainable management
of artificial forests in this area. Furthermore, this study has important theoretical and
practical significance for the selection of tree species used for sand fixation in semi-arid
regions. Our results provide a scientific basis for the recovery of degraded soils.
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MATERIAL AND METHODS
Sites description
Research was conducted at Fujia forest farm, Changtu County, northwest of Liaoning
province (123◦32′E∼123◦55′E∼42◦53′N∼43◦21′N). This area is located at the southern
edge of Horqin Sandy Land and belongs to the Liaohe alluvial plain. The soil texture
is characterized by Arenosols (Lv et al., 2018). The study area is located at an attitude
of 91.1∼173.4 m, with the relatively flat topography and a small amount of elliptic or
circular dune distribution. The climate in this region is classified as a temperate semi-
humid semi-arid continental climate (Lu et al., 2017), with long and cold winters, and hot
summers. There is little rainfall, with an average annual precipitation of 400 to 550 mm
that is concentrated in July to August. The average annual evaporation is approximately
1,843 mm. The average temperature is 7 ◦C with extreme maximum and minimum
temperature of 35.6 ◦C and −31.5 ◦C. In recent decades, Populus × canadensis Moench,
Pinus sylvestris var. mongolica, and Pinus tabuliformis were the main plantation forests
in the ‘‘Three North Shelterbelt’’ (Fig. 1). Prior to afforestation, the vegetation type was
Arachis hypogaea (peanut) farmland, and the site information was shown in Table 1.

Soil sampling
Three independent replicate plots (20 m× 20 m) within the same climate were established
in August 2018 for each forest type. The distance between each sampling plot was greater
than 50 m but less than 200 m. To ensure the representativeness of soil samples, 10–15 soil
cores of topsoil (0∼10 cm) were collected for each triplicate plot using soil auger with an
‘‘S’’ shape. After removing the litter layer, the soil cores were combined to one composite
sample, giving a total of nine samples. All soil samples were stored on ice box after being
sealed in plastic bags for transport to the laboratory. In the laboratory, the samples were
sieved through a two mm mesh to remove plant roots, stones, litter, and other debris.
Samples were subsequently divided into three parts. One part was air-dried for analysis of
soil characteristics, including soil pH, the contents of total carbon (C), total nitrogen (N),
and available phosphorus (P). The second part was stored at 4 ◦C for DOC analysis, and
the third part was stored at −80 ◦C for DNA extraction.

Measurement of soil characteristics
The soil pHwas analyzed using an electrode pHmeter in the soil-water (1:5 w/v) suspension
(Bao, 2000; Ren et al., 2016). The contents of soil total C and total N were determined
using an elemental analyzer (Elementar, Hesse, Germany) (Schrumpf et al., 2011). The
concentrations of available P was determined using the extraction-flame photometry with
a 0.5MNaHCO3 extraction (Emteryd, 1989). Additionally, the content of dissolved organic
carbon (DOC) was extracted from fresh soil using deionized water (1:5 w/v) (Gong et al.,
2009) and determined via a TOC analyzer (Multi N/C 3100, Analytik Jena AG).

Soil DNA Extraction and 16S rDNA Sequencing
DNAwas extracted from 0.5 g of soil using the FastDNA SPINKit for Soil (MP Biomedicals,
Santa Ana, CA, USA), following the manufacturer’s instructions. A NanoDrop ND-1000
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Figure 1 Location of three forest type sites. (A) Stusy site; (B) Populus × canadensis Moench; (C) Pinus
sylvestris var.mongolica; (D) Pinus tabuliformis..

Full-size DOI: 10.7717/peerj.7141/fig-1

Table 1 Site information.

Different
samples

Age of
stand

Stand density
(plant hm−1)

Height (m) Diameter at
breast height (cm)

Crown
density (%)

PC 18 773 15.34 14.32 65%
PS 33 642 14.52 22.43 70%
PT 33 575 13.56 20.51 65%

Notes.
PC, Populus× canadensisMoench; PS, Pinus sylvestris var.mongolica; PT, Pinus tabuliformis.

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to determine
the quantity and quality of the extracted DNA. PCR was performed to target V3-V4
hypervariable region of the bacterial 16S rRNA genes was constructed to amplify, with the
forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse primer 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Deng et al., 2018). PCR amplifications were
carried out in two steps. Firstly, each of three independent 25 µl reactions per DNA sample
contained five µl of Q5 High-Fidelity GC buffer (5×); five µl of Q5 reaction buffer (5×);
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one µl (10 uM) of forward primer, one µl (10 uM) of reverse primer; 0.25 µl (5 U/µl) of
Q5 High-Fidelity DNA Polymerase; two µl of dNTPs (2.5 mM); two µl of DNA Template
(40-50 ng); and 8.75 µl of ddH2O (Deng et al., 2018). Cycling conditions were as follows:
one cycle of denaturation at 98 ◦C for 5 min; then denaturation at 98 ◦C for 15 s, annealing
at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s (25 cycles); and with a final extension
at 72 ◦C for 5 min. Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN, USA)
and PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) were used to purify
and quantify PCR amplicons. Amplicons were then pooled at equal concentrations after
the individual quantification step, and sequencing of pair-end 2× 300 bp was performed
using the Illlumina MiSeq platform with the MiSeq Reagent Kit v3 (Shanghai Personal
Biotechnology Co., Ltd, Shanghai, China).

Functional prediction using FAPROTAX
The database of Functional Annotation of Prokaryotic Taxa (FAPROTAX), which is based
on the available functional information in the existing microbiology literature, summarize
the names of related species from functional classification and annotation information.
FAPROTAX can be used to extrapolate functions of cultured prokaryotes to estimate
metabolic or other ecological relevant functions, which is more suitable for the functional
annotation and prediction of the biogeochemical cycle of environmental samples. The
annotated operational taxonomic unit (OTU) table from the Silva database was read, and
the annotated OTU information was matched with the species information in the database
using a python program and the predicted functions were outputted. The details of this
approach are provided by Louca, Parfrey & Doebeli (2016), Louca et al. (2017). The relative
abundances of the functional groups in each sample was calculated as the cumulative
abundance of OTUs assigned to each functional group, which was obtained by normalizing
the cumulative abundance of OTUs correlated with at least one function. Thus, functional
annotation of the OTUs was established based on FAPROTAX. We then investigated
potential functions involved in geographical location and environmental conditions.

Bioinformatics and processing of sequencing data
The QIIME software (v1.9.0) and the UPARSE pipeline (Zhong, Yan & Shang, 2015)
were used to analyze the raw data obtained from Illumina sequencing. The bacterial raw
data was submitted to the NCBI Sequence Read Archive (SRA) under accession number
PRJNA495735. The operational taxonomic assignment of OTUs with similarities >97%
was conducted using the UPARSE pipeline (Edgar, 2013). Then the operational taxonomic
classification and identity of OTUs were determined using a BLAST algorithm against
sequences within the Silva Database via QIIME software (Kõljalg et al., 2013). OTU-level
alpha diversity indices, such as Simpson index, Chao1 index, Shannon index, and ACE
index were computed using the OTU table in QIIME (Caporaso et al., 2010).

Statistical analysis
Among samples, the unique and shared OTUs of the soil bacterial community were
used to create Venn diagrams using the R (R v.3.4.4) with the ‘‘VennDiagram’’ package
(Zaura et al., 2009). The heatmap representation of the top 50 classified bacterial genera
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in each sample was established using R (R v.3.4.4) with the ‘‘gplot’’ and ‘‘pheatmap’’
packages (R Development Core Team, 2009). The relationships between soil characteristics
and the bacterial community functions related to C and N cycling based on Spearman’s
rank correlation analysis were built using R (v.3.4.4) with the ‘‘psych’’ and ‘‘corrplot’’
packages (R Development Core Team, 2009). The differences in bacterial community
structure across samples were established through beta diversity analysis and visualized
via nonmetric multidimensional scaling (NMDS) based on unweighted UniFrac distance
metrics (Lozupone et al., 2007).

Multifactorial ANOVA (MANOVA) and Canonical correspondence analysis (CCA)
were applied to analyze the effects of tree species on all the measured soil characteristics.
Multiple comparisons of means at a 95% confidence interval were performed using
Tukey’s honest significance difference (HSD) post-hoc test. Soil bacterial diversity and
relative abundances were analyzed in SPSS (v. 19.0) using a one-way analysis of variation
(ANOVA) and least significant difference (LSD) multiple comparison tests (Banerjee,
2016). Spearman’s rank correlation was used to estimate the relationships between soil
characteristics and soil bacterial community diversity. Similar patterns of functional groups
of bacterial community were analyzed with Principal component analysis via the STAMP
software (Parks et al., 2014). The linkages between soil environmental factors and bacterial
community composition at the phylum level were performed by canonical correspondence
analysis (CCA) via Canoco 4.5 (Braak & Smilauer, 2002).

RESULTS
Soil characteristics in different plantation forests
Tree species had a strong significant effect on all the soil pH (F = 6.58, P = 0.031), total
C (F = 30.54, P = 0.001), DOC (F = 6.02, P = 0.037), total N (F = 6.47, P = 0.032),
C/N (F = 45.49, P < 0.001), and available P (F = 78.06, P < 0.001) (Table 2). There were
distinct differences in the soil chemical characteristics among the three plantation forests.
The soil pH ranged from 5.53 to 5.92. The highest pH value occurred in PC with 5.92, and
significantly higher than PS and PT (P < 0.05). The soil DOCwas highest in PCwith 105.46
mg kg−1, and significantly higher than in PS and PT (P < 0.05). Soil total C and total N
concentrations in PS were the highest with 12.00 g kg−1, and 1.05 g kg−1, respectively,
followed by PT. And both of them occurred significantly higher than PC (P < 0.05). The
maximum value of the C/N ratio occurred in PT with 11.79, followed by PS with 11.41, and
lowest in PC with 9.15. No significant differences were observed in the soil total C content
and C/N ratio between PS and PT (P > 0.05). Soil available P was highest in PC with 16.00
mg kg−1, which was significantly higher than those of PS and PT (P < 0.05) (Table 2).
Compared to PS and PT, the PC had the highest soil pH value, DOC, and available P, as
well as the lowest C/N ratio.

The first two axes of the CCA accounted for 84.3% of the total variance. The CCA plot
showed a clear separation in the space among the three plantation forests. In fact, the PC
distinctly separated from PS, and PT, especially along CCA1 (Fig. 2). The investigated
soil characteristics also clearly separated into the quadrants. Soil total N was situated in
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Table 2 Results of MANOVA and post-hoc analyses on the effects of tree species and their interactions
on soil properties.

Factors pH Total C
(g kg−1)

DOC
(mg kg−1)

Total N
(g kg−1)

C/N ratio Available P
(mg kg−1)

Tree species – – – – – –
F-value 6.58 30.54 6.02 6.47 45.49 78.06
P-value 0.031 0.001 0.037 0.032 <0.001 <0.001
PC 5.92a 7.82b 105.46a 0.85b 9.15b 16.00a
PS 5.57b 12.00a 83.42ab 1.05a 11.41a 3.77b
PT 5.53b 11.46a 80.10b 0.97a 11.79a 3.09b

Notes.
PC, Populus× canadensisMoench; PS, Pinus sylvestris var.mongolica; PT, Pinus tabuliformis.
Different small letters meant significant difference at 0.05 level.

Figure 2 Results of canonical correspondence analysis-plot of all the measured soil environment fac-
tors. PC: Populus× canadensisMoench; PS: Pinus sylvestris var.mongolica; PT: Pinus tabuliformis. TC: to-
tal C; DOC: Dissolved organic carbon; TN: total N; AP: available P.

Full-size DOI: 10.7717/peerj.7141/fig-2

the first quadrant; available P and soil pH were in the second quadrant; soil pH was in
the third quadrant; soil total C and C/N ratio were in the fourth one (Fig. 2). The results
illustrated that the different forest types had different soil characteristics, significantly
different between PC and PT plus PS.

Soil bacterial community diversity under different plantation forests
There were significant differences among different plantation forests regarding soil total C
and total N contents ACE index and Chao1 index (F = 7.64, P = 0.02; F = 7.92, P = 0.02;
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Table 3 Soil bacterial diversity indices in different plantation forests.

Diversity indices PC PS PT F test P value

No. of sequences 48,848± 3,650aA 51,532± 2,892aA 52,395± 2,529aA 1.10 0.39
OTUs number(Phylum) 2,750± 349bA 3,378± 150aA 2,837± 141bA 6.36 0.03
Shannon index 10.46± 0.11aA 10.48± 0.16aA 10.09± 0.16bA 6.89 0.03
ACE index 2,898.70± 537.94bB 4,074.80± 181.79aA 3,192.86± 344.77bAB 7.64 0.02
Chao1 index 2,876.13± 518.02bB 3,952.39± 67.89aA 3,140.32± 290.58bAB 7.92 0.02
Simpson index 0.998± 0.000aA 0.997± 0.001abA 0.996± 0.001bA 5.68 0.04

Notes.
Data are means± standard error (n= 3).
PC, Populus× canadensisMoench; PS, Pinus sylvestris var.mongolica; PT, Pinus tabuliformis.
Different small letters meant significant difference at 0.05 level. Different capital letters meant significant difference at 0.01 level.

Table 4 Spearman’s rank correlations between the soil bacterial diversity indices and available
edaphic factors.

pH Total C DOC Total N C/N ratio Available P

Simpson index 0.65 −0.65 0.67* −0.55 −0.73* 0.77*

Chao1 index −0.48 0.55 −0.35 0.78* 0.25 −0.43
ACE index −0.58 0.62 −0.43 0.83** 0.30 −0.45
Shannon index 0.22 −0.18 0.27 −0.09 −0.35 0.20

Notes.
*correlation significant at 0.05 level.
**correlation significant at 0.01 level (two-tailed).

Table 3). The maximum values of the ACE index and Chao1 index occurred in PS with
4,074.80, and 3,952.39, respectively, followed by PT and PC. The soil bacterial Shannon
index and Simpson index among three plantation forests significantly differed (F = 6.89,
P = 0.03; F = 5.68, P = 0.04; Table 3). The Shannon index and Simpson index were lowest
in PT with 10.09 and 0.996, respectively. The Spearman’s rank correlations indicated that
soil total N significantly positively correlated with the Chao 1 index (r = 0.78, P < 0.05)
and ACE index (r = 0.83, P < 0.01). The Simpson index was significantly positively related
with soil available P (r = 0.77, P < 0.05), and DOC contents (r = 0.67, P < 0.05), while, the
Simpson index was highly negatively correlated with the C/N ratio (r =−0.73, P < 0.05)
(Table 4).

Soil bacterial community structure in different plantation forests
After quality trimming and chimera removal, 48,848, 51,532, and 52,395 high-quality
sequences were generated from the PC, PS, and PT sites, respectively. Rarefaction curves
for all the soil samples were shown in Fig. S1. As shown in the Venn diagram (Fig. 3),
the total number of shared bacterial OTUs in PC, PS, and PT was 1,355. The number of
bacterial OTUs shared between two sites was 1,503 for PT and PS, 744 for PS and PC, and
253 for PT and PC. The unique OTUs harbored in PC, PS and PT were 1486, 764 and 990,
respectively.

Sequences analysis showed a total of 29 phyla, and 793 genera within the three plantation
forest samples. Nine dominant phyla (relative abundance >1%) were observed, of which
the total average relative abundances represented more than 95%. Proteobacteria was
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Figure 3 Venn diagram representation of shared and unique OTUs of soil bacteria across three differ-
ent plantation forests. PC: Populus× canadensisMoench; PS: Pinus sylvestris var.mongolica; PT: Pinus
tabuliformis.

Full-size DOI: 10.7717/peerj.7141/fig-3

the most dominant bacterial phylum (31.01%), followed by Actinobacteria (23.76%),
Acidobacteria (20.08%), Gemmatimonadetes (9.17%), Chloroflexi (8.07%), Firmicutes
(1.52%), Planctomycetes (1.45%), Bacteroidetes (1.18%), and Verrucomicrobia (1.07%)
(Fig. 4). The average relative abundances of the Proteobacteria subgroups (Alpha-, Beta-,
Gamma-, and Delta-Proteobacteria) were 18.90%, 5.45%, 3.10%, and 3.56%, respectively
(Fig. S2). The relative abundances of Proteobacteria and Chloroflexi varied significantly
(P < 0.05) among the different forest types, with the highest abundances in PCwith 34.78%
and 10.02%, respectively (Fig. 4A). No significant differences were observed for other phyla
among the different plantation forests (P > 0.05).

At the genus level, 13 dominant bacterial genera (relative abundances >1%) were
observed, namely RB41, Gemmatimonas, Sphingomonas, Crossiella, Jatrophihabitans,
Variibacter, Rhizomicrobium, Pseudomonas, Bryobacter, Nitrobacter, Candidatus-
Solibacter, Haliangium, and Pseudonocardia, accounting for more than 20% of the total
relative abundances (Fig. 4B). The average relative abundances of Jatrophihabitans,
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Figure 4 The relative abundance of dominant bacterial phyla (A) and genera (B) in different planta-
tion forests. PC: Populus× canadensisMoench; PS: Pinus sylvestris var.mongolica; PT: Pinus tabuliformis.
Different small letters meant significant difference at 0.05 level.

Full-size DOI: 10.7717/peerj.7141/fig-4
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Rhizomicrobium, Bryobacter, Candidatus-Solibacter, and Haliangium were significantly
different among the three plantation forests (P < 0.05).

Effects of tree species on the compositions of the soil bacterial
community
A cluster heatmap analysis was used to analyze the differences in the bacterial community
compositions among the three plantation forests at the genus level (Fig. 5). The relative
abundance and distribution of soil bacteria in different plantation forests changed
significantly. Results showed that the soil samples were divided into two groups: one
group contained the PT and PS, and the other group was PC. In order to show the
bacterial community structures of PC, PS and PT, NMDS plot based on the unweighted
uniFrac metric was calculated (Fig. 6). The NMDS plot also showed that the samples were
classified into two large groups, one group corresponding to the communities from the
PS, and PT, and the other group from PC. The samples from the PS and PT were grouped
tightly, indicating that they shared a high similarity in their bacterial compositions.
Furthermore, the PS and PT tended to be separate from the PC, especially along NMDS1,
which contributed to 45.17% of the variance. Both analyses demonstrated that different
plantation forests had different influences on the soil bacterial communities. Moreover,
the phylogenetic relationship of the PT and PS was closer than those between the PT plus
PS and PC.

Effects of soil environment factors on the soil bacterial community
compositions
Results of the CCA showed that soil bacterial community structure had significant
correlations between and soil characteristics (Fig. 7). At the phylum level, the first ordination
CCA axis (CCA1) was strongly correlated with pH (r = 0.71), total C (r =−0.87), DOC
(r = 0.71), total N (r =−0.71), C/N (r =−0.85), and available P (r = 0.91), explaining
54.5% of the total variability of the bacterial community structures. Both axes together
explained 81.5% of the variation (Fig. 7A). At the genus level, the first ordination CCA axis
(CCA1) was strongly correlated with total C (r = 0.58), C/N (r = 0.76), and available P
(r =−0.74), explaining 55.7% of the total variability of the bacterial community structures.
Both axes together explained 76.5% of the variation (Fig. 7B). Thus, soil DOC, C/N, and
available P were important variables that played vital roles in the shaping of the bacterial
communities.

The relative abundances of Proteobacteria (r = 0.83, P < 0.01) and Bacteroidetes
(r = 0.78, P < 0.05) had significantly positive correlations with the DOC content. The
relative abundances of Proteobacteria (r =−0.67, P < 0.05), Chloroflexi (r =−0.68,
P < 0.05), and Bacteroidetes (r =−0.77, P < 0.05) were significantly negatively correlated
with C/N. In contrast, the relative abundances of Proteobacteria (r = 0.68, P < 0.05),
Chloroflexi (r = 0.78, P < 0.05), and Bacteroidetes (r =−0.70, P < 0.05) were positively
correlated with available P. The relative abundance of Verrucomicrobia was dramatically
negatively correlated with soil pH (r =−0.83, P < 0.01), while, Verrucomicrobia was
significantly positively correlated with total C (r = 0.90, P < 0.01), and total N (r = 0.83,
P < 0.01). The relative abundance of Planctomycetes showed a significantly positive
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Figure 5 Heatmap and hierarchical cluster analysis based on the relative abundances of the top 50
genera identified in the soil bacterial communities. The samples are grouped according to the similarity
of each other, and the clustering results are arranged horizontally according to the clustering results. In the
figure, red represents the genus with higher abundance in the corresponding sample, and blue represents
the genus with lower abundance. PC: Populus× canadensisMoench; PS: Pinus sylvestris var.mongolica;
PT: Pinus tabuliformis.

Full-size DOI: 10.7717/peerj.7141/fig-5
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Figure 6 Non-metric Multidimensional scaling analysis (NMDS) based on unweighted Unifrac metric
illustrating the soil bacterial community structure among different plantation forests. PC: Populus×
canadensisMoench; PS: Pinus sylvestris var.mongolica; PT: Pinus tabuliformis.

Full-size DOI: 10.7717/peerj.7141/fig-6

correlation with C/N (r = 0.70, P < 0.05), and negative correlation with available P
(r = 0.88, P < 0.01) (Table 5).

Bacterial functional annotation and distribution in different plantation
forests
According to the classification annotation results of the 16S rDNA sequences, a total of 51
functional groups were identified using FAPROTAX. These functional groups contained
5063 OTUs, and OTUs per functional group were listed in Table S1. We examined 13
ecological functional groups related to the C cycling, including chemoheterotrophy, aerobic
chemoheterotrophy, phototrophy, photoautotrophy, photoheterotrophy, anoxygenic
photoautotrophy S oxidizing, anoxygenic photoautotrophy, cellulolysis, oxygenic
photoautotrophy, methylotrophy, methanol oxidation, hydrocarbon degradation, and
methanotrophy (Table S2). The PCA plot showed that the functional groups related to
C cycling in PT and PS were separate from those of PC, especially along PCA1 (Fig. 8A).
Additionally, we examined 12 ecological functional groups connected to the N cycling,
including nitrification, nitrate reduction, nitrogen respiration, nitrate respiration, aerobic
nitrite oxidation, aerobic ammonia oxidation, nitrogen fixation, nitrite respiration, nitrate
denitrification, nitrite denitrification, nitrous oxide denitrification, and denitrification
(Table S3). The PCA plot showed that the functional groups related to N cycling in PT and
PS were separated from those of PC, especially along PCA2 (Fig. 8B), indicating that the
functional groups of PC differed from those of PS plus PT. We performed the Spearman’s
rank correlation analysis to explore the relationships between the microbial functional
groups and the six key environmental variables (Fig. 9). Soil pH value, total C, total N,
C/N, and available P were the main factors influencing the functional groups related to C
cycling (Fig. 9A). Whereas, total C was the main factor influencing the functional groups
related to N cycling (Fig. 9B).
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Figure 7 CCA of abundant bacterial communities at the phylum (A) and genus (B) level and soil
chemical characteristics for soil samples from different plantation forests. TC: total C; DOC: dissolved
organic carbon; TN: total N; AP: available P.

Full-size DOI: 10.7717/peerj.7141/fig-7
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Table 5 Spearman’s rank correlations between the relative abundances of dominant bacterial groups
and available edaphic factors.

pH Total C DOC Total N C/N ratio Available P

Proteobacteria 0.60 −0.55 0.83** −0.58 −0.67* 0.68*

Actinobacteria −0.25 0.15 −0.55 0.18 0.23 −0.15
Acidobacteria −0.17 0.27 −0.05 0.28 0.23 −0.35
Gemmatimonadetes 0.35 −0.25 0.55 −0.17 −0.32 0.20
Chloroflexi 0.52 −0.63 0.55 −0.52 −0.68* 0.78*

Firmicutes −0.33 0.40 −0.53 0.33 0.38 −0.43
Planctomycetes −0.35 0.60 −0.40 0.33 0.70* −0.88**

Bacteroidetes 0.40 −0.32 0.78* −0.28 −0.77* 0.70*

Verrucomicrobia −0.83** 0.90** −0.50 0.83** 0.53 −0.58

Notes.
*correlation significant at 0.05 level.
**correlation significant at 0.01 level (two-tailed).

DISCUSSION
Soil chemical characteristics following afforestation with different
tree species
Afforestation with different plantation forests had significant difference in soil conditions.
PC had the highest pH value, when compared to PS and PT (Table 2), which was similar
to the study demonstrating that the soil in pine stands had a lower pH than the oak and
birch tree stands (Yoshimura et al., 2008). This difference might be the result of higher
litter acidity in coniferous forests (Augusto et al., 2002). We observed that soil DOC in
PC was higher than that in PS and PT. Our results were consistent with a previous study
stating that soil organic matter and nitrogen were higher in broadleaf forests than those
in coniferous forests (Jiang et al., 2012). Previous findings had established that both tree
species and afforestation time dramatically influenced soil characteristics (Kim et al.,
2018; Kang et al., 2018). In our study, the C/N values decreased in the order of PT >PS
>PC, which was consistent with a previous finding that coniferous forests (pine) soil
contained more carbon and had a higher C/N ratio than broadleaf forests (Yoshimura et
al., 2008). The potential role of different forest types in variation of soil C/N ratio was also
supported by previous finding (Mcgroddy, Daufresne & Hedin, 2004). In summary, the soil
characteristics following afforestation with different tree species in the same area exhibited
obvious differences, especially between PC and PS plus PT.

The bacterial community diversity response to different plantation
forests
Similar to the soil characteristics, the Chao 1 index, and ACE index in PC were significantly
lower than those in PS and PT (P < 0.01). Simultaneously, here we found that the Simpson
index and Shannon index existed significant differences among different plantation
forests (F = 6.89, P = 0.03; F = 5.68, P = 0.04; Table 3). This result might be due to the
differences in the chemical compositions and decomposition rate of the litter (Kang et
al., 2018). The Spearman’s rank correlations illustrated the Chao 1 index and ACE index
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Figure 8 PCA plot of functional groups related to C cycling (A) and N cycling (B). PC: Populus×
canadensisMoench; PS: Pinus sylvestris var.mongolica; PT: Pinus tabuliformis.

Full-size DOI: 10.7717/peerj.7141/fig-8

existed significantly positively correlated with soil total N, which was similar to the research
from northeast China that reported that the H’ value was positively correlated with the
total N (Hui et al., 2014). The Simpson index was significantly positively related to soil
available P, while, a previous study suggested that there was no significant correlation
between diversity indices and P content (Wang et al., 2018). These results verified that
there were significant differences in soil bacterial diversity among different forest lands.

The bacterial community compositions response to different
plantation forests
The abundances of dominant bacterial phyla varied among the different plantation forests.
In our study, Proteobacteria was the most dominant group, which was similar to the
findings from Chinese pine plantations on the Loess Plateau (Dang et al., 2017), while,
the research from Wulai forest reported Acidobacteria was the dominant member (Lin
et al., 2014). Owing to differences in the lifestyles of Proteobacteria and Acidobacteria,
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Figure 9 The relationships between soil bacterial functional groups related to C (A) and N (B) cycles
and soil environmental factors. TC: total C; DOC: dissolved organic carbon; TN: total N; AP: available P.

Full-size DOI: 10.7717/peerj.7141/fig-9
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they can be used as indicators of nutritional status (Hartman et al., 2008). In our study,
the relative abundance of Proteobacteria in PC was significantly higher than that in PS
and PT. In addition, the relative abundances of Proteobacteria had significantly positive
correlations with DOC content. Our results concur with previous findings establishing that
the availability of carbon was positively related with the abundance Proteobacteria (Fierer,
Bradford & Jackson, 2007). In our study, Alphaproteobacteria was the dominant taxa at the
class level. This is in agreement with the results obtained from a boreal peatland in Central
Finland (Sun et al., 2014).

The phylumAcidobacteria is abundant in various soil environments (Zimmermann et al.,
2005; Araujo et al., 2012; Meng et al., 2013). In our study, the abundance of Acidobacteria
was relatively higher in the soil communities of PS and PT than that in PC, which was
consistent with a previous investigation that the relative abundance of Acidobacteria was
relatively higher in the coniferous forest than those of broadleaf forest (Christianl et al.,
2008). Soil pH is generally considered as a key factor in shaping bacterial community
structures (Preem et al., 2012). Research has established that the relative abundance of
the Acidobacteria is dramatically associated with acidic soils (Jones et al., 2009), and
more specifically, when the pH is lower than 5.5, Acidobacteria abundance increases
(Lauber et al., 2009). However, our results found that the soil pH had no relation to the
relative abundance of Acidobacteria, which might be due to the narrow range of pH
from 5.53 to 5.92 (Table 2). PC stand had the highest abundance of Proteobacteria and
lowest abundance of Acidobacteria. In consideration of the comparatively higher relative
abundance of Proteobacteria observed in the copiotrophic soils and the relatively higher
Acidobacteria abundance obtained in the oligotrophic soils (Fierer, Bradford & Jackson,
2007), we suggested that the PC plantation improved the soil nutrient conditions with lower
C/N value. Gemmatimonadetes was the dominant bacterial community in our research,
previous research illustrated that Gemmatimonadetes has been found in arid soils, such as
grassland, prairie, and pasture soil, as well as pine soils (Debruyn et al., 2011). In our study,
the relative abundances of Chloroflexi, and Bacteroidetes were positively correlated with
available P, and available P might be one of the important factors influencing the bacterial
community. Identically, previous findings have indicated that the phosphorus content
has an effect on community structures (Fierer, Bradford & Jackson, 2007; Bergkemper et al.,
2016).

The results of clear differentiation provided by the heatmap (Fig. 5) and NMDS (Fig. 6)
plots illustrated that significant differences in the bacterial community compositions were
observed among PS, PT and PC. The soil bacterial communities of the PT and PS sites
were similar to each other, indicating that the hierarchical clustering distance between
two coniferous forests was shorter than the distance between the coniferous and broadleaf
forests. Our results were agreement with previous study which have established that the
compositions of the soil bacterial community in hardwood forest differed from those in
conifer forests (Lin et al., 2011;Ushio et al., 2008), which could release different quality and
quantity of litter and root exudates (Sauheitl et al., 2010). In addition, the compositions of
soil bacteria between PS and PT were also different. These results confirmed our hypothesis
that the three different plantation forests harbored different soil bacterial community
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diversity and structure, suggesting that afforestation tree species had correlation with the
soil bacterial community, which was consistent with previous findings (Ren et al., 2016;
Gunina et al., 2017).

The bacterial functional groups response to different plantation
forests
The C and N cycle in the terrestrial ecosystem and its regulatory mechanism are the hot
topics in the science research of soil ecology and global change ecology (Maia et al., 2010).
It is known that soil bacterial communities play an important role in biogeochemical
cycles (Jenkins et al., 2017). In our study, we examined 13 functional groups related to
C cycling. In contrast, a previous study from a temperate deciduous broadleaved forest
and a tropical mountain rainforest detected eight ecological functional groups connected
with the carbon cycle (Wei et al., 2018). Soil nitrogen fixation, nitrification, denitrification,
ammonification, and other major nitrogen transformation processes are mainly mediated
by soil bacteria (Yoon et al., 2015). And the soil nitrogen cycle, especially the biological
nitrification and denitrification processes, can affect the production and emission of
greenhouse gases, such as CO2, CH4, and N2O (Gregorich et al., 2005). To some extent,
the denitrifying community of bacteria plays a vital role in the soil nitrogen cycle, and
the relative abundances of specific OTUs are more valuable in predicting community
function (Bent et al., 2016). In our study, the functional groups of denitrification were
significantly higher in the PS than PT and PC (P < 0.05). For soil bacterial function, the
functional groups related to C and N cycling in PT and PS were distinctly separate from
those of PC, indicating that the functional groups of the broadleaf forest differed from
those of the coniferous forests. Different plantation tree species could distinctly affect the
community compositions of decomposers (Kubartová et al., 2007). Due to the existence
of functional gene redundancy, these functional profiles are observed among bacterial
communities (Fierer et al., 2012). Different plantation forests affect soil characteristics
(Bhatia, 2008), thereby causing the change in the soil microbial diversity (Nair & Ngouajio,
2012), and functional diversity (Zhang et al., 2007). As a result, we believe our work has
broad implications for reforestation in the semi-arid areas.

CONCLUSIONS
Our results revealed that soil characteristics after afforestation with different tree species
under the same climatic conditions showed dramatic differences, especially between
Populus × canadensis Moench and Pinus sylvestris var. mongolica and Pinus tabuliformis.
Compared to Pinus sylvestris var. mongolica and Pinus tabuliformis, the plantation of
Populus× canadensisMoench increased the soil pH value, DOC content, and soil available
P content, while the C/N ratio decreased. Furthermore, the soil bacterial community
compositions, diversity, and functions are different among plantation types, especially for
Populus × canadensis Moench and Pinus sylvestris var. mongolica plus Pinus tabuliformis.

The bacterial diversity indices and the relative abundances of Proteobacteria, and
Chloroflexi in the soil significantly differed among plantation types. The bacterial
community compositions and functional groups related to C and N cycling from Pinus
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sylvestris var. mongolica, and Pinus tabuliformis were grouped tightly, indicating that the
phylogenetic distance formicroorganisms under different plantation types could be divided
into two groups, including Pinus sylvestris var. mongolica, plus Pinus tabuliformis, and
Populus × canadensis Moench. Our results highlighted that the soil bacterial community
compositions and functions obviously differed following afforestation, especially between
Populus × canadensis Moench and Pinus sylvestris var. mongolica and Pinus tabuliformis,
which in turn enormously established the correlation between the soilmicrobial community
characteristics and the afforestation tree species. Moreover, the bacterial community
structure and functions related to C and N cycling showed consistent differences among
different plantation forests following afforestation in the semi-arid areas.
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